N

N

On the joint use of a Structural Signature and a Galois
Lattice Classifier for Symbol Recognition
Mickaél Coustaty, Stéphanie Guillas, Muriel Visani, Karell Bertet, Jean-Marc
Ogier

» To cite this version:

Mickagél Coustaty, Stéphanie Guillas, Muriel Visani, Karell Bertet, Jean-Marc Ogier. On the joint
use of a Structural Signature and a Galois Lattice Classifier for Symbol Recognition. Liu Wenyin,
Josep Llados, Jean-Marc Ogier. Graphics Recognition. Recent Advances and New Opportunities:
7th International Workshop, GREC 2007, Curitiba, Brazil, September 20-21, 2007, Selected Papers,
Springer-Verlag, pp.61-70, 2008, LNCS - Volume 5046, 10.1007/978-3-540-88188-9_7 . hal-00382077

HAL Id: hal-00382077
https://hal.science/hal-00382077
Submitted on 7 May 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00382077
https://hal.archives-ouvertes.fr
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Abstract. In this paper, we propose a new approach for symbol recognits-
ing structural signatures and a Galois Lattice as classiflee structural signa-
tures are based on topological graphs computed from segmérnth are ex-
tracted from the symbol images by using an adapted Houglsftran. These
structural signatures, which can be seen as dynamic patieh wéury high level
information, are robust towards various transformatidrigey are classified by
using a Galois Lattice as a classifier. The performanceseqbtbposed approach
are evaluated on the GRECO03 symbol database and the expaimesults we
obtain are encouraging.

Keywords: Symbol recognition, Concept lattice, Structural signattiough trans-
form, Topological relation

1 Introduction

This paper deals with the symbol recognition problem. Tterdiure is very
abundant in this domain [1, 5, 12, 13]. Symbol recognition ba basically de-
fined as a two-step process: signature extraction andfotasisin. Signature ex-
traction can be achieved by using statistical-based mstbioslyntactic/structural
approaches while most of the statistical-based methodthesgixels distribu-
tion. Syntactic and structural approaches are generaligdan a characteri-
zation of elementary primitives. These primitives (bassdaiption, relations,
spatial organization, ...) are extracted from the symbblgy are generally
coupled with probabilistic or connexionist classifiers.this paper, a new ap-
proach for symbol recognition is introduced. It is based o @se of a Ga-
lois lattice (also called concept lattice) [3] as a classifléne combined use of
statistical-based signatures and a Galois lattice haadylrbeen introduced by
Guillaset al.in [7]. Our proposed approach is based on the joint use of-stru
tural signatures inspired by the work of Geiletlal. [4] and a Galois lattice
classifier. The paper is organized as follows. Section 2riescthe proposed
technique. Section 3 gives experimental results. Sectimovides a conclusion
and presents our future work.



2 Description of the Approach

The technique that is introduced in this paper is based oodheined use of
structural signatures and of a Galois lattice classifiee @lementary primitives
on which are based the structural signature are segmentt aie extracted by
using the Hough transform. For each symbol, we compute ddgjpal graph
by describing the spatial organisation of the segmentsn,Tdignatures are con-
structed from the topological graphs. Finally, these digres are classified us-
ing a Galois Lattice classifier. Our method is inspired ofweek of Geibelet
al. [4] but differs from that work on many points. Firstly, we us&alois lattice
instead of a decision tree. Secondly, we do not use the saneé egological
relations. Finally, our method is based on a Hough-baseohesets extraction
method from images of symbols while [4] works on chemical poomds and
do not use any primitive extractor.

2.1 Segments Extraction

The structural primitives we use for symbol description segments. The seg-
ments extraction method we have implemented is an adaptafithe Hough
transform (HT), initially defined in the sixties [9] for linextraction by Hough.
Indeed, among the existing methods, the HT is known for i®istness prop-
erty [14], especially in the context of noisy symbols imagdse HT has been
widely used for different purposes in image processing awadyais ([11]). The
HT key idea is to project pixels of a given image onto a paraimepace where
the shapes can be represented in a compact way. This spaeel idind curves
that can be parameterized like straight lines, polynom@sles, . ... Each line
in the image corresponds to a peak in the associated Houglk.spherefore,
the line extraction problem is solved by processing peakatiein.

