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Abstract

The mixtools package for the R statistical software (R Development Core Team,
2008) provides a set of functions for analyzing a variety of finite mixture models. These
functions include both traditional methods, such as EM algorithms for univariate and
multivariate normal mixtures, and newer methods that reflect some recent research
in finite mixture models. In the latter category, mixtools provides algorithms for
estimating parameters in a wide range of different mixture-of-regression contexts, in
multinomial mixtures such as those arising from discretizing continuous multivariate
data, in nonparametric situations where the multivariate component densities are
completely unspecified, and in semiparametric situations such as a univariate location
mixture of symmetric but otherwise unspecified densities. Many of the algorithms of
the mixtools package are EM algorithms or are based on EM-like ideas, so this article
includes an overview of EM algorithms for finite mixture models.

Keywords: cutpoint, EM algorithm, mixture of regressions, model-based clustering, non-
parametric mixture, semiparametric mixture, unsupervised clustering

1 Introduction to finite mixtures and mixtools

Populations of individuals may often be divided into subgroups. Yet even when we observe
characteristics of these individuals that provide information about their subgroup mem-
berships, we may not actually observe these memberships per se. The basic goal of the
tools in the mixtools package (version 0.4.0, as of this writing) is to examine a sample of
measurements to discern and describe subgroups of individuals, even when there is no ob-
servable variable that readily indexes into which subgroup an individual properly belongs.
This task is sometimes referred to as “unsupervised clustering” in the literature, and in
fact mixture models may be generally thought of as comprising the subset of clustering
methods known as “model-based clustering”.
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Finite mixture models may also be used in situations beyond those for which clustering
of individuals is of interest. For one thing, finite mixture models give descriptions of
entire subgroups, rather than assignments of individuals to those subgroups (though the
latter may be accomplished using mixture models). Indeed, even the subgroups may not
necessarily be of interest; sometimes finite mixture models merely provide a means for
adequately describing a particular distribution, such as the distribution of residuals in a
linear regression model where outliers are present.

Whatever the goal of the modeler when employing mixture models, much of the theory
of these models involves the assumption that the subgroups are distributed according to a
particular parametric form — and quite often this form is univariate or multivariate nor-
mal. While mixtools does provide tools for traditional fitting of finite mixtures of univariate
and multivariate normal distributions, it goes well beyond this well-studied realm. Aris-
ing from recent research whose goal is to relax or modify the assumption of multivariate
normality, mixtools provides computational techniques for finite mixture model analysis
in which components are regressions, multinomial vectors arising from discretization of
multivariate data, or even distributions that are almost completely unspecified.

To make the mixture model framework more concrete, suppose the possibly vector-
valued random variables X1, . . . ,Xn are a simple random sample from a finite mixture of
m > 1 arbitrary distributions, which we will call components throughout this article. The
density of each Xi may be written

gθ(xi) =
m
∑

j=1

λjφj(xi), xi ∈ R
r, (1)

where θ = (λ,φ) = (λ1, . . . , λm, φ1, . . . , φm) denotes the parameter and the λm are positive
and sum to unity. We assume that the φj are drawn from some family F of multivari-
ate density functions absolutely continuous with respect to, say, Lebesgue measure. The
representation (1) is not identifiable if no restrictions are placed on F , where by “identifi-
able” we mean that gθ has a unique representation of the form (1) and we do not consider
that “label-switching” — i.e., reordering the m pairs (λ1, φ1), . . . , (λm, φm) — produces a
distinct representation.

In the next sections we will sometimes have to distinguish between parametric and
more general nonparametric situations. This distinction is related to the structure of the
family F of distributions to which the component densities φj in model (1) belong. We
say that the mixture is parametric if F is a parametric family, F = {φ(·|ξ), ξ ∈ R

d},
indexed by a (d-dimensional) Euclidean parameter ξ. A parametric family often used is
the univariate gaussian family F = {φ(·|µ, σ2) = density of N (µ, σ2), (µ, σ2) ∈ R × R

+
∗ },

in which case the model parameter reduces to θ = (λ, (µ1, σ
2
1), . . . , (µm, σ2

m)). For the
multivariate case, a possible parametric model is the conditionally i.i.d. normal model,
for which F = {φ(xi) =

∏r
k=1 f(xik), f(t) density of N (µ, σ2)} (this model is included

in mixtools; see section 6.1). An example of a (multivariate) nonparametric situation is
F = {φ(x) =

∏r
k=1 f(xi), f(t) a univariate density on R}, in which case θ consists in a

Euclidean part (λ) and a nonparametric part (f1, . . . , fm).
As a simple example of a dataset to which mixture models may be applied, consider

the sample depicted in Figure 1. In the Old Faithful dataset, measurements give time in
minutes between eruptions of the Old Faithful geyser in Yellowstone National Park, USA.
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Figure 1: The Old Faithful dataset is clearly suggestive of a two-component mixture of
symmetric components.

These data are included as part of the datasets package in R; type help("faithful") in
R for more details. For the Old Faithful eruption data, a two-component mixture model
is clearly a reasonable model based on the bimodality evident in the histogram. This
example is analyzed by Hunter et al. (2007), who compare a standard normal-mixture
method for fitting it with a novel semiparametric approach. Both approaches are included
in mixtools; see Sections 2.3 and 4.2 of this article.

In Section 2 of the current article we review the well-known class of EM algorithms
for finite mixture models, a common thread that runs throughout much of the rest of the
article. The remaining sections discuss various categories of functions found in the mixtools
package, from cutpoint methods that relax distributional assumptions for multivariate data
by discretizing the data (Section 3), to semi- and non-parametric methods that eliminate
distributional assumptions almost entirely depending on what the identifiability of the
model allows (Section 4), to methods that handle various mixtures of regressions (Section
5). Finally, Section 6 describes several miscellaneous features of the mixtools package.

2 EM algorithms for finite mixtures

2.1 Missing data setup

Much of the general methodology used in mixtools involves the representation of the mix-
ture problem as a particular case of maximum likelihood estimation (MLE) when the
observations can be viewed as incomplete data. This setup implies consideration of two
sample spaces, the sample space of the (incomplete) observations, and a sample space of
some “complete” observations, the characterization of which being that the estimation
can be performed explicitly at this level. For instance, in parametric situations, the MLE
based on the complete data may exist in closed form. Among the numerous reference
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papers and monographs on this subject are, e.g., the original EM algorithm paper by
Dempster et al. (1977) and the finite mixture model book by McLachlan and Peel (2000)
and references therein. We now give a brief description of this setup as it applies to finite
mixture models in general.

The (observed) data consist of n i.i.d. observations x = (x1, . . . ,xn) from a density
gθ given by (1). It is common to denote the density of the sample by gθ, the n-fold
product of gθ, so that we write simply x ∼ gθ. In the missing data setup, gθ is called
the incomplete-data density, and the associated log-likelihood is Lx(θ) =

∑n
i=1 log gθ(xi).

