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Crack initiation in brittle materials

Antonin Chambolle, Alessandro Giacomini, Marcello Ponsiglione

Abstract

In this paper we study the crack initiation in a hyper-elastic body governed by a Griffith’s type
energy. We prove that, during a load process through a time dependent boundary datum of the
type t → tg(x) and in absence of strong singularities (this is the case of homogeneous isotropic
materials) the crack initiation is brutal, i.e., a big crack appears after a positive time ti > 0. On
the contrary, in presence of a point x of strong singularity, a crack will depart from x at the initial
time of loading and with zero velocity. We prove these facts (largely expected by the experts of
material science) for admissible cracks belonging to the large class of closed one dimensional sets
with a finite number of connected components.

The main tool we employ to address the problem is a local minimality result for the functional

E(u, Γ ) :=

∫

Ω

f(x,∇v) dx + kH1(Γ ),

where Ω ⊆ R2, k > 0 and f is a suitable Carathéodory function. We prove that if the uncracked
configuration u of Ω relative to a boundary displacement ψ has at most uniformly weak singular-
ities, then configurations (uΓ , Γ ) with H1(Γ ) small enough are such that E(u, ∅) < E(uΓ , Γ ).

Key words. Free discontinuity problems, Mumford-Shah functional, Crack initiation, Variational
models.

1. Introduction

Griffith’s criterion for crack propagation in hyper-elastic bodies asserts that, during a load
process, a crack Γ can grow only if the energy dissipated to enlarge the crack, which is basically
assumed to be proportional to the area of the cracked surface, is balanced by the corresponding
release of bulk energy. According to Griffith’s theory, if Ω represents a two dimensional hyper-
elastic body, ψ is a boundary datum and Γ is a curve in Ω parametrized by arc length, then the
crack Γ (l0) is in equilibrium if

k(l0) := lim sup
l→0+

W (u(l0)) −W (u(l0 + l))

l
≤ k, (1.1)

where u(l0) and u(l0+l) are the displacements associated to ψ and to the cracks Γ (l0) and Γ (l0+l)
respectively, W is the bulk energy functional and k is the toughness of the material. A quasistatic
crack evolution is determined by an increasing function t→ l(t) satisfying the Griffith’s criterion
for crack propagation, which asserts that for every t we have k(l(t)) ≤ k and

(k − k(l(t)))l̇(t) = 0,
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i.e., Γ (l(t)) propagates only if (1.1) holds with equality.
The aim of this paper is to discuss this criterion in the case of crack initiation, i.e., when

there is not a pre-existing crack in the body (l0 = 0). A fundamental role in the problem is
played by the singularities of the body, namely the behavior of the elastic energy concentration
of the deformation. Experiments show that small cracks usually appear near sufficiently strong
singular points of the body, whose position are essentially determined by its inhomogeneities. If
the singularities of the body are sufficiently weak (for instance this is the case of homogeneous
isotropic materials), a lot of results in the literature of material science show that the derivative
in (1.1) for l0 = 0 is equal to zero. The conclusion is that Griffith’s criterion is not adequate to
predict crack initiation (and, as a consequence, a crack evolution originating from an uncracked
configuration). These results require that the path of the crack is sufficiently regular (a line or
a smooth curve). In this paper we prove that the same conclusion holds in the class of all one
dimensional closed sets with a finite number of connected components. More precisely we prove
that the limit in (1.1) is zero if Γ (l) is any family of closed sets with length less than l and with
at most m connected components, with m independent of l. In particular we do not prescribe the
path nor the shape of the cracks.

Although it is more general, our study is in part motivated by the variational model for qua-
sistatic crack propagation proposed by Francfort and Marigo in [20]. The main features of this
model are that the path of the increasing crack Γ (t) is not preassigned, the class of admissible
cracks is given by all sets with finite length, and the growth is not assumed to be progressive,
namely the length of the crack is not assumed to be continuous in time. The classical Griffith’s
equilibrium condition for the configuration (u(t), Γ (t)) is replaced by a unilateral minimality prop-
erty and an energy balance condition. The unilateral minimality property states that, during the
crack evolution, the total energy is minimal among all configurations with larger cracks, namely

