Synthesis and characterization of fluorinated copolyetherimides with -CH2-C6F13 side chains based on the ULTEM structure

Meriyam Kaba, Ricardo Escarcena Romero, Azzouz Essamri, André Mas

To cite this version:

HAL Id: hal-00382963
https://hal.archives-ouvertes.fr/hal-00382963
Submitted on 11 May 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Synthesis and characterization of fluorinated copolyetherimides with –CH₂-C₆F₁₃ side chains based on the ULTEM™ structure

Meryiam Kabaa,b, Ricardo Escarenc Romeroa,
Azzouz Essamri⁵, André Mas⁶

a Organisation Moléculaire Evolution et Matériaux Fluorés
UMR 5073 CNRS, Université Montpellier II,
Place Eugène Bataillon, 34095 Montpellier Cedex 5, France

b Faculté des Sciences, Laboratoire de Génie des Procédés, Université Ibn Tofail, BP 133 Kénitra, Morocco

The hydrophobicity and the thermal properties of soft non-porous films are studied.
Synthesis and characterization of fluorinated copolyetherimides with -CH₂-C₆F₁₃ side chains based on the ULTEM™ structure

Meriyam Kabaa,b, Ricardo Escarcelona Romeroa, Azzouz Essamri b, André Mas a *

a Organisation Moléculaire Evolution et Matériaux Fluorés, UMR 5073 CNRS, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
b Faculté des Sciences, Laboratoire de Génie des Procédés, Université Ibn Tofail, BP 133 Kénitra, Morocco

Abstract

Step polymerization of Bisphenol-A diphthalic anhydride (BAPA) with various mixtures from m-phenylene diamine (m-PDA) and 2-(perfluorohexylmethyl)butan-1,4-diamine (TFD) led to hydrophobic copolyetherimides bearing R₉ = -CH₂-C₆F₁₃ side chains that were characterized by NMR, elementary analysis, DSC, TGA and surface energy analysis. By increasing the TFD unit %, the glass transition temperature (Tg) decreases according to the Fox equation from 217 °C (m-PDA 100 % and TFD 0% like in ULTEM™ 1000) to 113 °C (m-PDA 0% and TFD 100 %). Similarly the surface energy (γs) decreases from 45.3 mJ m⁻² to 27.4 mJ m⁻². The thermal decomposition temperature (Td for 5% weight loss under argon) is slightly affected by introducing TFD units compared with Td for ULTEM™ and it is close to 400 °C. The best compromise between thermal stability, hydrophobic and organophilic properties as well as the ability to form a soft non-porous film by the cast-evaporating method led us to select the copolyetherimide with m-PDA 25% and TFD 75% for which Tg = 121 °C, Td = 400 °C and γs = 30.8 mJ m⁻².

Keywords: Fluorinated polyetherimide; Hydrophobic non-porous films; Cast membrane

* Corresponding author
E-mail address: mas@univ-montp2.fr (A. Mas).
1. Introduction

The thermal stability, hydrolytic resistance and solubility in organic solvents of aromatic polyetherimides can be enhanced by fluorinated groups judiciously fixed on the appropriate sites of the polymer backbone. Resins from fluorinated polyetherimides showing such structural properties combined with more specific properties have very important applications in microelectronics [1] and composite materials.

The fluorinated groups are usually introduced into the macromolecular chain via a fluorinated dianhydride monomer or/and a fluorinated diamine monomer in the case of the most common step-polymerization [2,3]. For example the fluorinated polyetherimide prepared from 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and 2,2’-bis[4-(4-aminophenoxy)diphenyl]hexafluoropropane (BDAF) exhibits a glass transition temperature (T_g) of 270 °C, a long-term thermo-oxidative stability and a reduced water absorption relative to non-fluorinated samples [4]. In spite of the flexibility brought from the ether linkage in the macromolecular chain, some fluorinated polyetherimides have a structural rigidity that leads to a delicate processability and a great fragility of the final materials. This special feature imposes a limitation on the use of these polymers for some applications, notably for the spin-coating technique and the deposition of a thin-protective layer or a specific-property layer. By introducing in the chain aliphatic carbon segments associated with the ether linkage, of course the softness of the final material increases but a negative effect is the decrease of T_g that leads to a possible reduction in thermal stability. To optimize the properties of the polymer, the flexibility of the chain must be improved without a strong decrease of T_g.