The (parametric) ML estimation problem consists in finding θ̂x = argmaxθ∈Φ Lx(θ), or
at least finding a local maximum — there are certain well-known cases in which a finite
mixture model likelihood is unbounded (McLachlan and Peel, 2000), but we ignore these
technical details for now. Calculating θ̂x even for a parametric finite mixture model is
known to be a difficult problem, and considering x as incomplete data resulting from
non-observed complete data helps.

The associated complete data is denoted by c = (c1, . . . , cn), with density hθ(c) =
∏n

i=1 hθ(ci) (there exists a many-to-one mapping from c to x, representing the loss of
information). In the model for complete data associated with model (1), each random
vector Ci = (Xi,Zi), where Zi = (Zij , j = 1, . . . m), and Zij ∈ {0, 1} is a Bernoulli random
variable indicating that individual i comes from component j. Since each individual comes
from exactly one component, this implies

∑m
j=1 Zij = 1, and

P(Zij = 1) = λj , (Xi|Zij = 1) ∼ φj , j = 1, . . . ,m.

The complete-data density for one observation is thus

hθ(ci) = hθ(xi, zi) =

m
∑

j=1

Izij
λjφj(xi),

In the parametric situation, i.e. when F is a parametric family, it is easy to check that
the complete-data MLE θ̂c based on maximizing log hθ(c) is easy to find, provided that
this is the case for the family F .

2.2 EM algorithms

An EM algorithm iteratively maximizes, instead of the observed log-likelihood Lx(θ), the
operator

Q(θ|θ(t)) = E

[

log hθ(C)|x,θ(t)
]

,

where θ(t) is the current value at iteration t, and the expectation is with respect to the
distribution kθ(c|x) of c given x, for the value θ(t) of the parameter. The iteration
θ(t) → θ(t+1) is defined in the above general setup by

1. E-step: compute Q(θ|θ(t))

2. M-step: set θ(t+1) = argmaxθ∈Φ Q(θ|θ(t))
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For finite mixture models, the E-step does not depend on the structure of F , since the
missing data part is only related to the z’s:

kθ(c|x) =

n
∏

i=1

kθ(zi|xi).

The z are discrete, and their distribution is given via Bayes’ theorem. The M-step itself
can be split in two parts, the maximization related to λ, which does not depend on F , and
the maximization related to φ, which has to be handled specifically (say, parametrically,
semi- or non-parametrically) for each model. Hence the EM algorithms for the models
handled by the mixtools package share the following common features:

1. E-step: Calculate the “posterior” probabilities (conditional on the data and θ(t))
of component inclusion,

p
(t)
ij

def
= P

θ(t)(Zij = 1|xi) =
λ

(t)
j φ

(t)
j (xi)

∑m
j′=1 λ

(t)
j′ φ

(t)
j′ (xi)

(2)

for all i = 1, . . . , n and j = 1, . . . ,m. Numerically, it can be dangerous to implement
equation (2) exactly as written due to the possibility of the indeterminant form 0/0

in cases where xi is so far from any of the components that all φ
(t)
j′ (xi) values result

in a numerical underflow to zero. Thus, many of the routines in mixtools actually
use the equivalent expression

p
(t)
ij =



1 +
∑

j′ 6=j

λ
(t)
j′ φ

(t)
j′ (xi)

λ
(t)
j φ

(t)
j (xi)





−1

(3)

or some variant thereof.

2. M-step for λ: Set

λ
(t+1)
j =

1

n

n
∑

i=1

p
(t)
ij , for j = 1, . . . ,m. (4)

2.3 An EM algorithm example

As an example, we consider the univariate normal mixture analysis of the Old Faithful
waiting data depicted in Figure 1. This fully parametric situation corresponds to a mix-
ture from the univariate gaussian family described in Section 1, where the jth component
density φj(x) in (1) is normal with mean µj and variance σ2

j . The M-step for the param-

eters (µj , σ
2
j ), j = 1, . . . ,m of this EM algorithm for such mixtures of univariate normals

is straightforward, and can be found, e.g., in McLachlan and Peel (2000). The function
normalmixEM implements it in mixtools. A code for the Old Faithful example, using most
of the default values (e.g., stopping criterion, maximum number of iterations), is simply

R> data("faithful")

R> attach(faithful)

R> wait1 <- normalmixEM(waiting, lambda = .5, mu = c(55, 80), sigma = 5)

number of iterations= 9
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The code above will fit a 2-component mixture (because mu is a vector of length two) in
which the standard deviations are assumed equal (because sigma is a scalar instead of a
vector). See help("normalmixEM") for details about specifying starting values for this
EM algorithm.

R> plot(wait1, density = TRUE, cex.axis = 1.4, cex.lab = 1.4, cex.main = 1.8,

+ main2 = "Time between Old Faithful eruptions", xlab2 = "Minutes")
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Figure 2: The Old Faithful waiting data fitted with a parametric EM algorithm in mixtools.
Left: the sequence of log-likelihood values, Lx(θ(t)); Right: the fitted gaussian components.

The normalmixEM function returns an object of class "mixEM", and the plot.mixEM func-
tion delivers the two plots given in Figure 2: the sequence t 7→ Lx(θ(t)) of observed
log-likelihood values and the histogram of the data with the m (m = 2 here) fitted gaus-
sian component densities of N (µ̂j , σ̂

2
j ), j = 1, . . . ,m, each scaled by the corresponding λ̂j ,

superimposed. The estimator θ̂ can be displayed by typing, e.g.,

R> wait1[c("lambda", "mu", "sigma")]

$lambda

[1] 0.3608498 0.6391502

$mu

[1] 54.61364 80.09031

$sigma

[1] 5.869089 5.869089

Alternatively, the same output may be obtained using the summary.mixEM function:
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R> summary(wait1)

summary of normalmixEM object:

comp 1 comp 2

lambda 0.36085 0.63915

mu 54.61364 80.09031

sigma 5.86909 5.86909

loglik at estimate: -1034.002

3 Cutpoint methods

Traditionally, most literature on finite mixture models has assumed that the density func-
tions φj(x) of equation (1) come from a known parametric family. However, some authors
have recently considered the problem in which φj(x) is unspecified except for some condi-
tions necessary to ensure the identifiability of the parameters in the model. One such set
of conditions is as follows:

Hettmansperger and Thomas (2000); Cruz-Medina et al. (2004); and Elmore et al.
(2004) treat the case in which φj(x) equals the product fj(xi) · · · fj(xr) for some univariate
density function fj . Thus, conditional on knowing that X comes from the jth mixture
component, the coordinates of X are independent and identically distributed. For this
reason, this case is called the conditionally i.i.d. model.

