G. Alvarez and P. Cavanagh, Independent Resources for Attentional Tracking in the Left and Right Visual Hemifields, Psychological Science, vol.4, issue.3, pp.637-643, 2005.
DOI : 10.1016/0010-0285(92)90010-Y

G. Alvarez, S. Franconeri, S. Barash, R. Bracewell, L. Fogassi et al., How many objects can you attentively track?: Evidence for a resource-limited tracking mechanism Saccade-related activity in the lateral intraparietal area. I. temporal properties; comparison with area 7a, Journal of Vision Journal of Neurophysiology, vol.71314, issue.663, pp.1-101095, 1991.

S. Barash, R. Bracewell, L. Fogassi, J. Gnadt, and R. Andersen, Saccade-related activity in the lateral intraparietal area. II. spatial properties, Journal of Neurophysiology, vol.66, issue.3, pp.1109-1124, 1991.

B. Hamed, S. Duhamel, J. Bremmer, F. Graf, W. Bessì-ere et al., Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis, Probabilistic Reasoning and Decision Making in Sensory-Motor Systems, pp.127-144, 2001.
DOI : 10.1007/s002210100785

A. Springer-bozis and A. Moschovakis, Neural network simulations of the primate oculomotor system III. An one-dimensional, one-directional model of the superior colliculus, Biological Cybernetics, vol.79, issue.3, pp.215-230, 1998.
DOI : 10.1007/s004220050472

P. Cavanagh and G. Alvarez, Tracking multiple targets with multifocal attention, Trends in Cognitive Sciences, vol.9, issue.7, pp.349-354, 2005.
DOI : 10.1016/j.tics.2005.05.009

J. Droulez and A. Berthoz, A neural network model of sensoritopic maps with predictive short-term memory properties., Proceedings of the National Academy of Sciences, vol.88, issue.21, pp.9653-9657, 1991.
DOI : 10.1073/pnas.88.21.9653

A. Elfes, Occupancy grids: a probabilistic framework for robot perception and navigation Eye movements during multiple object tracking: where do participants look?, Cognition, vol.108, issue.1, pp.201-209, 1989.

J. Gnadt and R. Andersen, Memory related motor planning activity in the posterior arietal cortex of the macaque, Experimental Brain Research, vol.70, issue.1, pp.216-220, 1988.

M. Goldberg and C. Bruce, Primate frontal eye fields. III. maintenance of a spatially accurate saccade signal, Journal of Neurophysiology, vol.64, issue.2, pp.489-508, 1990.

L. Herrero, F. Rodríguez, C. Salas, and B. Torres, Tail and eye movements evoked by electrical microstimulation of the optic tectum in goldfish, Experimental Brain Research, vol.120, issue.3, pp.291-305, 1998.
DOI : 10.1007/s002210050403

R. Krauzlis, Recasting the Smooth Pursuit Eye Movement System, Journal of Neurophysiology, vol.91, issue.2, pp.591-603, 2004.
DOI : 10.1152/jn.00801.2003

O. Lebeltel, P. Bessì-ere, J. Diard, and E. Mazer, Bayesian Robot Programming, Autonomous Robots, vol.16, issue.1, pp.49-79, 2004.
DOI : 10.1023/B:AURO.0000008671.38949.43

URL : https://hal.archives-ouvertes.fr/inria-00189723

L. Mays and D. Sparks, Dissociation of visual and saccaderelated responses in superior colliculus neurons, J Neurophysiol, vol.43, issue.1, pp.207-232, 1980.

J. Mcilwain, Large receptive fields and spatial transformations in the visual system, Neurophysiology II Int Rev Physiol, vol.10, pp.223-248, 1976.

J. Mcilwain, Representation of the visual streak in visuotopic maps of the cat's superior colliculus: Influence of the mapping variable, Vision Research, vol.23, issue.5, pp.507-516, 1983.
DOI : 10.1016/0042-6989(83)90125-6

J. Mitchell and D. Zipser, Sequential memory-guided saccades and target selection: a neural model of the frontal eye fields, Vision Research, vol.43, issue.25, pp.2669-2695, 2003.
DOI : 10.1016/S0042-6989(03)00468-1

A. Moschovakis, C. Scudder, and S. Highstein, The microscopic anatomy and physiology of the mammalian saccadic system, Progress in Neurobiology, vol.50, issue.2-3, pp.133-254, 1996.
DOI : 10.1016/S0301-0082(96)00034-2

F. Ottes, J. Van-gisbergen, and J. Eggermont, Visuomotor fields of the superior colliculus: A quantitative model, Vision Research, vol.26, issue.6, pp.857-873, 1986.
DOI : 10.1016/0042-6989(86)90144-6

Z. Pylyshyn and R. Storm, Tracking multiple independent targets: Evidence for a parallel tracking mechanism*, Spatial Vision, vol.3, issue.3, pp.1-19, 1988.
DOI : 10.1163/156856888X00122

D. Robinson, Eye movements evoked by collicular stimulation in the alert monkey, Vision Research, vol.12, issue.11, pp.1795-1808, 1972.
DOI : 10.1016/0042-6989(72)90070-3

E. Schwarz, Computational anatomy and functional architecture of striate cortex: A spatial mapping approach to perceptual coding, Vision Research, vol.20, issue.8, pp.645-669, 1980.
DOI : 10.1016/0042-6989(80)90090-5

C. Scudder, C. Kaneko, and A. Fuchs, The brainstem burst generator for saccadic eye movements, Experimental Brain Research, vol.142, issue.4, pp.439-462, 2002.
DOI : 10.1007/s00221-001-0912-9

R. Siminoff, H. Schwassmann, and L. Kruger, An electrophysiological study of the visual projection to the superior colliculus of the rat, The Journal of Comparative Neurology, vol.8, issue.4, pp.435-444, 1966.
DOI : 10.1002/cne.901270402

M. Sommer and R. Wurtz, Composition and topographic organization of signals sent from the frontal eye fields to the superior colliculus, Journal of Neurophysiology, vol.83, pp.1979-2001, 2000.

T. Tanner, T. Tanner, L. Canto-pereira, H. Bülthoff, R. Wurtz et al., Benefit of systematic eye movements in multiple object tracking Free vs. constrained gaze in a multiple-object-tracking-paradigm Signal transformation from cerebral cortex to superior colliculus for the generation of saccades, 30th European Conference on Visual Perception, pp.3399-3412, 2001.

G. Zelinsky and M. Neider, An eye movement analysis of multiple object tracking in a realistic environment, Visual Cognition, vol.130, issue.5, pp.553-566, 2008.
DOI : 10.1037/0096-1523.23.1.244