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Abstract. In this paper, we propose a new approach for symbol recognition us-
ing structural signatures and a Galois Lattice as classifier. The structural signa-
tures are based on topological graphs computed from segments which are ex-
tracted from the symbol images by using an adapted Hough transform. These
structural signatures, which can be seen as dynamic paths which carry high level
information, are robust towards various transformations.They are classified by
using a Galois Lattice as a classifier. The performances of the proposed approach
are evaluated on the GREC03 symbol database and the experimental results we
obtain are encouraging.
Keywords: Symbol recognition, Concept lattice, Structural signature, Hough trans-
form, Topological relation

1 Introduction

This paper deals with the symbol recognition problem. The literature is very
abundant in this domain [1, 5, 12, 13]. Symbol recognition can be basically de-
fined as a two-step process: signature extraction and classification. Signature ex-
traction can be achieved by using statistical-based methods or syntactic/structural
approaches while most of the statistical-based methods usethe pixels distribu-
tion. Syntactic and structural approaches are generally based on a characteri-
zation of elementary primitives. These primitives (basic description, relations,
spatial organization, . . . ) are extracted from the symbols.They are generally
coupled with probabilistic or connexionist classifiers. Inthis paper, a new ap-
proach for symbol recognition is introduced. It is based on the use of a Ga-
lois lattice (also called concept lattice) [3] as a classifier. The combined use of
statistical-based signatures and a Galois lattice has already been introduced by
Guillas et al. in [7]. Our proposed approach is based on the joint use of struc-
tural signatures inspired by the work of Geibelet al. [4] and a Galois lattice
classifier. The paper is organized as follows. Section 2 describes the proposed
technique. Section 3 gives experimental results. Section 4provides a conclusion
and presents our future work.



2 Description of the Approach

The technique that is introduced in this paper is based on thecombined use of
structural signatures and of a Galois lattice classifier. The elementary primitives
on which are based the structural signature are segments which are extracted by
using the Hough transform. For each symbol, we compute a topological graph
by describing the spatial organisation of the segments. Then, signatures are con-
structed from the topological graphs. Finally, these signatures are classified us-
ing a Galois Lattice classifier. Our method is inspired of thework of Geibelet
al. [4] but differs from that work on many points. Firstly, we usea Galois lattice
instead of a decision tree. Secondly, we do not use the same set of topological
relations. Finally, our method is based on a Hough-based segments extraction
method from images of symbols while [4] works on chemical compounds and
do not use any primitive extractor.

2.1 Segments Extraction

The structural primitives we use for symbol description aresegments. The seg-
ments extraction method we have implemented is an adaptation of the Hough
transform (HT), initially defined in the sixties [9] for lineextraction by Hough.
Indeed, among the existing methods, the HT is known for its robustness prop-
erty [14], especially in the context of noisy symbols images. The HT has been
widely used for different purposes in image processing and analysis ([11]). The
HT key idea is to project pixels of a given image onto a parametric space where
the shapes can be represented in a compact way. This space is used to find curves
that can be parameterized like straight lines, polynomials, circles, . . . . Each line
in the image corresponds to a peak in the associated Hough space. Therefore,
the line extraction problem is solved by processing peak detection.

For our purpose we are especially interested in the detection of straight lines.
The Figure 1 shows how pixels of an image, represented with their (x, y) coor-
dinates, can be mapped in the Hough space where any straight line of the image
is represented by the couple(ρi, θi) of its polar coordinates.

The practical use of the Straight Line Hough Transform (SLHT) raises dif-
ferent problems [11]. First of all the HT is of quadratic complexity, it is therefore
necessary to use a pre-processing step in order to decrease the number of pix-
els to map during the transform. Next, on real-life images, the mapped points
produce heterogeneous sine curves in the Hough space and multiple crossing
points can appear. So, a peak detection algorithm is needed in order to group
these crossing points and to detect their corresponding mean line.