Among all applications for which polyimides are good-candidate materials, a very high thermal stability as well as a high T_g are not required for applications such as membrane separation techniques particularly to elaborate non-porous membranes. In this field the fluorinated copolyetherimides are being more and more used. These materials are the subject of a major development because of its interesting hydrophobic and organophilic properties. They are particularly used for the separation of organic-organic liquid mixtures and for the extraction of volatile organic compounds (VOC) from water by the pervaporation process [5,6]. Nevertheless the flexibility of the chains is a necessary condition to swell the membrane and to possibly obtain good transfert properties. For that, new polymers and modified polymers obtained by crosslinking, grafting or blending are required in order to prepare easy processing materials, soft non-porous membranes as well as coatings. After modification of
the polymer structure, of course the hydrophobic character and the hydrolytic stability of the
fluorinated polyetherimides are to be maintained.

The well-known polyetherimide ULTEM™ 1000 (manufactured and marketed by General
Electric Plastic) obtained by step-polymerization of bisphenol-A diphthalic anhydride
(BAPA) and m-phenylenediamine (m-PDA), is widely used in microelectronics and in
membrane field for gas separation [7] and, more recently but to a lesser extent, for
pervaporation [8]. Surprisingly ULTEM™ 1000 was the subject of few works in order to
synthesize new ULTEM structure-based copolyetherimides and related non-porous
membranes. The main experiments were about the increase of hydrophilicity by chemical
surface functionalization as well as plasma treatment [9]. The increase of hydrophobicity was
also studied for example by blending ULTEM™ 1000 with oligomeric fluoropolymers
synthesized by polyurethane chemistry and tailored with fluorinated end groups [10].
The purpose of the present study is to prepare and characterize fluorinated copolyetherimides
based on the ULTEM™ structure where m-PDA is gradually replaced by an aliphatic diamine
bearing the long perfluorinated side chain RF = -CH2-C6F13. The effects of the composition of
the copolymer on the hydrophobicity and the thermal properties are analyzed. A rough
estimation of the softness of cast films is also made. We selected the copolymer showing the
best combination between all these properties to elaborate non-porous membranes.
Shortly these materials will be tested as pervaporation membranes. By varying the number of
the hydrophobic side chains in the copolymer, the physical properties of the membranes as
well as its accessible volume to the permeated molecules, could be partly controlled. By this
way, the flux and the selectivity of the VOC through the membrane, particularly the traces of
chlorinated solvents from water, could be studied and related to the structure of the
macromolecular chain.

2. Results and discussion

2.1. Synthesis and structural characterization of the fluorinated polyetherimides

It is well known that the long perfluoroalkyl chains RF bring a strong contribution to
the hydrophobicity, particularly by the terminal trifluoromethyl group. Only a few fluorinated
aliphatic diamines with such side chains are available and can be used as starting monomers
for the synthesis of polyimides. In previous articles we reported the synthesis of
2,3-bis(2,2,3,4,4,5,5,5-nonafluoropentyl)butan-1,4-diamine and 2-(2,2,3,3,4,4,5,5,6,6,7,7,7-
tridecafluoroheptyl)butan-1,4-diamine respectively called NFD and TFD. The NFD diamine led to polyetherimide bearing two side chains -CH₂C₄F₉ per monomer unit whereas the TFD diamine [12] that is the subject of this article, led to polyetherimide bearing one side chain -CH₂C₆F₁₃ per monomer unit. The scheme of the synthesis of fluorinated copolyetherimides by the step reaction of BAPA with various mixtures of m-PDA and TFD is shown in Fig.1. The selected molar fractions of TFD in the mixture of diamine were 0, 0.10, 0.18, 0.25, 0.50, 0.75, 0.90 and 1. The polymer obtained from TFD/m-PDA in the ratio 0/1 was called UPEI, it shows the same structure as ULTEM™ 1000 developed by General Electric Plastics. It is used as a reference structure for doing a best comparison between non-fluorinated and fluorinated polyetherimides. So, all the materials have been prepared in our laboratory. The polymer obtained from TFD/m-PDA in the ratio 1/0 and the copolyetherimides obtained from the various mixtures were called FPEI and coFPEI respectively. All compositions from 0.10 to 0.90 led to the formation of copolymers that were characterized. This article reports the structural results (NMR, DSC, GTA, elementary analysis) concerning the following molar fractions 0, 0.25, 0.50, 0.75 and 1 for that the same equipment was used and similar analysis were performed. All the values in the composition range are given for the wettability, the surface energy and the resistance-test of the films.