For our purpose we are especially interested in the detectistraight lines.
The Figure 1 shows how pixels of an image, represented w&ih th, y) coor-
dinates, can be mapped in the Hough space where any striaiglaf the image
is represented by the couplg;, 6;) of its polar coordinates.

The practical use of the Straight Line Hough Transform (S)LHiises dif-
ferent problems [11]. First of all the HT is of quadratic cdexty, it is therefore
necessary to use a pre-processing step in order to decreasearnber of pix-
els to map during the transform. Next, on real-life imaghs, mapped points
produce heterogeneous sine curves in the Hough space atiglenaiossing
points can appear. So, a peak detection algorithm is needertér to group
these crossing points and to detect their corresponding fivea

In this paper, we introduce an adapted version of the HT thes diot suffer
the preceding drawbacks and that is designed to extractesggnmstead of
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Fig. 1. Straight Line Hough Transform (SLHT)

lines. The end points of detected lines cannot be known fremanalysis of the
Hough space. So, it is necessary to map the lines detectied khdugh space on
their corresponding document image in order to achieve #étection process.
Based on these considerations an HT-based segments aetegsiem can be
divided into four main steps:

1. Reduction of the search spaceCharacteristic points are to be selected be-
fore performing the HT, in order to reduce the number of gixelmap and
as a consequence the processing time. In our method, wesest mean
filtering in combination with a skeletonization processj@y

2. Projection onto the Hough SpaceEach of the previously selected point is
mapped onto the Hough space. This step corresponds to tbesgrehown
in Figure 1. An accumulator array is commonly used during #step in
order to record the number of sine curve for a given point & kHough
space. We use the initial HT implementation of [9].

3. Peak detection:It consists in identifying the points in the accumulator as-
sociated to a large number of sine curves. Our peak detealgmmithm is
based on the analysis of the gravity centres of the line sets.

4. Segments extraction:The lines detected in the Hough space are mapped
on their corresponding document image in order to extragnsats (begin
and end points). It consists in detecting sequence of Igtadfacent pixels
along the detected line. This is realized by using the Esaliddistances
d(p;, L) between the lind. and the crossing points P of the image.

Evaluation of the robustness Our algorithm performs robust extraction of
maximal segments. An example of the obtained results is showrigure 2.
The maximal length of the segments implies a reduction ofpthesible junc-
tions between adjacent segments. Indeed,@hWwill be described by 2 seg-
ments instead of 4.
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Fig. 2. Examples of differents segments extraction

The Fig.3 shows the robustness of the SLHT. This table shioevseicognition
rate obtained with different symbols of GREC’'03 corpus X[6)hat we call
Recognition Rate here corresponds to percentage of good associations lretwee
symbols tested and models they refer. Those associatiores nealized from
matching distances between segments. The model we adtribubhe treated
symbol corresponds to the minimal distance. In all the diggian levels we
can see that the proposed approach perform a robust segbaseid symbols
extraction.

Symbole | degrad1 degrad2 degrad3 degrad4 degradd degradé degrad? degrad8 degrad9 | Total
Al 100 100 100 100 100 100 100 100 100 100
A2 100 100 100 100 80 100 100 100 100 9777778
A3 100 &0 100 100 100 100 100 100 100 9Q1ITIIS
Ad 100 100 100 100 100 100 100 100 100 100
A5 100 100 100 100 80 100 100 100 100 9777778
A6 100 100 80 &0 20 100 100 100 80 8222222
AT 100 100 100 100 100 100 100 60 100 9555556
E1 100 100 100 100 100 100 100 100 80 9777778
E2 100 100 100 100 100 100 100 100 100 100
E3 100 100 100 100 100 100 100 100 100 100
E4 100 100 100 100 100 100 100 100 100 100
E5 100 100 100 100 100 100 100 100 100 100
E6 100 100 100 100 100 100 100 100 100 100
E7 100 100 100 100 100 100 100 100 100 100
E8 100 100 100 100 100 100 100 100 100 100
Total 100 98 ,65667 9866667 9733333 92 100 100 0733333 9733333 | 97,92593

