An arithmetical proof of the strong normalization for the $\lambda$-calculus with recursive equations on types

Abstract : We give an arithmetical proof of the strong normalization of the $\lambda$-calculus (and also of the $\lambda\mu$-calculus) where the type system is the one of simple types with recursive equations on types. The proof using candidates of reducibility is an easy extension of the one without equations but this proof cannot be formalized in Peano arithmetic. The strength of the system needed for such a proof was not known. Our proof shows that it is not more than Peano arithmetic.
Type de document :
Communication dans un congrès
Typed Lambda Calculi and Applications, Jun 2007, Paris, France. LNCS 4583, pp.84-101, 2007
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00382263
Contributeur : Karim Nour <>
Soumis le : jeudi 7 mai 2009 - 16:16:47
Dernière modification le : jeudi 7 mai 2009 - 16:25:13
Document(s) archivé(s) le : jeudi 10 juin 2010 - 22:55:10

Fichiers

tlca_07.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00382263, version 1
  • ARXIV : 0905.1032

Collections

INSMI | LAMA | UGA

Citation

René David, Karim Nour. An arithmetical proof of the strong normalization for the $\lambda$-calculus with recursive equations on types. Typed Lambda Calculi and Applications, Jun 2007, Paris, France. LNCS 4583, pp.84-101, 2007. <hal-00382263>

Partager

Métriques

Consultations de
la notice

242

Téléchargements du document

49