W (u(t)) + kH1(Γ (t)) ≤W (v) + kH1(H), (1.2)

for every crack H containing Γ (t) and for every deformation v admissible for the boundary datum
ψ and for H . (Here H1 — the 1-dimensional Hausdorff measure — is a suitable generalization of the
length). The energy balance condition states that the energy of the system evolves in relation with
the power of external loads in such a way that no dissipation occurs (except for the surface energy
spent to enlarge the crack). The authors claim that their model improves the understanding of
the crack initiation with respect to the classical Griffith’s criterion: as a matter of fact, in contrast
with Griffith’s model, it admits brutal crack initiation, i.e., evolutions Γ (t) of the type

Γ (t) = ∅ for every t ≤ ti

and
inf
t>ti

H1(Γ (t)) > 0,

where ti is referred to as time initiation of the crack. In this paper we prove that, within the class
of cracks which are closed and with at most m connected components, crack initiation is always
brutal whenever the elastic displacement presents sufficiently weak singularities. More precisely
we show that (1.2) can be violated only by cracks whose length is greater than a critical quantity
l∗, depending on the boundary datum and on the physical properties of the material. On the
contrary, in presence of a point x of strong singularity the crack initiation is progressive: a crack
departs from x at the initial time of loading and with zero velocity. These facts were proved by
Francfort and Marigo in [20, Proposition 4.19], under the assumption that the path of the crack
is given a priori by a finite number of fixed curves which can be parametrized by arc length. This
is not the case in our larger class of admissible cracks.

The main tool we employ to address the problem of crack initiation is a local minimality result
for the functional

∫

Ω

f(x,∇v) dx + kH1(Γ ), (1.3)

where Ω is a bounded Lipschitz open set in R2, k > 0, and f : Ω × R2 → R is a Carathéodory
function strictly convex and C1 in the second variable, satisfying standard p-growth estimates with
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p > 1, and such that f(x, 0) = 0. The functional (1.3) is a variant of a functional which has first
appeared in the theory of image segmentation, in a celebrated paper by Mumford and Shah [29].
The set Γ belongs to the class

Km(Ω) := {Γ ⊆ Ω : Γ has at most m connected components and H1(Γ ) < +∞} (1.4)

and the function v belongs to the Sobolev space W 1,p(Ω \Γ ) and satisfies the boundary condition

v = ψ on ∂DΩ \ Γ, (1.5)

where ∂DΩ ⊆ ∂Ω is open in the relative topology, and ψ is (the trace of a function) in W 1,p(Ω)∩
L∞(Ω).

Let uΓ be a minimum energy displacement relative to ψ and Γ , i.e., let uΓ be a minimizer for

min

{
∫

Ω

f(x,∇v) dx : u ∈ W 1,p(Ω \ Γ ), v = ψ on ∂DΩ

}

. (1.6)

We denote by u the elastic configuration of Ω relative to the boundary datum ψ, i.e., a solution
of (1.6) with Γ = ∅, and we assume that u admits at most uniformly weak singularities in Ω, i.e.,

‖∇u‖pLp(Br∩Ω) ≤ Crα (1.7)

for some constants α > 1 and C > 0 and for every ball Br with radius r. Condition (1.7) means
that the bulk energy of the elastic configuration u in a ball Br(x) is negligible with respect to the
length of ∂Br(x) as r goes to zero, uniformly in x ∈ Ω.

Our main result is the following Theorem, which establishes that under the previous assump-
tions small cracks are not energetically convenient for the functional (1.3).

Theorem 1. Assume that u admits only at most uniformly weak singularities in Ω. Then there
exists a critical length l∗ depending on Ω, f , k, ψ and m such that for all Γ ∈ Km(Ω) with
H1(Γ ) < l∗ we have

∫

Ω

f(x,∇u) dx <

∫

Ω

f(x,∇uΓ ) dx+ kH1(Γ ). (1.8)

We observe (see Remark 2) that this statement is equivalent to the local minimality of u
in (1.3), in the L1 topology.

Let us briefly comment the assumption about the singularities of u in Theorem 1. The mini-
mality result is false if the elastic solution u has strong singularities, namely if there exists x ∈ Ω
such that

lim sup
r→0

1

r

∫

Br(x)∩Ω

|∇u|p dx = +∞. (1.9)

In fact condition (1.9) ensures that it is energetically convenient to create a small crack Γ :=
∂Br(x) around x: the surface energy needed to create such a crack is proportional to r, while the
corresponding release of bulk energy is by (1.9) bigger than r if r is small enough.