Fig. 3. Evaluation of the robustness of the SLHT



2.2 Topological Graph Computation

Description Once the segments are extracted, each topological relagen
tween two segmentsands’ is described by the following triplet of information:

< relation type, relation value, length ratio > (1)
— relation type: We use the finite set of relations types X, Y, V, P, O as in [2,

12,1,10] to fully describe the possible relations betweginspof segments
(see Table 1).

S‘ | Y

Table 1. The different types of relations we consider (from left tghti: X, Y, V, P, O).

— relation value: To be more exhaustive and to discriminate more precisely

the relations, we add a value to the relation. This value aitmsrecising
topological relations between segments, such as angleebatimtersecting
segments (available for X, Y, V and O), or distance for patakegments
(relation P).

— length ratio: The last value of each triplet is a ratio between the lengths
the longest and shortest segments of each pair.

We build a topological graph per symbol where nodes are setpvand
edges are relations (see Figure 5). The topological graptteen is a complete
graph where each pair of segments is uniquely described.

In order to reduce the cardinality of the possible tripletseanble (see Eq.
1), we discretize them. After performing a statistical gee of the symbol
shapes, we choose to limit the set of possible values forrigkes of junctions
X, Y and V to the following set{30°, 45°, 60°, 90°} (possibly, a relation value
may be assigned to the closest value in that set). It is alssilgle to specialize
the distances between parallel segments in groups (catlimear and far for
example). The length ratios can be separated into thregogr@qual, globally
near or very different). We could also consider only the tgpeelation (or any
of the pairs<relation type, relation value or <relation type, length ratis), or
reduce the set of types of relations we consider.
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Fig.4. Example of extracted seg-
ments Fig. 5. Associated topological graph

Discussion For each symbol, we obtain a set of triplets which fully dises
the structural organization of the segmerag,(the relation type differentiates
a cross from a rhombus, the relation value a rhombus fromtarrgle and the
length ratio a rectangle from a square). Moreover, the ughistriplet-based
representation has three main advantages:

— each pair of segments is described by one unique triplet;
— each symbol is characterized by one unique and completé;grap
— this description is invariant towards rotation, scale aaedterial distortion.

But, this representation also has some drawbacks:

— It does not consider circle arcs

— n? triplets are needed to characterize one symbol (at mrgstheren is the
number of segments). This number of triplets can be redudeshwsing a
restriction of the types of relations we consider.

2.3 Computation of the Structural Signatures

Description The triplets which are extracted from each pair of segmems-c
acterize the paths of length 1. These paths are equivaldetigribed by the
topological graph (see Figure 5) or its associated adjgceratrix (see Table
2), as in [1, 10]. However, paths of length 1 are insufficiemtdiscriminating
different types of structures, such as regular shapes rsgretangle, triangle,

).

(V-57.3,1.0)
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Table 2. Adjacency matrix {/) associated
by the relation type.
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That is why, as in [4], we compute the paths of different lesdby using
the adjacency matrix and its powers (see Tables 2 and 3).d.étniotelM the
adjacency matrix. A3/ conveys information about paths of length)1? cor-
responds to 3-length paths (useful to describe trianglefs)to 4-length paths
(squares and rectangles),. . .

The adjacency matrices we work with are not boolean or imtege we
generalize the usual product of boolean or integer mat(ems Eq. 2) :

L

V(i, ) € [0, L), (Ax B)ij = > (ap x byj) (2)
k=1

to the union of string concatenation (see Eq. 3) :

L

V(i §) € [0, L)% ; (A x B)ij = (| (@i + bij)) (3)
k=1

wherelL is the size of the matrix and is the string concatenation operator.
Once this product has been computed, we keep only the elarygudths and
group the equivalent or symmetric paths. For instance, tyuivalent paths XV
are grouped as»2XV and the symmetric paths POV and VOP are grouped as
2x POV. The matrixM? corresponding to the square of the matkix(given in
Table 2) is provided in Table 3.