The authors named above have developed an estimation method for the conditionally
i.i.d. model. This method, the cutpoint approach, discretizes the continuous measurements
by replacing each r-dimensional observation, say Xi = (xi1, . . . , xir), by the p-dimensional
multinomial vector (n1, . . . , np), where p ≥ 2 is chosen by the experimenter along with a
set of cutpoints −∞ = c0 < c1 < · · · < cp = ∞, so that for a = 1, . . . , p,

na =
r
∑

k=1

I{ca−1 < xik ≤ ca}.

Note that the multinomial distribution is guaranteed by the conditional i.i.d. assumption,
and the multinomial probability of the ath category is equal to θa ≡ P(ca−1 < Xik ≤ ca).

The cutpoint approach is completely general in the sense that it can be applied to
any number of components m and any number of repeated measures r, just as long as
r ≥ 2m−1, a condition that guarantees identifiability (Elmore and Wang, 2003). However,
some information is lost in the discretization step, and for this reason it becomes difficult to
obtain density estimates of the component densities. Furthermore, even if the assumption
of conditional independence is warranted, the extra assumption of identically distributed
coordinates may not be; and the cutpoint method collapses when the coordinates are not
identically distributed.

As an illustration of the cutpoint approach applied to a dataset, we show here how to
use mixtools to reconstruct—almost—an example from Elmore et al. (2004). The dataset
is Waterdata, a description of which is available by typing help("Waterdata"). This
dataset contains 8 observations on each of 405 subjects, where the observations are angle
degree measurements ranging from −90 to 90 that describe the subjects’ answers to a
series of 8 questions related to a conceptual task about how the surface of a liquid would
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be oriented if the vessel containing it were tipped to a particular angle. The correct answer
is 0 degree in all cases, yet the subjects showed a remarkable variety of patterns of answers.
Elmore et al. (2004) assumed the conditionally i.i.d. model (see Benaglia et al. (2009a) for
an in-depth discussion of this assumption and this dataset) with both m = 3 and m = 4
mixture components. Elmore et al. (2004) summarized their results by providing plots of
estimated empirical distribution functions for the component distributions, where these
functions are given by

F̃j(x) =
1

mnλj

n
∑

i=1

r
∑

ℓ=1

pijI{xiℓ ≤ x}. (5)

In equation (5), the values of λj and pij are the final maximum likelihood estimates of the
mixing proportions and posterior component membership probabilities that result from
fitting a mixture of m multinomials.
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Figure 3: Empirical cumulative distribution function (CDF) estimates for the three- and
four-component multinomial cutpoint models for the water-level data; compare Figures 1
and 2 of Elmore et al. (2004). The 13 cutpoints used are indicated by the points in the
plots, and the estimated mixing proportions for the various components are given by the
legend.

We cannot obtain the exact results of Elmore et al. (2004) because those authors do
not state specifically which cutpoints ca they use; they merely state that they use thirteen
cutpoints. It appears from their Figures 1 and 2 that these cutpoints occur approximately
at intervals of 10.5 degrees, starting at −63 and going through 63; these are the cutpoints
that we adopt here. The function makemultdata will create a multinomial dataset from
the original data, as follows:

R> data("Waterdata")

R> cutpts <- 10.5*(-6:6)

R> watermult <- makemultdata(Waterdata, cuts = cutpts)
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Once the multinomial data have been created, we may apply the multmixEM function
to estimate the multinomial parameters via an EM algorithm. Finally, compCDF calcu-
lates and plots the estimated distribution functions of equation (5). Figure 3 gives plots
for both a 3-component and a 4-component solution; these plots are very similar to the
corresponding plots in Figures 1 and 2 of Elmore et al. (2004).

R> set.seed(15)

R> theta4 <- matrix(runif(56), ncol = 14)

R> theta3 <- theta4[1:3,]

R> mult3 <- multmixEM(watermult, lambda=rep (1, 3) / 3, theta = theta3)

number of iterations= 378

R> cdf3 <- compCDF(Waterdata, mult3$posterior, lwd = 2, lab = c(7, 5, 7),

+ xlab = "Angle in degrees", ylab = "Component CDFs",

+ main = "Three-Component Solution")

R> mult4 <- multmixEM (watermult, lambda = rep (1, 4) / 4, theta = theta4)

number of iterations= 197

R> cdf4 <- compCDF(Waterdata, mult4$posterior, lwd = 2, lab = c(7, 5, 7),

+ xlab = "Angle in degrees", ylab = "Component CDFs",

+ main = "Four-Component Solution")

As with the output of normalmixEM in Section 2, it is possible to summarize the output
of the multmixEM function using the summary.mixEM function:

R> summary(mult4)

summary of multmixEM object:

comp 1 comp 2 comp 3 comp 4

lambda 0.39129858 4.37324e-01 0.1423719 2.90055e-02

theta1 0.00158495 1.00000e-100 0.1032950 1.10049e-01

theta2 0.00702398 1.00000e-100 0.0530971 1.76659e-01

theta3 0.01046161 1.00000e-100 0.0492899 1.00000e-100

theta4 0.01496546 1.00000e-100 0.0483266 6.10181e-02

theta5 0.08306419 4.24139e-09 0.0538023 1.90177e-01

theta6 0.16368958 2.23277e-02 0.0971990 2.31815e-79

theta7 0.24531772 6.36828e-01 0.1054539 1.00000e-100

theta8 0.22535197 3.28360e-01 0.0954597 1.00000e-100

theta9 0.14693736 1.14673e-02 0.0768796 1.00000e-100

theta10 0.07284375 1.01752e-03 0.0747733 2.09779e-01

theta11 0.01809642 1.00000e-100 0.0369879 3.18723e-02

theta12 0.00114603 1.00000e-100 0.0363463 1.89517e-02

theta13 0.00533544 1.00000e-100 0.0505107 2.01493e-01

theta14 0.00418155 0.00000e+00 0.1185788 0.00000e+00

loglik at estimate: -2881.278
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4 Nonparametric and semiparametric methods

In this section we consider nonparametric multivariate finite mixture models. The first
algorithm presented here was introduced by Benaglia et al. (2009a) as a generalization of
the stochastic semiparametric EM algorithm of Bordes et al. (2007). Both algorithms are
implemented in mixtools.

4.1 EM-like algorithms for mixtures of unspecified densities

Consider the mixture model described by equation (1). If we assume that the coordinates
of the Xi vector are conditionally independent, i.e. they are independent conditional on
the subpopulation or component (φ1 through φm) from which Xi is drawn, the density in
(1) can be rewritten as:

gθ(xi) =

m
∑

j=1

λj

r
∏

k=1

fjk(xik), (6)

where the function f(·), with or without subscripts, will always denote a univariate density
function. Here we do not assume that fjk(·) comes from a family of densities that may be
indexed by a finite-dimensional parameter vector, and we estimate these densities using
nonparametric density techniques. That is why we say that this algorithm is a fully
nonparametric approach.