In this paper, we introduce an adapted version of the HT that does not suffer
the preceding drawbacks and that is designed to extract segments instead of



Fig. 1. Straight Line Hough Transform (SLHT)

lines. The end points of detected lines cannot be known from the analysis of the
Hough space. So, it is necessary to map the lines detected in the Hough space on
their corresponding document image in order to achieve the detection process.
Based on these considerations an HT-based segments detection system can be
divided into four main steps:

1. Reduction of the search space:Characteristic points are to be selected be-
fore performing the HT, in order to reduce the number of pixels to map and
as a consequence the processing time. In our method, we just use a mean
filtering in combination with a skeletonization processing[9].

2. Projection onto the Hough Space:Each of the previously selected point is
mapped onto the Hough space. This step corresponds to the process shown
in Figure 1. An accumulator array is commonly used during this step in
order to record the number of sine curve for a given point in the Hough
space. We use the initial HT implementation of [9].

3. Peak detection:It consists in identifying the points in the accumulator as-
sociated to a large number of sine curves. Our peak detectionalgorithm is
based on the analysis of the gravity centres of the line sets.

4. Segments extraction:The lines detected in the Hough space are mapped
on their corresponding document image in order to extract segments (begin
and end points). It consists in detecting sequence of strictly adjacent pixels
along the detected line. This is realized by using the Euclidean distances
d(pi, L) between the lineL and the crossing points P of the image.

Evaluation of the robustness Our algorithm performs robust extraction of
maximal segments. An example of the obtained results is shown in Figure 2.
The maximal length of the segments implies a reduction of thepossible junc-
tions between adjacent segments. Indeed, an ”X” will be described by 2 seg-
ments instead of 4.



Original image skeleton of image SLHT

Fig. 2. Examples of différents segments extraction

The Fig.3 shows the robustness of the SLHT. This table shows the recognition
rate obtained with different symbols of GREC’03 corpus ([6]). What we call
RecognitionRate here corresponds to percentage of good associations between
symbols tested and models they refer. Those associations were realized from
matching distances between segments. The model we attribute to the treated
symbol corresponds to the minimal distance. In all the degradation levels we
can see that the proposed approach perform a robust segments-based symbols
extraction.

Fig. 3. Evaluation of the robustness of the SLHT



2.2 Topological Graph Computation

Description Once the segments are extracted, each topological relationbe-
tween two segmentss ands′ is described by the following triplet of information:

< relation type, relation value, length ratio > (1)

– relation type: We use the finite set of relations types X, Y, V, P, O as in [2,
12, 1, 10] to fully describe the possible relations between pairs of segments
(see Table 1).

Table 1.The different types of relations we consider (from left to right: X, Y, V, P, O).

– relation value: To be more exhaustive and to discriminate more precisely
the relations, we add a value to the relation. This value aimsat precising
topological relations between segments, such as angle between intersecting
segments (available for X, Y, V and O), or distance for parallel segments
(relation P).

– length ratio: The last value of each triplet is a ratio between the lengthsof
the longest and shortest segments of each pair.

We build a topological graph per symbol where nodes are segments and
edges are relations (see Figure 5). The topological graph weobtain is a complete
graph where each pair of segments is uniquely described.

In order to reduce the cardinality of the possible triplets ensemble (see Eq.
1), we discretize them. After performing a statistical analysis of the symbol
shapes, we choose to limit the set of possible values for the angles of junctions
X, Y and V to the following set:{30◦, 45◦, 60◦, 90◦} (possibly, a relation value
may be assigned to the closest value in that set). It is also possible to specialize
the distances between parallel segments in groups (collinear, near and far for
example). The length ratios can be separated into three groups (equal, globally
near or very different). We could also consider only the typeof relation (or any
of the pairs<relation type, relation value> or <relation type, length ratio>), or
reduce the set of types of relations we consider.



Fig. 4. Example of extracted seg-
ments Fig. 5.Associated topological graph

Discussion For each symbol, we obtain a set of triplets which fully describes
the structural organization of the segments (eg., the relation type differentiates
a cross from a rhombus, the relation value a rhombus from a rectangle and the
length ratio a rectangle from a square). Moreover, the use ofthis triplet-based
representation has three main advantages:

– each pair of segments is described by one unique triplet;
– each symbol is characterized by one unique and complete graph;
– this description is invariant towards rotation, scale and vectorial distortion.

But, this representation also has some drawbacks:

– It does not consider circle arcs
– n2 triplets are needed to characterize one symbol (at mostn2, wheren is the

number of segments). This number of triplets can be reduced when using a
restriction of the types of relations we consider.