The ¹H NMR spectra of some samples reproduced in Fig.2 show that the molar fraction of fluorinated units (y in Tab.1) can be easily determined by the ratio of the intensity of both signals of methylene -CH₂-N(CO)₂ and methyle -CH₃ groups, respectively I₁CH₂-N(CO)₂ and I₁CH₃ (equation 1).

\[y = \frac{1}{4} \frac{I_{CH₂-N(CO)_2}}{I_{CH₃}} \]

By this method we obtained approximate values of the contents in the copolymers, nevertheless the y value deduced is consistent with the initial composition of the m-PDA and TFD monomer mixtures for long reaction time. The similar composition of monomers mixtures and related copolymers suggests that the full amount of diamine was incorporated in the macromolecular chain in spite of the likely difference in reactivity between m-PDA and
TFD. Indeed the high yield, close to 96 %, obtained for the solid polyetherimide, confirmed
the almost complete incorporation of dianhydride and both diamines in the copolymer,
evertheless the molecular weights (Tab.1) seem to show that TFD is not as reactive as m-
PDA under these experimental conditions. The weight fraction of fluorinated units (w in
Tab.1) then the fluorine weight percentage (Fluorine wt %) were deduced from y considering
the molecular weight of the non-fluorinated (\(M_{m-PDA}\) with \(C_{37}H_{24}O_6N_2 = 592\)) and fluorinated
(\(M_{TFD}\) with \(C_{42}H_{29}F_{13}O_6N_2 = 904\)) units.
The following equations (2 and 3) were used:

\[
w = \frac{M_{TFD} \ y}{M_{TFD} \ y + M_{m-PDA} \ (1 - y)} \quad (2)
\]

\[
F\% = 100 \frac{(19 \times 13) \ y}{M_{TFD} \ y + M_{m-PDA} \ (1 - y)} \quad (3)
\]

The comparison of the Fluorine wt % resulting from NMR by this way and from elementary
analysis (Tab.1c and 1d respectively) show slightly lower values for elementary analysis
determination. The difference in values between the two techniques can be generally
explained by an incomplete combustion of the fluorined samples during the analysis that leads
to a lower Fluorine % estimation.

The \(^{19}\text{F} \) NMR spectrum of coFPEI 75/25 (Fig.3) showed the characteristic peaks of the \(R_F\)
chain at \(\delta \text{ (ppm)}\) -81.0 (CF\(_3\)), -112.9, -121.9, -123.0, -123.7, -126.4 (5 CF\(_2\)) that were very
close for coPEI and FPEI.

2.2. Influence of the fluorinated unit content on the thermal properties of the polyetherimides

\(T_g\) decreases from UPEI to FPEI depending on the increase of the molar fraction of the
fluorinated units (Tab.1). The easier mobility of the polymer chain at low temperature is
attributable to the aliphatic segments -(CH\(_2\))\(_4\)- of TFD units incorporated in the main chain as
well as to the bulky -CH\(_2\)-C\(_6\)F\(_{13}\) side chains. The gradual effect of the TFD weight fraction on
the \(T_g\) value is shown in Fig.4. Experimental \(T_g\) have a good correlation with the predicted \(T_g\)
according to the Fox and Couchman methods [13,14]. Based on the average values of the depicted straight lines, a fall of 1 °C for \(T_g \) is approximately due to a supplementary incorporation of 0.01 TFD unit weight fraction in the copolymer.

In Tab.2 and Fig.5a, are reported the thermogravimetric characteristics and TG curves of polyetherimides obtained under argon. As shown, the fluorinated polyetherimides start decomposing at a lower temperature than UPEI (\(T_d \) 5% = 400 °C and 500 °C respectively) (Fig.5a). In fact for this comparison, the temperature corresponding to a 5% weight loss was considered (\(T_d \) 5%). It is significant that \(T_d \) 5% increases with the fluoride weight % (\(T_d \) 5% = 460 °C for FPEI). The maximum rate of decomposition of UPEI for the \(T_{\text{max}} \) temperature is followed by a less marked decomposition step; similar behaviour is not so obvious for coFPEI for which only one decomposition step clearly appears (DTG not shown). For FPEI, the DTG curve shows the maximum rate of decomposition at \(T_{\text{max}} = 508 °C \) and a weak shoulder at 440 °C. At 800 °C a charred residue was left in the 13-48 w% range for all polymers. The 13% residue was left by FPEI.