The density in equation (6) allows for a different distribution for each component and
each coordinate of Xi. Notice that if the density fjk(·) does not depend on k, we have the
case in which the Xi are not only conditionally independent but identically distributed
as well. These are the two extreme cases. In order to encompass both the conditionally
i.i.d. case and the more general case (6) simultaneously in one model, we allow that the
coordinates of Xi are conditionally independent and there exist blocks of coordinates that
are also identically distributed. If we let bk denote the block to which the kth coordinate
belongs, where 1 ≤ bk ≤ B and B is the total number of such blocks, then equation (6) is
replaced by

gθ(xi) =
m
∑

j=1

λj

r
∏

k=1

fjbk
(xik). (7)

The indices i, j, k, and ℓ will always denote a generic individual, component (subpop-
ulation), coordinate (repeated measurement), and block, respectively. Therefore, we will
always have 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ r, and 1 ≤ ℓ ≤ B.

The EM algorithm to estimate model (7) has the E-step and M-step described in

Section 2.2. In equation (2), we have φ
(t)
j (xi) =

∏r
k=1 f

(t)
jbk

(xik), where f
(t)
jℓ (·) is obtained

by a weighted nonparametric (kernel) density estimate, given by:

3. Nonparametric (Kernel) density estimation step: For any real u, define for
each component j ∈ {1, . . . ,m} and each block ℓ ∈ {1, . . . , B}

f t+1
jℓ (u) =

1

nhjℓCℓλ
t+1
j

r
∑

k=1

n
∑

i=1

p
(t)
ij I{bk = ℓ}K

(

u − xik

hjℓ

)

, (8)

where K(·) is a kernel density function, hjℓ is the bandwidth for the jth component
and ℓth block density estimate, and Cℓ is the number of coordinates in the ℓth block.
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The function npEM implements this algorithm in mixtools. This function has an argu-
ment samebw which, when set to TRUE (the default), takes hjℓ = h, for all 1 ≤ j ≤ m
and 1 ≤ ℓ ≤ B, that is, the same bandwidth for all components and blocks, while samebw

= FALSE allows a different bandwidth for each component and each block, as detailed in
Benaglia et al. (2009b). This function will, if called using stochastic = TRUE, replace the
deterministic density estimation step (8) by a stochastic density estimation step of the type

proposed by Bordes et al. (2007): First, generate Z
(t)
i = (Z

(t)
i1 , . . . , Z

(t)
im) as a multivariate

random vector with a single trial and success probability vector p
(t)
i = (p

(t)
i1 , . . . , p

(t)
1m), then

in the M-step for λt+1
j in equation (4), replace p

(t)
ij by Z

(t)
ij and let

f t+1
jℓ (u) =

1

nhjℓCℓλ
t+1
j

r
∑

k=1

n
∑

i=1

Z
(t)
ij I{bk = ℓ}K

(

u − xik

hjℓ

)

.

In other words, the stochastic versions of these algorithms re-assign each observation

randomly at each iteration, according to the p
(t)
ij values at that iteration, to one of the

m components, then the density estimate for each component is based only on those
observations that have been assigned to it. Because the stochastic algorithms do not
converge the way a deterministic algorithm often does, the output of npEM is slightly
different when stochastic = TRUE than when stochastic = FALSE, the default. See
the corresponding help file for details.

Benaglia et al. (2009a) also discuss specific cases of model (7) in which some of the
fjbk

(·) densities are assumed to be the same except for a location and scale change. They
refer to such cases as semiparametric since estimating each fjbk

(·) involves estimating an
unknown density as well as multiple location and scale parameters. For instance, equation
(17) of Benaglia et al. (2009a) sets

fjℓ(x) =
1

σjℓ
f

(

x − µjℓ

σjℓ

)

, (9)

where ℓ = bk for a generic k.
The mixtools package implements an algorithm for fitting model (9) in a function

called spEM. Details on the use of this function may be obtained by typing help("spEM").
Implementation of this algorithm and of that of the npEM function requires updating the
values of fjbk

(xik) for all i, j, and k for use in the E-step (2). To do this, the spEM

algorithm keeps track of an n × m matrix, called Φ here, where

Φij ≡ φj(xi) =

r
∏

k=1

fjbk
(xik).

The density estimation step of equation (8) updates the Φ matrix for the (t+1)th iteration
based on the most recent values of all of the parameters. For instance, in the case of model
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(9), we obtain

Φt+1
ij =

B
∏

ℓ=1

∏

k:bk=ℓ

1

σt+1
jℓ

f t+1

(

x − µt+1
jℓ

σt+1
jℓ

)

=

B
∏

ℓ=1

∏

k:bk=ℓ

1

σt+1
jℓ

n
∑

i′=1

pt+1
ij

hrnλt+1
j

r
∑

k′=1

K









(

xik−µt+1
jℓ

σt+1
jℓ

)

− (xi′k′ − µt+1
jℓ )

hσt+1
jℓ









.

4.2 A univariate symmetric, location-shifted semiparametric example

Both Hunter et al. (2007) and Bordes et al. (2006) study a particular case of model (1) in
which x is univariate and

gθ(x) =

m
∑

j=1

λjφ(x − µj), (10)

where φ(·) is a density that is assumed to be completely unspecified except that it is
symmetric about zero. Because each component distribution has both a nonparametric
part φ(·) and a parametric part µj , we refer to this model as semiparametric.

Under the additional assumption that φ(·) is absolutely continuous with respect to
Lebesgue measure, Bordes et al. (2007) propose a stochastic algorithm for estimating the
model parameters, namely, (λ, µ, φ). This algorithm is implemented by the mixtools func-
tion spEMsymloc. This function also implements a nonstochastic version of the algorithm,
which is the default and which is a special case of the general algorithm described in
Section 4.1.

As noted in Figure 1, model (10) appears to be an appropriate model for the Old
Faithful waiting times dataset. Here, we provide code that applies the spEMsymloc func-
tion to these data. First, we display the normal mixture solution of Figure 2 with a
semiparametric solution superimposed, in Figure 4(a):

R> plot(wait1, which = 2, cex.axis = 1.4, cex.lab = 1.4, cex.main = 1.8,

+ main2 = "Time between Old Faithful eruptions", xlab2 = "Minutes")

R> wait2 <- spEMsymloc(waiting, mu0 = c(55, 80))

R> plot(wait2, lty = 2, newplot = FALSE, addlegend = FALSE)

Because the semiparametric version relies on a kernel density estimation step (8),
it is necessary to select a bandwidth for this step. By default, spEMsymloc uses a fairly
simplistic approach: It applies “Silverman’s rule of thumb” (Silverman, 1986) to the entire
dataset using the bw.nrd0 function in R. For the Old Faithful waiting time dataset, this
bandwidth is about 4:

R> bw.nrd0(waiting)

[1] 3.987559

But the choice of bandwidth can make a big difference, as seen in Figure 4(b).
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Figure 4: The Old Faithful dataset, fit using different algorithms in mixtools. Left: the
fitted gaussian components (solid) and a semiparametric fit assuming model (10) with the
default bandwidth of 4.0 (dashed); Right: the same model (10) using bandwidths of 1.0
(solid) and 6.0 (dashed).