2.3 Computation of the Structural Signatures

Description The triplets which are extracted from each pair of segments char-
acterize the paths of length 1. These paths are equivalentlydescribed by the
topological graph (see Figure 5) or its associated adjacency matrix (see Table
2), as in [1, 10]. However, paths of length 1 are insufficient for discriminating
different types of structures, such as regular shapes (square, rectangle, triangle,
. . . ).



0 1 2 3 4 5
0 P Y V Y V
1 P V Y V O
2 Y V P V Y
3 V Y P Y V
4 Y V V Y P
5 V O Y V P

Table 2.Adjacency matrix (M ) associated to the graph of Figure 4 where triplets are only given
by the relation type.

That is why, as in [4], we compute the paths of different lengths by using
the adjacency matrix and its powers (see Tables 2 and 3). Let us denoteM the
adjacency matrix. AsM conveys information about paths of length 1,M3 cor-
responds to 3-length paths (useful to describe triangles),M4 to 4-length paths
(squares and rectangles),. . .

The adjacency matrices we work with are not boolean or integer, so we
generalize the usual product of boolean or integer matrices(see Eq. 2) :

∀(i, j) ∈ [0, L]2, (A × B)ij =
L∑

k=1

(aik × bkj) (2)

to the union of string concatenation (see Eq. 3) :

∀(i, j) ∈ [0, L]2 ; (A × B)ij = (
L⋃

k=1

(aik + bkj)) (3)

whereL is the size of the matrix and+ is the string concatenation operator.
Once this product has been computed, we keep only the elementary paths and
group the equivalent or symmetric paths. For instance, two equivalent paths XV
are grouped as 2×XV and the symmetric paths POV and VOP are grouped as
2×POV. The matrixM2 corresponding to the square of the matrixM (given in
Table 2) is provided in Table 3.

Once all the power matrices have been computed, a set of paths(features)
of different lengths and their number of occurrences are available. We organize
these features in a hierarchical way, as in [12], in order to compute the signature.
Indeed, the presence of a 4-length path is more discriminative than the presence
of a 1-length path, but the longest paths are the most affected by distortions. For
each symbol image, we compute its structural signature by concatenating the



0 1 2 3 4 5
0 4YV 2PV 2YV 2PY 1YY 1VV 2PV 2YV 2PY 1YY 1VV
1 4YV 2PY 1VV 1YY 2PV 2VY 2PY 1VV 1YY 2PV 2VY
2 2PV 2VY 2PY 1VV 1YY 4VY 1YY 1VV 2PY 2VY 2PV
3 2PY 1YY 1VV 2PV 2VY 4VY 2VY 2PV 1VV 1YY 2PY
4 1VY 1YV 2PV 1VV 1YY 2PY 1YY 1VV 2PY 2VY 2PV 4VY
5 1YY 1VV 2PY 2VY 2PV 2VY 2PV 1VV 1YY 2PY 4VY

Table 3.Matrix M
2 (whereM is given in Table 2).

SignatureP PV PX PY V VV X XV XX Y YV YX YY
Value 2 8 2 10 6 5 3 8 2 8 28 12 11

Table 4.Structural signature of Fig. 4 with paths of length 1 & 2 (onlyrelation type)

type of path and its number of occurrences in the topologicalgraph associated
to that symbol.

A lot of paths might be needed to describe a symbol and therefore the sig-
natures may be huge and contain much redundant information.That is why we
only consider paths of length inferior or equal to 4.

Discussion The structural signatures we obtain are not based on the search
for predefined shape templates. Instead, we dynamically compute the shapes
observed from our sample images, which confers genericity to our approach.