In Fig.5b, TG curves were obtained under air. These results are different when they are compared to the results under argon atmosphere. A slight decrease of \(T_d \) 5% and \(T_{\text{max}} \) was noticed as well as two decomposition steps for all polyetherimides. Moreover no residue was left at 750 °C, this is due to a more complete and quick combustion of the polymers in air.

Under argon and air, the weight loss at 200-300 °C range is related to the elimination of traces of the NMP solvent anyway present in the polymers in spite of the fact that the samples were carefully dried. The strong interactions between the polymer and the solvent impose to reach a higher temperature than the boiling point of the solvent (\(T_{\text{eb}} \) NMP = 202 °C) to entirely burn it away. For coFPEI, more particularly for coFPEI 25/75 (curves b in Fig.5), the weight loss close to 6% at 200 °C can be partly attributed to the decomposition of NMP solvent as well as to the decomposition of unreacted starting molecules possibly present in this analyzed sample. We cannot exclude the possibility that a complete imidization of the amic-acid intermediate in these conditions is achieved.

The combination of mass spectrometry with thermogravimetric analysis (MS-TGA) allowed more information to be obtained about the gas compounds produced during the temperature upward run. The MS-TGA coupling technique was performed for the analysis of the degradative process under argon. Only the higher mass loss for UPEI and FPEI were analyzed.
As indicated above two decomposition steps were identified for UPEI under argon at $T_{\text{max}1} = 533 \, ^\circ\text{C}$ and $T_{\text{max}2} = 585 \, ^\circ\text{C}$ with the maximum decomposition rates of 7% / min and 1.8 % / min respectively.

The evolution profiles of the main emitted gas from UPEI at 533 °C under argon (Fig. 6 a1) show the extraction of phenol and benzonitrile that present a similar fragmentation and the most intense peaks following: m/z = 94, 66, 65, 63, 51, 50. The presence of CO$_2$ and CO (m/z = 44, 28); CH$_4$ (m/z = 16, 15, 14) and H$_2$O (m/z = 18, 17) was also detected. CO$_2$ + CO were attributed to a degradation involving an initial hydrolysis of the imid group in first step due to traces of absorbed water. An intermediate amic-acid structure could be also formed besides the non-hydrolyzed imid ring that breaks with heat in subsequent step [15]. The amic-acid structure uncompletely imidized at the end of the polymerization could also participate to the formation of water. It was shown that the simultaneous cleavage of ether linkage and isopropylidyne group led to the formation of water, also available for catalyzing the hydrolysis of the imid group [16]. The initial hydrolysis led to the appearance of CO + CO$_2$ at a temperature less high than the temperature of all products from pyrolysis at about 400 °C (Fig.6 a3, a5). Phenol (m/z = 94, 66) and benzene (m/z = 78, 77, 52, 51, 50) begin to appear at about 460 °C (Fig.6 a4) and reach the maximum amount at about 580 °C indicating that these pyrolysis products were formed in second step [16]. After decarboxylation the intermediate amic-acid structure could be done imino forms leading to nitrile group by dehydration [15].

Two decomposition steps were also identified for FPEI under argon at $T_{\text{max}1} = 440 \, ^\circ\text{C}$ (weak shoulder) and $T_{\text{max}2} = 508 \, ^\circ\text{C}$ with the maximum decomposition rates of 3 % / min and 13.2 % / min respectively. At 508 °C a comparison with UPEI leads to a similar assignments of the main peaks related to the formation of phenol and benzonitrile (m/z = 94 (weak), 66, 65, 51), CO$_2$ + CO (m/z = 44, 28), methane (m/z = 16, 15, 14, 13) then H$_2$O (m/z = 18) (Fig.7 b1). Fig.7 b2 clearly shows the appearance of CO$_2$. New peaks seems to be attributable to the aliphatic chain of the backbone structure consequently assigned to the fragments CH$_2$NH$_2$ (m/z = 30), C$_2$H$_5$ (m/z = 29, 28, 27, 26) (Fig.7 b3) as well as to the perfluorinated side chain cleavage characterized by the typical fragments following: CF$_3$ (m/z = 69) (Fig.7 b4) and CF (m/z = 31) (Fig.7 b3). This behaviour can be supported by a similar interpretation as UPEI by considering the existence of amic-acid and imino structures.

The scheme of a possible mechanism of the thermal degradation of FPEI is summarized in Fig.8.
2.3. Influence of the fluorinated unit content on the wettability and surface energy of the polyetherimides

The difference in contact angles and surface energy values [17] for ULTEM™ and UPEI films (Tab.3) are certainly due to different surface states arising from their respective preparation methods, that is to say extrusion for ULTEM™ film and cast-evaporating for UPEI film. The wettability measurements are particularly sensitive to the rugosity and surface density of the film; it is important to compare the surface properties of coFPEI and FPEI samples with those of UPEI obtained by the same way.