The critical case when the right hand-side of (1.9) is a constant 0 < C < ∞ corresponds to
the singularity appearing around the tip of the crack (see [21]). In this case the celebrated Irwin’s
formula states that the release of bulk energy per unit length along rectilinear increments of the
crack is equal to the so called mode III stress intensity factor KIII, which is proportional to C. In
our class of cracks Km(Ω) we have that if C is small enough, then the release of bulk energy per
unit length is less than k, and therefore our minimality result still holds, while it is false if C is
too large. We can not fill the gap, and therefore we do not achieve a sharp Irwin type formula in
our class of cracks.

In order to prove Theorem 1 we have to compare the asymptotic behavior of the release of
bulk energy

∫

Ω

[f(x,∇u) − f(x,∇uΓ )] dx (1.10)
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with H1(Γ ) when H1(Γ ) → 0. In the literature there are many results in this direction considering
particular sequences of infinitesimal cracks Γn, for instance when Γn is the rescaled version of a
fixed smooth curve Γ . An intuitive strategy to estimate (1.10) is to compute how much energy is
required in order to make uΓ a good competitor for the minimum problem (1.6) without cracks,
namely how much energy is required to heal the crack Γ .

This seems difficult for a generic crack in Km(Ω). So our strategy is to operate on the stress
σ := ∂f(x,∇u) of the elastic solution. More precisely we prove the following key estimate (see
(2.7))

∫

Ω

[f(x,∇u) − f(x,∇uΓ )] dx ≤
∫

Ω

[τ − σ] · [∂f∗(x, τ) − ∂f∗(x, σ)] dx, (1.11)

for all vector fields τ ∈ Lq(Ω; RN ) (q = p′ := p
p−1 ) such that

∫

Ω

τ · ∇v = 0 for all v ∈ A(Γ ). (1.12)

Here f∗ is the convex conjugate of f , and A(Γ ) is defined as

A(Γ ) := {v ∈W 1,p(Ω \ Γ ) : v = 0 on ∂DΩ \ Γ}.

If Γ is sufficiently regular, condition (1.12) implies that the vector field τ has zero divergence
outside Γ , and τ(x) is tangent to Γ for every x ∈ Γ .

The proof of Theorem 1 relies on the construction of a vector field τ satisfying (1.12) and such
that

∫

Ω

[τ − σ] · [∂f∗(x, τ) − ∂f∗(x, σ)] dx < kH1(Γ ). (1.13)

We construct τ modifying the stress σ which is divergence-free (as a consequence of Euler equation
of problem (1.6)), but not tangent to Γ . First, we consider a neighborhood U of Γ , and a cut-off
function ϕ such that ϕ = 0 on U . Then ϕσ is null near Γ , and in particular it is tangent to Γ .
Then we construct a vector field η in such a way that η = 0 on U and

div η = −div(ϕσ).

We get that τ = ϕσ + η is an admissible vector fields for inequality (1.11). Using the fact that
Γ ∈ Km(Ω) and that u has at most uniformly weak singularities, it is possible to choose U , ϕ and
η in such a way that inequality (1.13) holds.

It turns out that the constraint (1.12) can be handled in an easier way than the constraint of
being a gradient, and this is the reason why we work with the stress σ instead of the strain ∇u.

Estimate (1.11) actually holds true in any dimension, and it turns out that our arguments
work in any dimension provided that the crack Γ belongs to the class

KC(Ω) := {Γ ⊆ Ω : Γ is closed and diam(Γ ) ≤ CHN−1(Γ )}, (1.14)

where C is a fixed constant. This is certainly true in dimension two for the cracks in K1(Ω) (and
in Km(Ω) up to a localization argument). However, it also shows that the local minimality result
of Theorem 1 remains valid in higher dimension, within the class KC(Ω) of cracks that are not
needle-like: see Remark 7.

The minimality result holds also in the case of planar linearized elasticity, with a density of bulk
energy involving the symmetrized gradient. This is considered in Section 4 — while the “simpler”
case of 2D vectorial nonlinear elasticity is addressed in Remark 6.

A natural question that arises from Theorem 1 is whether the bound on the number of con-
nected components is absolutely necessary for this result. Could it be possible to initiate fracture,
in the framework of Griffith’s theory, by nucleating infinitely many little cracks somewhere, pos-
sibly in a dense way? This is a very interesting point that remains open in general (we believe the
answer is no). We can give a negative answer only in a very special case, of a scalar displacement
in 2D, when everything is smooth enough. This is done in Appendix A, where we extend the local



Crack initiation in brittle materials 5

minimality result of Theorem 1 to the larger class of all 1-dimensional rectifiable sets. This seems
to be the most general class: however, there is a price to pay in order to handle such admissible
cracks. First, we need to assume that ∇u is bounded and regular up to the boundary. In particular
we are not able to treat the case in which u has weak singularities. Then, the method we employ
is based on the maximum principle, which allows to estimate the local opening of a crack with the
global energy in a small ball surrounding the crack. It is therefore strictly scalar and bidimensional.