2.4 Classification

Fig. 6. Example of binary table used for lattice construction

We developed a recognition system named NAVIGALA (NAVIgation into
GAlois LAttice), dedicated to noisy symbol recognition [8]. As denoted by its
name, this system is based on the use of a Galois lattice as classifier. A Galois



Fig. 7.Example of a concept lattice used for classification.

lattice is a graph which represents, in a structural way, thecorrespondences be-
tween a set of symbols and a set of attributes. These correspondences are given
by a binary table (see Figure 6 where each attribute corresponds to an inter-
val of occurrences for a given path) where crosses are membership relations. In
the Galois lattice, nodes are denoted as concepts and contain a subset of sym-
bols and a corresponding subset of attributes and edges represent an inclusion
relation between the nodes (see Figure 7). The principle of classification is to
navigate through the lattice from the top of the graph to its bottom by validating
attributes and thus to reduce the candidates symbols to match. This navigation
is similar to the one used for classification with a decision tree. However, in the
Galois lattice, several ways are proposed to reach the same node of the graph.
We noticed that this property is interesting for noisy symbols because, experi-



mentally, concept lattice is more efficient than decision tree in the presence of
noise.

3 Experimental Results

We perform our experiments on the GREC03 database of symbol images [6]. We
evaluate the effectiveness of the proposed approach on symbols extracted from
8 classes (see Figure 8) and 9 levels of deterioration (see Figure 9). We use the
original symbol, more one symbol per level of deterioration(ie. 10 symbols per
class) for training. The recognition results are computed from 72 deteriorated
query symbol images per class. Tables 5 and 6 provide the recognition rates we
obtain by using a) only the relation types and not the full triplet given in (1)
(Table 5) and b) the full triplet (Table 6).

Class 0Class 1Class 2Class 3

Class 4Class 5Class 6Class 7

Fig. 8. 8 classes of symbol used for tests.

Level 0 Level 1 Level 2 Level 3

Level 4 Level 5 Level 6 Level 7

Fig. 9. Different levels of noise for class 0.

Lengths of paths 1 and 22 and 33 and 41, 2 and 3
Recognition rate 85,3% 87,3% 86,1% 87,7%
Number of paths 4 50 161 54

Number of attributs 20 25 27 24
Number of concepts 410 533 658 511

Table 5.Experimental results using partial triplets.

For comparison, we perform tests on the same sets of symbols (for learn-
ing and recognition) with a method based on the use of statistical signatures
(Radon Transform) and a Galois lattice as classifier [7]. Therecognition rate
we obtain is 98.9%. 14 attributes and 96 concepts were created in the lattice for
recognition. We can see that the use of statistical signatures gives a better global
recognition rate. But the two approaches can be complementary in some way.



Lengths of paths 1 2 3 4 1 and 22 and 31, 2 and 31, 2, 3 and 4
Recognition rate 96% 86,1%86,7%82,6% 95,1% 80,4% 94,4% 95,7%
Number of paths 38 175 959 3270 202 1134 1161 4427

Number of attributs 20 22 22 28 20 20 18 16
Number of concepts452 577 1475 9077 410 689 214 140

Table 6.Experimental results using full triplets.

For example, for the symbols from class 6, statistical signature leads to confu-
sions with classes 0 or 3. Using the structural signatures, we recognize symbols
from class 6 without any ambiguity with classes 0 and 3 (with astructural sig-
nature, for class 6 two symbols among 81 are misclassified). We can infer from
these results that these two signatures may be combined in order to improve the
performances. We are actually working on an iterative combination of statistical
and structural signatures to enhance the performances of the proposed approach.

4 Conclusion and Future Work

In this paper, we propose a new structural signature dedicated to symbol recog-
nition using a Galois lattice as classifier. This structuralsignature relies on seg-
ments extracted by using an adapted Hough transform. The structural signature
extraction is in 2 main steps. First, for each symbol, we compute a topologi-
cal graph to describe the spatial organization of the segments. Then, from these
topological graphs, we can extract the structural signature by counting the num-
ber of occurrences of each path of the graphs. The signaturesare further clas-
sified by using a Galois Lattice classifier. The experiments we perform on the
GREC03 database show the robustness of the proposed approach towards var-
ious sources of noise. The structural signatures we obtain are not based on the
search for predefined shape templates. Instead, we dynamically compute the
shapes observed from our sample images, which confers genericity to our ap-
proach.

In order to ameliorate this structural signature, we are further working on the
extraction of circle/ellipse arcs and on their integrationinto our structural signa-
ture. Next, we aim at evaluating the performances of the proposed approach not
only on single symbols, but in real-life applications. Finally, a procedure based
on an iterative combination of statistical and structural signatures may enhance
the performances of the proposed approach.
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