Thermocapillary manipulation of microfluidic droplets: Theory and applications - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue International Journal of Heat and Technology Année : 2008

Thermocapillary manipulation of microfluidic droplets: Theory and applications

Résumé

It was recently demonstrated by our group that a focused laser beam could be used to produce a net force on a moving microfluidic drop. The aim of the paper is to establish a scaling law for this net force by a examining the closely related but simpler situation of a very thin stationary circular drop of fixed shape submitted to a thermocapillary (Marangoni) stress. This leads us to recall the depth-averaged model for a microfluidic pancake-like undeformable drop submitted to a thermocapillary forcing. Our numerical method to solve the associated equations is then introduced and validated. In the case of a localized heating and for an ‘inverse' Marangoni effect (i.e. the surface tension increases with temperature) mimicking the experimental situation of a focused laser beam impinging on a surfactant laden water-oil interface, the flow field is computed and compared to experimental observations. The viscous shear stresses (normal and tangential) and the pressure force are then computed on the interface, yielding a simple expression for the total force acting on the droplet. Further numerical investigations are conducted and enable us to propose a scaling law for the net force combining all pertinent parameters.
Fichier principal
Vignette du fichier
gallaire-et-al-International_Journal_of_Heat_and_Technology_26_161_2008_.pdf (263.97 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00384745 , version 1 (15-05-2009)

Identifiants

  • HAL Id : hal-00384745 , version 1

Citer

François Gallaire, Charles N. Baroud, Jean-Pierre Delville. Thermocapillary manipulation of microfluidic droplets: Theory and applications. International Journal of Heat and Technology, 2008, 26 (1), pp.161-166. ⟨hal-00384745⟩
532 Consultations
265 Téléchargements

Partager

Gmail Facebook X LinkedIn More