R> wait2a <- spEMsymloc(waiting, mu0 = c(55, 80), bw = 1)

R> wait2b <- spEMsymloc(waiting, mu0 = c(55, 80), bw = 6)

R> plot(wait2a, lty = 1, addlegend = FALSE, cex.axis = 1.4,

+ cex.lab = 1.4, cex.main = 1.8, xlab = "Minutes",

+ title = "Time between Old Faithful eruptions")

R> plot(wait2b, lty = 2, newplot = FALSE, addlegend = FALSE)

We find that with a bandwidth near 2, the semiparametric solution looks quite close
to the normal mixture solution of Figure 2. Reducing the bandwidth further results in
the “bumpiness” exhibited by the solid line in Figure 4(b). On the other hand, with a
bandwidth of 8, the semiparametric solution completely breaks down in the sense that
algorithm tries to make each component look similar to the whole mixture distribution.
We encourage the reader to experiment by changing the bandwidth in the above code.

4.3 A trivariate gaussian example

As a first simple, nonparametric example, we simulate a gaussian trivariate mixture with
independent repeated measures and a shift of location between the two components in
each coordinate, i.e., m = 2, r = 3, and bk = k, k = 1, 2, 3. The individual densities fjk

are the densities of N (µjk, 1), with component means µ1 = (0, 0, 0) and µ2 = (3, 4, 5).
This example was introduced by Hall et al. (2005) then later reused by Benaglia et al.
(2009a) for comparison purposes. Note that the parameters in this model are identifiable,
since Hall and Zhou (2003) showed that for two components (m = 2), identifiability holds
in model (1) is under mild assumptions as long as r ≥ 3, even in the most general case in
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which bk = k for all k.
A function ise.npEM has been included in mixtools for numerically computing the

Integrated Squared Error (ISE) relative to a user-specified true density for a selected
estimated density f̂jk from npEM output. Each density f̂jk is computed using equation (8)
together with the posterior probabilities after convergence of the algorithm, i.e., the final
values of the pt

ij (when stochastic = FALSE). We illustrate the usage of ise.npEM in
this example by running a Monte Carlo simulation for S replications, then computing the
square root of the Mean Integrated Squared Error (MISE) for each density, where

MISE =
1

S

S
∑

s=1

∫

(

f̂
(s)
jk (u) − fjk(u)

)2
du, j = 1, 2 and k = 1, 2, 3.

For this example, we first set up the model true parameters with S = 100 replications
of n = 300 observations each:

R> m = 2; r = 3; n = 300; S = 100

R> lambda <- c(0.4, 0.6)

R> mu <- matrix(c(0, 0, 0, 3, 4, 5), m, r, byrow = TRUE)

R> sigma <- matrix(rep(1, 6), m, r, byrow = TRUE)

Next, we set up “arbitrary” initial centers, a matrix for storing sums of Integrated Squared
Errors, and an integer storing the number of suspected instances of label switching that
may occur during the replications:

R> centers <- matrix(c(0, 0, 0, 4, 4, 4), 2, 3, byrow = TRUE)

R> ISE <- matrix(0, m, r, dimnames = list(Components = 1:m, Blocks = 1:r))

R> nblabsw <- 0

Finally, we run the Monte-Carlo simulation, using the samebw = FALSE option since it is
more appropriate for this location-shift model:

R> for (mc in 1:S) {

+ x <- rmvnormmix(n, lambda, mu, sigma)

+ a <- npEM(x, centers, verb = FALSE, samebw = FALSE)

+ if (a$lambda[1] > a$lambda[2]) nblabsw <- nblabsw + 1

+ for (j in 1:m) {

+ for (k in 1:r) {

+ ISE[j, k] <- ISE[j, k] + ise.npEM(a, j, k, dnorm,

+ lower = mu[j, k] - 5, upper = mu[j, k] + 5, plots = FALSE,

+ mean = mu[j, k], sd = sigma[j, k])$value

+ }

+ }

+ }

R> MISE <- ISE/S

R> print(sqMISE <- sqrt(MISE))

Blocks

Components 1 2 3

1 0.06835326 0.07072128 0.06909451

2 0.06345899 0.06256829 0.06229651
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We can examine the npEM output from the last replication above using

R> summary(a)

300 observations, 3 coordinates, 2 components, and 3 blocks.

Means (and std. deviations) for each component:

Block #1: Coordinate 1

0.0379 (0.982) 2.99 (0.973)

Block #2: Coordinate 2

0.116 (1.1) 3.96 (0.894)

Block #3: Coordinate 3

-0.236 (0.988) 4.99 (0.947)

We can also get plots of the estimated component densities for each block (recall that in
this example, block ℓ consists only of coordinate ℓ) using

R> plot(a)

The resulting plots are given in Figure 5.
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Figure 5: An output of the npEM algorithm for the trivariate gaussian model with indepen-
dent repeated measures.

4.4 A more general multivariate nonparametric example

In this section, we fit a more difficult example, with non-multimodal mixture densities
(in block #2), heavy-tailed distributions, and different scales among the coordinates. The
model is multivariate with r = 5 repeated measures and m = 2 components (hence
identifiability holds; cf. Hall and Zhou (2003) as cited in section 4.3). The 5 repeated
measures are grouped into B = 2 blocks, with b1 = b2 = b3 = 1 and b4 = b5 = 2. Block 1



mixtools: An R Package for Analyzing Mixture Models 16

−10 −5 0 5 10 15 20 25

0.
00

0.
04

0.
08

0.
12

Block 1

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Block 2

D
en

si
ty

Figure 6: True densities for the mixture of Section 4.4, with individual component densities
(scaled by λj) in dotted lines and mixture densities in solid lines. The noncentral t mixture
of coordinates 1 through 3 is on the left, the beta mixture of coordinates 4 and 5 on the
right.

corresponds to a mixture of two noncentral Student t distributions, t′(2, 0) and t′(10, 8),
where the first parameter is the number of degrees of freedom, and the second is the
non-centrality. Block 2 corresponds to a mixture of Beta distributions, B(1, 1) (which is
actually the uniform distribution over [0, 1]) and B(1, 5). The first component weight is
λ1 = 0.4. The true mixtures are depicted in Figure 6.