As the TFD monomer units increase in the polymer, $\theta_{\text{H}_2\text{O}}$ increases from 88° to 92° showing a minimal value for coFPEI 25/75 and 50/50 whereas $\theta_{\text{I}_2\text{CH}_2}$ increases regularly. Such evolution of contact angles with the copolymer composition could be related with the possible reorientation of polar groups at the top surface. Further investigations are necessary to study in-depth and possibly to confirm this interpretation. However the evolution of $\theta_{\text{H}_2\text{O}}$ and $\theta_{\text{I}_2\text{CH}_2}$ results in a regular decrease of γ_s from 45.3 mJ m$^{-2}$ for UPEI ($\gamma_s\text{ UPEI}$) to 27.4 mJ m$^{-2}$ for FPEI ($\gamma_s\text{ FPEI}$). This hydrophobic behaviour can be mainly related to the strong decrease of γ_s^d slightly compensated by the increase of γ_s^p (Tab. 3).

To try to find a better correlation between the experimental γ_s value and the composition of the copolymers, we plotted the predicted curve obtained from the equation similar to the previous Fox equation. In the following equation (equation 4):

$$\frac{1}{\gamma_s} = z \frac{1}{\gamma_s\text{ FPEI}} + (1-z) \frac{1}{\gamma_s\text{ UPEI}} \quad (4)$$

γ_s replaces T_g and z represents an undefined percentage value from 0 % to 100 %. The curve a) in Fig. 9 shows γ_s versus z. Then we plotted the γ_s values versus experimental y and w TFD unit fractions in order to conclude the best correlation.

A non linear curve fitting method gave a correlation coefficient better for $z = y$ ($r = 0.99515$) than for $z = w$ ($r = 0.98887$). Although the r values are close, it seems that the y experimental values are in better agreement with the predicted curve. So, the surface energy will be better analyzed in this polymer series by considering the TFD unit molar fractions incorporated in the copolymer.
Based on the additivity principle we can suggest that a fall of 1 mJ m\(^{-2}\) is approximately due to a supplementary incorporation of 0.05 TFD unit molar fraction, this result coming from the calculation of the average slope of the curve. The additivity principle means that a large number of properties, including surface energy [18], when expressed per mole of a substance, may be calculated by summation of either atomic, group or bond contributions.

3. Conclusions

Fluorinated copolyetherimides based on the ULTEM\(^{TM}\) structure have being synthesized by incorporating increasingly TFD units in the main chain from an original diamine bearing a long side chain R\(_F\) = -CH\(_2\)-C\(_6\)F\(_{13}\). The combination of the ether linkage with the aliphatic chain segment and the R\(_F\) side chain led to an increase in polymer flexibility that was estimated by taking into account the decrease in T\(_g\) from 217 \(^\circ\)C to 113 \(^\circ\)C for UPEI and FPEI respectively. The thermal stability seems to be slightly weaker in the case of coFPEI however it remains enough for working these polymers in the membrane field. As the TFD units increase, \(\gamma_s\) decreases and consequently the hydrophobicity is steadily enhanced, furthermore these polymers are slowly soluble at ambient temperature in tetrahydrofuran and chloroform that is a good indication about their organophilic properties. The cast-evaporating method carried out in the case of coFPEI gave films with practical softness and mechanical strength enough to endure the pervaporation tests, typically 2-50 h transfer time, 25-50 \(^\circ\)C temperature and 2-4 mm Hg pressure. So, after staying in contact with water under these experimental conditions no damage, crack or hole were detected on the samples up to 0.75 molar fraction of TFD unit. On the opposite coFPEI with molar fraction higher than 0.75 and FPEI led to brittle and unusable films. The compromise between the chain mobility, thermal stability, hydrophobicity and material softness allows us to conclude that coFPEI with 0.75 TFD molar unit seems to be the optimized film (T\(_g\) = 121 \(^\circ\)C, T\(_d\) 5\% = 400 \(^\circ\)C, \(\gamma_s\) = 30.8 mJ m\(^{-2}\)). All things considered, the properties of these polymer series allows it to be evaluated as non-porous membranes for the extraction of traces of organic compounds from water.