Once all the power matrices have been computed, a set of (fatiares)
of different lengths and their number of occurrences ardabla. We organize
these features in a hierarchical way, as in [12], in ordeptopute the signature.
Indeed, the presence of a 4-length path is more discrimimétian the presence
of a 1-length path, but the longest paths are the most affdwtelistortions. For
each symbol image, we compute its structural signature bgatenating the



0 1 2 3 4 5
0 a4Yv 2PV 2YV |2PY 1YY 1VV| 2PV 2YV |2PY 1YY 1VV
1 4Yv 2PY 1VV 1YY| 2PV 2VY |2PY 1VV1YY| 2PV 2VY
2| 2PV2VY |2PY 1VV 1YY 4VvY 1YY 1VV 2PY| 2VY 2PV
3|2PY 1YY 1VV| 2PV 2VY AR 2VY 2PV |1VV 1YY 2PY
4/1VY 1YV 2PV|1VV 1YY 2PY|1YY 1VV 2PY| 2VY 2PV 4VvY
5/1YY 1VV 2PY| 2VY 2PV 2VY 2PV |1VV 1YY 2PY AYVA'S

Table 3. Matrix M? (whereM is given in Table 2).

Signatur¢ P|PV|PX|PY|V|VV XXV | XX|Y|YV |YX|YY
Value (2| 8|2 |10(6| 5|3| 8| 2 (8(28|12|11

Table 4. Structural signature of Fig. 4 with paths of length 1 & 2 (ord¥ation type)

type of path and its number of occurrences in the topologjcah associated
to that symbol.

A lot of paths might be needed to describe a symbol and therdffie sig-
natures may be huge and contain much redundant informdthaat.is why we
only consider paths of length inferior or equal to 4.

Discussion The structural signatures we obtain are not based on thehsear
for predefined shape templates. Instead, we dynamicallypaternthe shapes
observed from our sample images, which confers generibut approach.

2.4 Classification

I (0] [ X11] [ Pp[o] [ PP[1] [ VIO] [ V[3-12] [VV[0o] | VV[3]] VV[4-12]
P4 X X X X
(] X X X X
& X X X X
A X X X X

Fig. 6. Example of binary table used for lattice construction

We developed a recognition system named NAVIGALA (NAVIgatinto
GAlois LAttice), dedicated to noisy symbol recognition.[8]s denoted by its
name, this system is based on the use of a Galois lattice ssifida A Galois



b
PP[L] ¥V[4-12]

oK

PP[1] ¥[3-12] VV[4-12]

b
PP[1] VV[4-12]

H[0] VW] PRI0] V[3-12]

X[0] PP[1] ¥[3-12] V¥[4-12]

Z[D1PPL] V[3-12] WW[3] WW[4-12] H[1] PPLL] W01 ¥V [0] WV 4-12] Z[0] FR[0] W[0] WWH] VW3] H[1] PR[0] #[0] ¥¥ ] WV 3]

X[0] Z[1]1PP[0] PP[1] ¥[0] W[3-12] VV[0] VW[3] ¥V[4-12]

Fig. 7. Example of a concept lattice used for classification.

lattice is a graph which represents, in a structural waygtineespondences be-
tween a set of symbols and a set of attributes. These corrdspoes are given
by a binary table (see Figure 6 where each attribute correlspto an inter-
val of occurrences for a given path) where crosses are mettipaelations. In
the Galois lattice, nodes are denoted as concepts and me@ngabset of sym-
bols and a corresponding subset of attributes and edgessegyiran inclusion
relation between the nodes (see Figure 7). The principldaskiication is to
navigate through the lattice from the top of the graph todtsdm by validating
attributes and thus to reduce the candidates symbols tchiriBids navigation
is similar to the one used for classification with a decisieet However, in the
Galois lattice, several ways are proposed to reach the sadeaf the graph.
We noticed that this property is interesting for noisy symldmecause, experi-



mentally, concept lattice is more efficient than decisi@e tin the presence of
noise.