To fit this model in mixtools, we first set up the model parameters:

R> m <- 2; r <- 5

R> lambda <- c(0.4, 0.6)

R> df <- c(2, 10); ncp <- c(0, 8)

R> sh1 <- c(1, 1) ; sh2 <- c(1, 5)

Then we generate a pseudo-random sample of size n = 300 from this model:

R> n <- 300; z <- sample(m, n, rep = TRUE, prob = lambda)

R> r1 <- 3; z2 <- rep(z, r1)

R> x1 <- matrix(rt(n * r1, df[z2], ncp[z2]), n, r1)

R> r2 <- 2; z2 <- rep(z, r2)

R> x2 <- matrix(rbeta(n * r2, sh1[z2], sh2[z2]), n, r2)

R> x <- cbind(x1, x2)

For this example in which the coordinate densities are on different scales, it is obvious
that the bandwidth in npEM should depend on the blocks and components. We set up the
block structure and some initial centers, then run the algorithm with the option samebw

= FALSE:

R> id <- c(rep(1, r1), rep(2, r2))

R> centers <- matrix(c(0, 0, 0, 1/2, 1/2, 4, 4, 4, 1/2, 1/2), m, r,
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Figure 7: Result of plotting npEM output for the example of Section 4.4. Since n = 300,
the histogram on the left includes 900 observations and the one on the right includes 600.

+ byrow = TRUE)

R> b <- npEM(x, centers, id, eps = 1e-8, verb = FALSE, samebw = FALSE)

Figure 7 shows the resulting density estimates, which may be obtained using the plotting
function included in mixtools:

R> plot(b, breaks = 15)

Finally, we can compute the ISE of the estimated density relative to the truth for each
block and component. The corresponding output is depicted in Figure 8.

R> par(mfrow = c(2, 2))

R> for (j in 1:2){

+ ise.npEM(b, j, 1, truepdf = dt, lower = ncp[j] - 10,

+ upper = ncp[j] + 10, df = df[j], ncp = ncp[j])

+ ise.npEM(b, j, 2, truepdf = dbeta, lower = -0.5,

+ upper = 1.5, shape1 = sh1[j], shape2 = sh2[j])

+ }

5 Mixtures of Regressions

5.1 Mixtures of linear regressions

Consider a mixture setting where we now assume Xi is a vector of covariates observed
with a response Yi. The goal of mixtures of regressions is to describe the conditional
distribution of Yi|Xi. Mixtures of regressions have been extensively studied in the econo-
metrics literature and were first introduced by Quandt (1972) as the switching regimes
(or switching regressions) problem. A switching regimes system is often compared to
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Figure 8: ise.npEM output for the 5-repeated measures example; the true densities are
f11 ≡ t′(2, 0), f21 ≡ t′(10, 8), f12 ≡ U(0,1), f22 ≡ B(1, 5).

structural change in a system (Quandt and Ramsey, 1978). A structural change assumes
the system depends deterministically on some observable variables, but switching regimes
implies one is unaware of what causes the switch between regimes. In the case where it is
assumed there are two heterogeneous classes, Quandt (1972) characterized the switching
regimes problem “by assuming that nature chooses between regimes with probabilities λ
and 1 − λ”.

Suppose we have n independent univariate observations, y1, . . . , yn, each with a corre-
sponding vector of predictors, x1, . . . ,xn, with xi = (xi,1, . . . , xi,p)

T for i = 1, . . . , n. We
often set xi,1 = 1 to allow for an intercept term. Let y = (y1, . . . , yn)T and let X be the
n × p matrix consisting of the predictor vectors.

Suppose further that each observation (yi,xi) belongs to one of m classes. Conditional
on membership in the jth component, the relationship between yi and xi is the normal
regression model

yi = xT
i βj + ǫi, (11)
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where ǫi ∼ N (0, σ2
j ) and βj and σ2

j are the p-dimensional vector of regression coefficients
and the error variance for component j, respectively.

Accounting for the mixture structure, the conditional density of yi|xi is

gθ(yi|xi) =
m
∑

j=1

λjφ(yi|x
T
i βj , σ

2
j ), (12)

where φ(·|xT βj , σ
2
j ) is the normal density with mean xT β and variance σ2. Notice that

the model parameter for this setting is θ = (λ, (β1, σ
2
1), . . . , (βm, σ2

m)). The mixture
of regressions model (12) differs from the well-known mixture of multivariate normals
model (Yi,X

T
i )T ∼

∑m
j=1 λjNp+1(µj ,Σj) because model (12) makes no assertion about

the marginal distribution of Xi, whereas the mixture of multivariate normals specifies
that Xi itself has a mixture of multivariate normals distribution.
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Figure 9: 1996 data on gross national product (GNP) per capita and estimated carbon
dioxide (CO2) emissions per capita. Note that “CH” stands for Switzerland, not China.

As a simple example of a dataset to which a mixture of regressions models may be
applied, consider the sample depicted in Figure 9. In this dataset, the measurements
of carbon dioxide (CO2) emissions are plotted versus the gross national product (GNP)
for n = 28 countries. These data are included mixtools; type help("CO2data") in R
for more details. Hurn et al. (2003) analyzed these data using a mixture of regressions
from the Bayesian perspective, pointing out that “there do seem to be several groups
for which a linear model would be a reasonable approximation.” They further point out
that identification of such groups could clarify potential development paths of lower GNP
countries.
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5.2 EM algorithms for mixtures of regressions

A standard EM algorithm, as described in Section 2, may be used to find a local max-
imum of the likelihood surface. The E-step is the same as for any finite mixture model

EM algorithm; i.e., the p
(t)
ij values are updated according to equation (2)—or, in reality,

equation (3)—where each φ
(t)
j (xi) is replaced in the regression context by φ(yi|x

T
i βj , σ

2
j ):

p
(t)
ij =



1 +
∑

j′ 6=j

λ
(t)
j′ φ(yi|x

T
i βj′ , σ

2
j′)

λ
(t)
j φ(yi|xT

i βj , σ2
j )





−1

(13)

The update to the λ parameters in the M-step, equation (4), is also the same. Letting

W
(t)
j = diag(p

(t)
1j , . . . , p

(t)
nj ), the additional M-step updates to the β and σ parameters are

given by

β
(t+1)
j = (XTW

(t)
j X)−1XTW

(t)
j y and (14)

σ
2(t+1)
j =

∥

∥

∥

∥

W
1/2(t)
j (y − XTβ

(t+1)
j )

∥

∥

∥

∥

2

tr(W
(t)
j )

, (15)

where ‖A‖2 = ATA and tr(A) means the trace of the matrix A. Notice that equation
(14) is a weighted least squares (WLS) estimate of βj and equation (15) resembles the
variance estimate used in WLS.