4. Experimental

4.1. Materials
Diphthalic anhydride BAPA was kindly supplied by General Electric Plastics. m-phenylene diamine (m-PDA from Aldrich) and the solvent N-methylpyrrolidone (NMP from Aldrich) were used as received.

4.2 Synthesis of the fluorinated diamine monomer

The synthesis of the aliphatic diamine 2-(2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoroheptyl)butan-1,4-diamine with $R_F = \text{-CH}_2\text{-C}_6\text{F}_{13}$ side chain called TFD in an abridged manner, has been already described in a detailed way elsewhere [12]. In brief, TFD was prepared from itaconic acid dimethyl ester (I) via the addition of perfluorohexyl iodide leading to the fluorinated diester (II) followed by the gradual transformation of ester groups in amino groups.

4.3. Synthesis of copolyetherimides

Fluorinated polyetherimide and copolyetherimides were prepared in NMP under argon atmosphere by heating at 120 °C for 48 h a stoichiometric amount of BAPA and a diamine mixture made up of various molar fractions of m-PDA and TFD freshly synthesized. A partially imidized poly(ether amic acid) intermediate and the expected polyetherimide were first obtained. The mixture was precipitated in EtOH/H2O mixture. To improve the imidization state of the viscous copolymer mixture, the samples were dried in a vacuum oven at 140 °C for 12 h. However the complete imidization was difficult to prove. The dehydration resulting from the reaction between the residual carboxylic acid and the amide groups led to the solid polyetherimides after solvent being eliminated (Tab.1).

4.4. Films preparation and preliminary resistance-test

The cast-evaporating technique was carried out using a 20 % weight polymer solution in NMP for UPEI and in tetrahydrofuran or chloroform for coFPEI and FPEI. The slow-stirred solution at 80 °C for 4 h was cast on a glass plate and dried at 120 °C under vacuum for 24 h. Preliminary tests to evaluate the resistance of the films obtained from all compositions were achieved using a pervaporation cell with a total volume of 100 ml. The cell was filled with water, the pressure downstream from the film was 2-4 mm Hg and the tests were carried out at 25-50 °C for 50 h. Thus, we tried to find films showing practical softness and mechanical strength enough to endure the next pervaporation experiments.
4.5. Analysis and equipment

1H (400 MHz, CDCl$_3$) and 19F (235 MHz in CDCl$_3$) NMR spectra were recorded with a Bruker AC instrument. Tetramethylsilane (TMS) and trichlorofluoromethane were used as internal reference for 1H and 19F NMR spectra respectively. Molecular weights were determined by gel permeation chromatography (GPC) on a Waters instrument equipped with a differential refractometer, and the system was calibrated with polystyrene standards. Differential scanning calorimetry (DSC) data were taken on a Mettler DSC 30 instrument under an atmosphere of nitrogen, taking two scans at a heating rate of 10 °C min$^{-1}$. T_g were predicted using the Fox [13] and Couchman [14] methods (equations 5, 6):

$$ \frac{1}{T_g} = \frac{w_A}{T_{gA}} + \frac{w_B}{T_{gB}} \quad (5) $$

$$ \ln T_g = \frac{(w_A \Delta C_{PA} \ln T_{gA} + w_B \Delta C_{PB} \ln T_{gB})}{(w_A \Delta C_{PA} + w_B \Delta C_{PB})} \quad (6) $$

where T_{gA}, T_{gB} and w_A, w_B are the glass transition temperatures and the weigh fractions of the two components, respectively. ΔC_{PA} and ΔC_{PB} are the magnitudes of the incremental increase in heat capacity at T_g of the pure components polymers.

Thermogravimetric analysis (TGA) was recorded with a Netzsch STA 409 thermobalance coupled with a mass spectrometer Baltzers QMG 421. This assembly allows to analyse the gas or volatile compounds released during the pyrolysis in the range 1-100 m/z. Thermogravimetric (TG) and derivative thermogravimetric (DTG) curves (DTG curves are not shown in the article) were recorded from 2 mg samples at a heating rate of 10 °C/min up to 900 °C under argon or air at a flow rate of 60 mL/min.