3 Experimental Results

We perform our experiments on the GRECO03 database of symiagjds [6]. We
evaluate the effectiveness of the proposed approach onadgmktracted from
8 classes (see Figure 8) and 9 levels of deterioration (gped-D). We use the
original symbol, more one symbol per level of deterioratje 10 symbols per
class) for training. The recognition results are computedhf72 deteriorated
query symbol images per class. Tables 5 and 6 provide thgmémm rates we
obtain by using a) only the relation types and not the fuplét given in (1)
(Table 5) and b) the full triplet (Table 6).

Heme=m \|/ ===
Class (Class ]Class ZClass 3 Level OLevel 1jLevel 2|Level 3
M < ===
Class 4Class §Class €Class 7 Level 4 Level 5/Level 6/Level 7

Fig. 8.8 classes of symbol used for tests. Fig. 9. Different levels of noise for class 0.

Lengths of paths|1 and 42 and 33 and 41, 2 and 3
Recognition rate | 85,3%| 87,3%| 86,1%| 87,7%
Number of paths| 4 50 161 54
Number of attributs 20 25 27 24
Number of concepts 410 | 533 | 658 511
Table 5. Experimental results using partial triplets.

For comparison, we perform tests on the same sets of symioolkeérn-
ing and recognition) with a method based on the use of staistignatures
(Radon Transform) and a Galois lattice as classifier [7]. fdugnition rate
we obtain is 98.9%. 14 attributes and 96 concepts were créatbe lattice for
recognition. We can see that the use of statistical sigeatgives a better global
recognition rate. But the two approaches can be complemeimaome way.



Lengths of paths| 1 2 3 4 |land42anddl, 2anddl, 2, 3and 4
Recognition rate |96%|86,19486,7%482,6% 95,1%| 80,4%| 94,4% 95,7%
Number of paths| 38 | 175 | 959 | 3270| 202 | 1134 | 1161 4427
Number of attributs 20 | 22 | 22 28 20 20 18 16
Number of concepit52| 577 | 1475| 9077| 410 | 689 214 140
Table 6. Experimental results using full triplets.

For example, for the symbols from class 6, statistical dignealeads to confu-
sions with classes 0 or 3. Using the structural signatureseaognize symbols
from class 6 without any ambiguity with classes 0 and 3 (wiltractural sig-
nature, for class 6 two symbols among 81 are misclassified)ca infer from
these results that these two signatures may be combineden tarimprove the
performances. We are actually working on an iterative cowtimn of statistical
and structural signatures to enhance the performances pféfposed approach.

4 Conclusion and Future Work

In this paper, we propose a new structural signature desticatsymbol recog-
nition using a Galois lattice as classifier. This structgighature relies on seg-
ments extracted by using an adapted Hough transform. Thetstal signature
extraction is in 2 main steps. First, for each symbol, we aste@ topologi-
cal graph to describe the spatial organization of the setggn&hen, from these
topological graphs, we can extract the structural sigeabyrcounting the num-
ber of occurrences of each path of the graphs. The signatueciirther clas-
sified by using a Galois Lattice classifier. The experimergsperform on the
GRECO03 database show the robustness of the proposed dppovsrds var-
ious sources of noise. The structural signatures we obtain@ based on the
search for predefined shape templates. Instead, we dyrnmsoanpute the
shapes observed from our sample images, which confersigénéo our ap-
proach.

In order to ameliorate this structural signature, we arth&rrworking on the
extraction of circle/ellipse arcs and on their integraiioio our structural signa-
ture. Next, we aim at evaluating the performances of theqweg approach not
only on single symbols, but in real-life applications. Hipea procedure based
on an iterative combination of statistical and structurghatures may enhance
the performances of the proposed approach.
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