Allowing each component to have its own error variance σ2
j results in the likelihood

surface having no maximizer, since the likelihood may be driven to infinity if one compo-
nent gives a regression surface passing through one or more points exactly and the variance
for that component is allowed to go to zero. A similar phenomenon is well-known in the
finite mixture-of-normals model where the component variances are allowed to be distinct
(McLachlan and Peel, 2000). However, in practice we observe this behavior infrequently,
and the mixtools functions automatically force their EM algorithms to restart at randomly
chosen parameter values when it occurs. A local maximum of the likelihood function, a
consistent version of which is guaranteed to exist by the asymptotic theory as long as the
model is correct and all λj are positive, usually results without any restarts.

The function regmixEM implements the EM algorithm for mixtures of regressions in
mixtools. This function has arguments that control options such as adding an intercept
term, addintercept = TRUE; forcing all βj estimates to be the same, arbmean = FALSE

(for instance, to model outlying observations as having a separate error variance from the
non-outliers); and forcing all σ2

j estimates to be the same, arbvar = FALSE. For additional
details, type help("regmixEM").

As an example, we fit a 2-component model to the GNP data shown in Figure 9.
Hurn et al. (2003) and Young (2007) selected 2 components for this dataset using model
selection criteria, Bayesian approaches to selecting the number of components, and a
bootstrapping approach. The function regmixEM will be used for fitting a 2-component
mixture of regressions by an EM algorithm:

R> data("CO2data")
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R> attach(CO2data)

R> CO2reg <- regmixEM(CO2, GNP, lambda = c(1, 3) / 4,

+ beta = matrix(c(8, -1, 1, 1), 2, 2), sigma = c(2, 1))

number of iterations= 10

We can then pull out the final observed log-likelihood as well as estimates for the 2-
component fit, which include λ̂, β̂1, β̂2, σ̂1, and σ̂2:

R> summary(CO2reg)

summary of regmixEM object:

comp 1 comp 2

lambda 0.7549214 0.245079

sigma 2.0493151 0.809389

beta1 8.6789866 1.415150

beta2 -0.0233440 0.676596

loglik at estimate: -66.93977

The reader is encouraged to alter the starting values or let the internal algorithm
generate random starting values. However, this fit seems appropriate and the solution is
displayed in Figure 10 along with 99% Working-Hotelling Confidence Bands, which are
constructed automatically by the plot.mixEM function in this case by assigning each point
to its most probable component and then fitting two separate linear regressions:

plot(CO2reg, density = TRUE, alpha = 0.01)
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Figure 10: The GNP data fitted with a 2-component parametric EM algorithm in mixtools.
Left: the sequence of log-likelihood values, Lx(θ(t)); Right: the fitted regression lines with
99% Working-Hotelling Confidence Bands.
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5.3 Predictor-dependent mixing proportions

Suppose that in model (12), we replace λj by λj(xi) and assume that the mixing propor-
tions vary as a function of the predictors xi. Allowing this type of flexibility in the model
might be useful for a number of reasons. For instance, sometimes it is the proportions
λj that are of primary scientific interest, and in a regression setting it may be helpful to
know whether these proportions appear to vary with the predictors. As another example,
consider a regmixEM model using arbmean = FALSE in which the mixture structure only
concerns the error variance: In this case, λj(x) would give some sense of the proportion
of outliers in various regions of the predictor space.

One may assume that λj(x) has a particular parametric form, such as a logistic func-
tion, which introduces new parameters requiring estimation. This is the idea of the hier-
archical mixtures of experts (HME) procedure (Jacobs et al., 1991), which is commonly
used in neural networks. This procedure is a variant on tree-based methods — a context
somewhat different from mixtures of regressions. However, a parametric form of λj(x)
may be too restrictive; in particular, the logistic function is monotone, which may not re-
alistically capture the pattern of change of λj as a function of x. As an alternative, Young
and Hunter (2009) propose a nonparametric estimate of λj(xi) that uses ideas from kernel
density estimation.

The intuition behind the approach of Young and Hunter (2009) is as follows: The
M-step estimate (4) of λj at each iteration of a finite mixture model EM algorithm is
simply an average of the “posterior” probabilities pij = E(Zij |data). As a substitute,
The nonparametric approach uses an idea from nonparametric regression, taking a locally
weighted average using a kernel function to give the weights.

Thus, considering the case of univariate x for simplicity, we take

λj(x) =

∑n
i=1 pijKh(x − xi)
∑n

l=1 Kh(x − xi)
, (16)

where Kh(·) is a kernel density function with scale parameter (i.e., bandwidth) h. It
is straightforward to generalize equation (16) to the case of vector-valued x by using a
multivariate kernel function.

Young and Hunter (2009) give an iterative algorithm for estimating mixture of regres-
sion parameters that replaces the standard λj updates (4) by the kernel-weighted version
(16). The algorithm is otherwise similar to a standard EM; thus, like the algorithm in
section 4.1 of this article, the resulting algorithm is an EM-like algorithm. Because only
the λj parameters depend on x (and are thus “locally estimated”), whereas the other
parameters (the βj and σj) can be considered to be globally estimated, Young and Hunter
(2009) call this algorithm an iterative global/local estimation (IGLE) algorithm. Natu-
rally, it replaces the usual E-step (13) by a modified version in which each λj is replaced
by λj(xi).

The function regmixEM.loc implements the IGLE algorithm in mixtools. Like the
regmixEM function, regmixEM.loc has the flexibility to include an intercept term by using
addintercept = TRUE. Moreover, this function has the argument kern.l to specify the
kernel used in the local estimation of the λj(xi). Kernels the user may specify include
"Gaussian", "Beta", "Triangle", "Cosinus", and "Optcosinus". Further numeric ar-
guments relating to the chosen kernel include kernl.g to specify the shape parameter for
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when kern.l = "Beta" and kernl.h to specify the bandwidth which controls the size of
the window used in the local estimation of the mixing proportions. See the corresponding
help file for additional details.

For the GNP and emissions dataset, Figure 10 indicates that the assumption of con-
stant weights for the component regressions across all values of the covariate space may
not be appropriate. The countries with higher GNP values appear to have a greater proba-
bility of belonging to the first component (i.e., the red line in Figure 10). We will therefore
apply the IGLE algorithm to this dataset.

We will use the triweight kernel in equation (16), which is given by setting γ = 3 in

Kh(x) =
1

hB(1/2, γ + 1)

(

1 −
x2

h2

)γ

+

, (17)

where B(x, y) = Γ(x)Γ(y)/Γ(x + y) is the beta function. For the triweight, B(1/2, 4) is
exactly 32/35. This kernel may be specified in regmixEM.loc with kern.l = "Beta" and
kernl.g = 3. The bandwidth we selected was h = 20, which we specify with kernl.h =

20.
For this implementation of the IGLE algorithm, we set the parameter estimates ob-

tained from the mixture of regressions EM algorithm as starting values for β̂1, β̂2, σ̂1, and
σ̂2, and set the starting values for λ(xi) to be 0.5 for all xi.