Static measurements of contact angles with water ($\theta_{\text{H}_2\text{O}}$) and diiodomethane ($\theta_{\text{I}_2\text{CH}_2}$), were made using a Kruss G1 apparatus. The 10 % w solution of polymers in THF was spread on a metal support, a smooth-thin film was obtained after the solvent evaporation. The accepted contact angles are the average of 6 measurements made on about 5 s after the liquid drop was
deposited on the film surface. The surface energy (γ_s), the polar (γ_s^p) and dispersive (γ_s^d) components were obtained from the Owens and Wendt method [17] (equation 7):

$$(1 + \cos \theta) \gamma_L = 2(\gamma_s^d - \gamma_L^d)^{1/2} - 2(\gamma_s^p - \gamma_L^p)^{1/2}$$ \hspace{1cm} (7)

where γ_L is the interfacial tension of the liquid ($\gamma_{L\text{H}_2\text{O}} = 72.8 \text{ mJ m}^{-2}$, $\gamma_{L\text{H}_2\text{O}}^p = 51 \text{ mJ m}^{-2}$, $\gamma_{L\text{H}_2\text{O}}^d = 21.8 \text{ mJ m}^{-2}$ and $\gamma_{L\text{CH}_2\text{I}_2} = 50.8 \text{ mJ m}^{-2}$, $\gamma_{L\text{CH}_2\text{I}_2}^p = 1.3 \text{ mJ m}^{-2}$, $\gamma_{L\text{CH}_2\text{I}_2}^d = 49.5 \text{ mJ m}^{-2}$).

Acknowledgements

We gratefully acknowledge the financial support obtained from the European Commission, TMR Research Networks, contract number ERBFM-RXCT 970120. We thank Dr Hubert Mutin and M Christian Curtil from the laboratory “Chimie Moléculaire et Organisation du Solide - Université Montpellier II” for helpful discussion and experimental assistance in GTA.
References

List of Tables and Figures

Table 1: Characteristics of polyetherimides

Table 2: Thermogravimetric characteristics of polyetherimides: degradation temperature for 5% (T_d5%) and 10% (T_d10%) weight loss, temperature for maximum decomposition (T_max)

Table 3: Contact angle (± 1°) with water (\(\theta_{\text{H2O}}\)) and diiodomethane (\(\theta_{\text{I2CH2}}\)), dispersive (\(\gamma_s^d\)) and polar (\(\gamma_s^p\)) components of surface energy of polyetherimide films (\(\gamma_s \pm 1 \text{ mJ m}^{-2}\))

Figure 1: Scheme of the synthesis of polyetherimides (UPEI \(y = 0\), FPEI \(x = 0\), coFPEI \(y \neq 0\) and \(x \neq 0\))

Figure 2: \(^1\text{H NMR spectra of UPEI} y = 0, x = 1\ (a), \text{coFPEI 25/75 } y = 0.25, x = 0.75\ (b), \text{FPEI } y =1, x = 0\ (c)

Figure 3: \(^{19}\text{F NMR spectrum of coFPEI 75/25 } y = 0.75, x = 0.25\)

Figure 4: Glass transition temperature versus TFD unit weight fraction (w) for polyetherimides: experimental relationship (a), predicted relationship from Fox equation (b), predicted relationship from Couchman equation (c)

Figure 5: Thermogravimetric analysis of polyetherimides under argon (a) and under air (b)

Figure 6: MS spectrum of UPEI at 533°C under argon (a1) and evolution profiles of the ions versus the temperature (a2) to (a5). The number next to each curve is the mass of the ion

Figure 7: MS spectrum of FPEI at 508°C under argon (b1) and evolution profiles of the ions versus the temperature (b2) to (b5). The number next to each curve is the mass of the ion
Figure 8: Scheme of the thermal degradation of FPEI under argon: main pyrolysis products (as UPEI) (a), possible way yielding to benzonitrile (b), main pyrolysis products from TFD unit (c)

Figure 9: Surface energy (γ_s) of polyetherimide films versus TFD unit fraction: values calculated from the equation $1 / \gamma_s = z / \gamma_{s\text{ FPEI}} + (1-z) / \gamma_{s\text{ UPEI}}$ (°) (curve a), experimental values versus TFD unit molar fraction y (•) and weight fraction w (x). To simplify the figure the curves γ_s versus y and w are not drawn
<table>
<thead>
<tr>
<th>Polyetherimide</th>
<th>TFD monomer unit</th>
<th>Fluorine wt %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>y<sup>a</sup></td>
<td>w<sup>b</sup></td>
</tr>
<tr>
<td>UPEI</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>coFPEI 25/75</td>
<td>0.25</td>
<td>0.34</td>
</tr>
<tr>
<td>coFPEI 50/50</td>
<td>0.50</td>
<td>0.60</td>
</tr>
<tr>
<td>coFPEI 75/25</td>
<td>0.75</td>
<td>0.82</td>
</tr>
<tr>
<td>FPEI</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

