Discretization of Continuous Attributes

Abstract : In the data mining field, many learning methods -like association rules, Bayesian networks, induction rules (Grzymala-Busse & Stefanowski, 2001)- can handle only discrete attributes. Therefore, before the machine learning process, it is necessary to re-encode each continuous attribute in a discrete attribute constituted by a set of intervals, for example the age attribute can be transformed in two discrete values representing two intervals: less than 18 (a minor) and 18 and more (of age). This process, known as discretization, is an essential task of the data preprocessing, not only because some learning methods do not handle continuous attributes, but also for other important reasons: the data transformed in a set of intervals are more cognitively relevant for a human interpretation (Liu, Hussain, Tan & Dash, 2002); the computation process goes faster with a reduced level of data, particularly when some attributes are suppressed from the representation space of the learning problem if it is impossible to find a relevant cut (Mittal & Cheong, 2002); the discretization can provide non-linear relations -e.g., the infants and the elderly people are more sensitive to illness.
Type de document :
Chapitre d'ouvrage
Liste complète des métadonnées

Contributeur : Fabrice Muhlenbach <>
Soumis le : mercredi 13 mai 2009 - 16:36:26
Dernière modification le : mercredi 31 octobre 2018 - 12:24:08
Document(s) archivé(s) le : mercredi 22 septembre 2010 - 12:25:05


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00383757, version 2


Fabrice Muhlenbach, Ricco Rakotomalala. Discretization of Continuous Attributes. John Wang. Encyclopedia of Data Warehousing and Mining, Idea Group Reference, pp.397-402, 2005. ⟨hal-00383757v2⟩



Consultations de la notice


Téléchargements de fichiers