Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

Computational aspects of the Maslov index of solitary waves

Abstract : When solitary waves are characterized as homoclinic orbits of a finite-dimensional Hamiltonian system, they have an integer-valued topological invariant, the Maslov index. We are interested in developing a robust numerical algorithm to compute the Maslov index, to understand its properties, and to study the implications for the stability of solitary waves. The algorithms reported here are developed in the exterior algebra representation, which leads to a robust and fast algorithm with some novel properties. We use two different representations for the Maslov index, one based on an intersection index and one based on approximating the homoclinic orbit by a sequence of periodic orbits. New results on the Maslov index for solitary wave solutions of reaction-diffusion equations, the fifth-order Korteweg-De Vries equation, and the longwave-shortwave resonance equations are presented. Part 1 considers the case of four-dimensional phase space, and Part 2 considers the case of $2n-$dimensional phase space with $n>2$.
Liste complète des métadonnées

Littérature citée [43 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00383888
Contributeur : Frédéric Chardard <>
Soumis le : mercredi 13 mai 2009 - 17:06:41
Dernière modification le : jeudi 2 juillet 2020 - 17:17:18
Document(s) archivé(s) le : jeudi 10 juin 2010 - 21:22:10

Fichiers

Maslov_part1-4D.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00383888, version 1
  • ARXIV : 0905.2134

Collections

Citation

Frédéric Chardard, Frédéric Dias, Thomas Bridges. Computational aspects of the Maslov index of solitary waves. 2009. ⟨hal-00383888⟩

Partager

Métriques

Consultations de la notice

586

Téléchargements de fichiers

220