R> CO2igle <- regmixEM.loc(CO2, GNP, beta = CO2reg$beta, sigma = CO2reg$sigma,

+ lambda = matrix(.5, 28, 2), kern.l = "Beta", kernl.h = 20, kernl.g = 3)

We can view the estimates for β̂1, β̂2, σ̂1, and σ̂2. Notice that the estimates are comparable
to those obtained for the mixture of regressions EM output and the log-likelihood value is
slightly higher.

R> summary(CO2igle)

summary of regmixEM.loc object:

comp 1 comp 2

sigma 2.0277246 0.816510

beta1 8.8138838 1.473989

beta2 -0.0281142 0.673964

loglik at estimate: -66.14069

Next, we can plot the estimates of λ(xi) from the IGLE algorithm.

R> plot(GNP, CO2igle$post[,1], xlab = "GNP",

+ ylab = "Final posterior probabilities")

R> lines(sort(GNP), CO2igle$lambda[order(GNP), 1], col=2)

R> abline(h = CO2igle$lambda[1], lty = 2)

This plot is given in Figure 11. Notice the curvature provided by the estimates from the
IGLE fit. These fits indicate an upward trend in the posteriors. The predictor-dependent
mixing proportions model provides a viable way to reveal this trend since the regular
mixture of regressions fit simply provides the same estimate of λ for all xi.
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Figure 11: Posterior membership probabilities pi1 for component one versus the predictor
GNP along with estimates of λ1(x) from the IGLE algorithm (the solid red curve) and λ1

from the mixture of linear regressions EM algorithm (the dashed black line).

5.4 Parametric bootstrapping for standard errors

With likelihood methods for estimation in mixture models, it is possible to obtain standard
error estimates by using the inverse of the observed information matrix when implement-
ing a Newton-type method. However, this may be computationally burdensome. An
alternative way to report standard errors in the likelihood setting is by implementing a
parametric bootstrap. Efron and Tibshirani (1993) claim that the parametric bootstrap
should provide similar standard error estimates to the traditional method involving the
information matrix. In a mixture-of-regressions context, a parametric bootstrap scheme
may be outlined as follows:

1. Use regmixEM to find a local maximizer θ̂ of the likelihood.

2. For each xi, simulate a response value y∗i from the mixture density g
θ̂
(·|xi).

3. Find a parameter estimate θ̃ for the bootstrap sample using regmixEM.

4. Use some type of check to determine whether label-switching appears to have oc-
curred, and if so, correct it.

5. Repeat steps 2 through 4 B times to simulate the bootstrap sampling distribution
of θ̂.

6. Use the sample covariance matrix of the bootstrap sample as an approximation to
the covariance matrix of θ̂.

Note that step 3, which is not part of a standard parametric bootstrap, can be especially
important in a mixture setting.
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The mixtools package implements a parametric bootstrap algorithm in the boot.se

function. We may apply it to the regression example of this section, which assumes the
same estimate of λ for all xi, as follows:

R> set.seed(123)

R> CO2boot <- boot.se(CO2reg, B = 100)

This output consists of both the standard error estimates and the parameter estimates
obtained at each bootstrap replicate. An examination of the slope and intercept parameter
estimates of the 500 bootstrap replicates reveals that no label-switching is likely to have
occurred. For instance, the intercept terms of component one range from 4 to 11, whereas
the intercept terms of component two are all tightly clumped around 0:

R> rbind(range(CO2boot$beta[1,]), range(CO2boot$beta[2,]))

[,1] [,2]

[1,] 4.4214691 11.5268409

[2,] -0.1676704 0.1007048

We may examine the bootstrap standard error estimates by themselves as follows:

R> CO2boot[c("lambda.se", "beta.se", "sigma.se")]

$lambda.se

[1] 0.0848547 0.0848547

$beta.se

[,1] [,2]

[1,] 1.04787448 1.20371640

[2,] 0.04464039 0.05145009

$sigma.se

[1] 0.3291421 0.2803955

6 Additional capabilities of mixtools

6.1 Selecting the number of components

Determining the number of components k is still a major contemporary issue in mixture
modeling. Two commonly employed techniques are information criterion and parametric
bootstrapping of the likelihood ratio test statistic values for testing

H0 : k = k0

H1 : k = k0 + 1 (18)

for some positive integer k0 (McLachlan, 1987).
The mixtools package has functions to employ each of these methods using EM output

from various mixture models. The information criterion functions calculate An Infor-
mation Criterion (AIC) of Akaike (1973), the Bayesian Information Criterion (BIC) of
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Schwarz (1978), the Integrated Completed Likelihood (ICL) of Biernacki et al. (2000),
and the consistent AIC (CAIC) of Bozdogan (1987). The functions for performing para-
metric bootstrapping of the likelihood ratio test statistics sequentially test k = k0 versus
k = k0 + 1 for k0 = 1, 2, . . ., terminating after the bootstrapped p-value for one of these
tests exceeds a specified significance level.

Currently, mixtools has functions for calculating information criteria for mixtures of
multinomials (multmixmodel.sel), mixtures of multivariate normals under the condition-
ally i.i.d. assumption (repnormmixmodel.sel), and mixtures of regressions (regmixmodel.sel).
Output from various mixture model fits available in mixtools can also be passed to the
function boot.comp for the parametric bootstrapping approach. The parameter estimates
from these EM fits are used to simulate data from the null distribution for the test given
in (18). For example, the following application of the multmixmodel.sel function to
the water-level multinomial data from Section 3 indicates that either 3 or 4 components
seems like the best option (no more than 4 are allowed here since there are only 8 multi-
nomial trials per observation and the mixture of multinomials requires 2m ≤ r + 1 for
identifiability):

R> set.seed(10)

R> multmixmodel.sel(watermult, comps = 1:4, epsilon = 0.001)

number of iterations= 32

number of iterations= 393

number of iterations= 240

1 2 3 4 Winner

AIC -7222.967 -3109.434 -2965.748 -2936.278 4

BIC -7248.992 -3163.487 -3047.828 -3046.385 4

CAIC -7255.492 -3176.987 -3068.328 -3073.885 3

ICL -7248.992 -3162.794 -3046.801 -3045.275 4

Loglik -7209.967 -3082.434 -2924.748 -2881.278 4

Young (2007) gives more applications of these functions to real datasets.

6.2 Bayesian methods

Currently, there are only two mixtools functions relating to Bayesian methodology and
they both pertain to analyzing mixtures of regressions as described in Hurn et al. (2003).
The regmixMH function performs a Metropolis-Hastings algorithm for fitting a mixture
of regressions model where a proper prior has been assumed. The sampler output from
regmixMH can then be passed to regcr in order to construct credible regions of the regres-
sion lines. Type help("regmixMH") and help("regcr") for details and an illustrative
example.
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