Large deviation principle and inviscid shell models

Abstract : A LDP is proved for the inviscid shell model of turbulence. As the viscosity coefficient converges to 0 and the noise intensity is multiplied by the square root of the viscosity, we prove that some shell models of turbulence with a multiplicative stochastic perturbation driven by a H-valued Brownian motion satisfy a LDP in C([0,T],V) for the topology of uniform convergence on [0,T], but where V is endowed with a topology weaker than the natural one. The initial condition has to belong to V and the proof is based on the weak convergence of a family of stochastic control equations. The rate function is described in terms of the solution to the inviscid equation.
Type de document :
Article dans une revue
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2009, 14 (89), pp.2551-2579
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00383258
Contributeur : Annie Millet <>
Soumis le : dimanche 29 novembre 2009 - 00:21:55
Dernière modification le : lundi 29 mai 2017 - 14:22:23
Document(s) archivé(s) le : jeudi 23 septembre 2010 - 11:05:14

Fichiers

BM-LDP-Inviscid-shell_Web.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00383258, version 2
  • ARXIV : 0905.1854

Collections

Citation

Hakima Bessaih, Annie Millet. Large deviation principle and inviscid shell models. Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2009, 14 (89), pp.2551-2579. <hal-00383258v2>

Partager

Métriques

Consultations de
la notice

278

Téléchargements du document

99