^a Molar fraction of fluorinated monomer units incorporated in polyetherimides

^b Weight fraction of fluorinated monomer units incorporated in polyetherimides

^c Fluorine weight percentage deduced from NMR

^d Fluorine weight percentage deduced from elementary analysis

^e Molecular weight determined in THF for fluorinated polyetherimides and molecular weight values of marketed ULTEM™ (g mol⁻¹) for UPEI

^f Glass transition temperature T_g (°C) and heat capacity ΔC_p (J g⁻¹ K⁻¹)
<table>
<thead>
<tr>
<th>Polyetherimides</th>
<th>Under argon</th>
<th></th>
<th></th>
<th>Under air</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$T_{\text{d5%}}$</td>
<td>T_{max}</td>
<td>% residue over 800 °C</td>
<td>$T_{\text{d5%}}$</td>
<td>T_{max}</td>
<td>% residue over 800 °C</td>
</tr>
<tr>
<td>ULTEMTM</td>
<td>520</td>
<td>545*</td>
<td>48</td>
<td>520</td>
<td>540</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>585</td>
<td></td>
<td></td>
<td>700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPEI</td>
<td>500</td>
<td>533*</td>
<td>52</td>
<td>500</td>
<td>531</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>585</td>
<td></td>
<td></td>
<td>686</td>
<td></td>
<td></td>
</tr>
<tr>
<td>coFPEI 25/75</td>
<td>400*</td>
<td>540</td>
<td>41</td>
<td>370*</td>
<td>520</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>585</td>
<td></td>
<td></td>
<td>640</td>
<td></td>
</tr>
<tr>
<td>coFPEI 50/50</td>
<td>400</td>
<td>510</td>
<td>39</td>
<td>370</td>
<td>480</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>640</td>
<td></td>
</tr>
<tr>
<td>coFPEI 75/25</td>
<td>400</td>
<td>510</td>
<td>31</td>
<td>370</td>
<td>460</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>640</td>
<td></td>
</tr>
<tr>
<td>FPEI</td>
<td>460</td>
<td>440</td>
<td>13</td>
<td>440</td>
<td>501</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>508*</td>
<td></td>
<td></td>
<td>627</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyetherimides</td>
<td>θ_{H_2O}</td>
<td>$\theta_{CH_2Cl_2}$</td>
<td>γ^d</td>
<td>γ^p</td>
<td>γ_s</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>ULTEM™</td>
<td>93.0</td>
<td>27.0</td>
<td>46.7</td>
<td>0.1</td>
<td>46.8</td>
<td></td>
</tr>
<tr>
<td>UPEI</td>
<td>88.0</td>
<td>32.0</td>
<td>44.5</td>
<td>0.8</td>
<td>45.3</td>
<td></td>
</tr>
<tr>
<td>coFPEI 10/90</td>
<td>84.4</td>
<td>33.3</td>
<td>41.0</td>
<td>2.0</td>
<td>43.0</td>
<td></td>
</tr>
<tr>
<td>coFPEI 18/82</td>
<td>84.6</td>
<td>36.6</td>
<td>37.5</td>
<td>2.5</td>
<td>40.0</td>
<td></td>
</tr>
<tr>
<td>coFPEI 25/75</td>
<td>82.0</td>
<td>45.2</td>
<td>34.1</td>
<td>4.0</td>
<td>38.1</td>
<td></td>
</tr>
<tr>
<td>coFPEI 50/50</td>
<td>82.0</td>
<td>51.0</td>
<td>30.5</td>
<td>5.0</td>
<td>35.5</td>
<td></td>
</tr>
<tr>
<td>coFPEI 75/25</td>
<td>85.4</td>
<td>59.4</td>
<td>26.1</td>
<td>4.7</td>
<td>30.8</td>
<td></td>
</tr>
<tr>
<td>coFPEI 90/10</td>
<td>90.4</td>
<td>61.0</td>
<td>26.0</td>
<td>3.0</td>
<td>29.0</td>
<td></td>
</tr>
<tr>
<td>FPEI</td>
<td>92.0</td>
<td>68.0</td>
<td>24.6</td>
<td>2.8</td>
<td>27.4</td>
<td></td>
</tr>
</tbody>
</table>
or/and

Fluorinated poly(ether amic acid) intermediate

Fluorinated polyetherimide

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Surface energy γ_s (mJ.m$^{-2}$)

TFD unit fraction

Figure 9