On the other hand, one could hope to show a priori a bound on the number of connected
components of “good cracks” and thus be able to invoke, in all situations, Theorem 1. However, this
seems quite difficult, as it is not even known for minimizers of the Mumford-Shah functional (1.3)
(and is the last step towards a full proof of the Mumford-Shah conjecture in 2D [16]).

In fact, we would have expected, at the beginning of our study, that most of the questions
we were asking could be addressed with techniques similar to the techniques introduced for the
study of (almost, quasi, ... see for instance [16]) minimizers of the Mumford-Shah functional (1.3).
We were not successful in this direction. In fact, it seems now quite different to us to study the
properties of actual minimizers and to actually show that a given data is a local minimizer in some
sense. Results exist that actually show that jumps sets of minimizers have their length/surface
or density bounded from below (see for instance [16,13,17,28,25,4]), but this does not really
tell that in a given situation the energy will not decrease by adding a small fracture. The most
straightforward strategy we had thought of, for instance, consisted in trying to study minimizers
with a constraint H1(K) ≤ δ for δ small: however, the lower bounds shown in [16], if applicable
for this constrained problem, would heavily depend on δ in a way that does not seem too explicit
to us. Another approach would be to try to use in some recursive way excision lemmas à la Morel
and Solimini [28,31,25], but it is far from clear that this approach, if ever successful, would lead
to a simpler proof than the one we present in the Appendix A (nor give any information on what
happens in the presence of singularities).

The paper is organized as follows. In Section 2 we establish the main inequality (1.11). In
Section 3 we prove the local minimality result in dimension 2 and its extensions to vector-valued
displacements and to the N -dimensional case within the class of cracks given by (1.14). Sec-
tion 4 addresses the case of planar two-dimensional elasticity. The problem of crack initiation in
quasistatic evolutions is addressed in Section 5, while the two-dimensional SBV -case without sin-
gularities is treated in Appendix A. In Appendix B we show how to obtain some uniform Poincaré
and Poincaré-Korn type inequalities, used during the proofs of our main results in the construction
of the competitor stress field τ .

2. The dual problem and the main estimate

Let Ω be a bounded connected Lipschitz open set in RN , let ∂DΩ ⊆ ∂Ω be open in the relative
topology, and let ∂NΩ := ∂Ω \ ∂DΩ. Let f : Ω × RN → R be a Carathéodory function such that

ξ → f(x, ξ) is strictly convex and C1 for a.e. x ∈ Ω, (2.1)

f(x, 0) = 0 for a.e. x ∈ Ω, (2.2)

and such that for a.e. x ∈ Ω and for all ξ ∈ RN

α|ξ|p ≤ f(x, ξ) ≤ β(|ξ|p + 1), (2.3)

where α, β > 0 and 1 < p < +∞.
Given ψ ∈ W 1,p(Ω) ∩ L∞(Ω) and Γ closed set contained in Ω (not necessarily with empty

interior, nor with a bound on the number of its connected components), let us consider the mini-
mization problem

min

{
∫

Ω

f(x,∇u) dx : u ∈W 1,p(Ω \ Γ ), u = ψ on ∂DΩ \ Γ
}

. (2.4)
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In view of (2.2) and since ψ ∈ W 1,p(Ω) ∩ L∞(Ω), problem (2.4) is well posed.
Let us denote by uΓ ∈ W 1,p(Ω \Γ )∩L∞(Ω \Γ ) a minimizer of (2.4). Clearly ∇uΓ is uniquely

determined, while uΓ is determined up to a constant on each connected component of Ω \Γ which
does not touch ∂DΩ.

We denote by u ∈ W 1,p(Ω) ∩ L∞(Ω) the solution of (2.4) corresponding to Γ = ∅, and we
refer to u as the elastic solution. In the case Γ is sufficiently regular, the Euler Lagrange equation
satisfied by uΓ is











div∂ξf(x,∇uΓ ) = 0 on Ω \ Γ,
u = ψ on ∂DΩ \ Γ,
∂ξf(x,∇uΓ ) · n = 0 on ∂NΩ ∪ ∂Γ,

(2.5)

where n denotes the normal vector to ∂NΩ∪∂Γ . In the sequel, we will write ∂f(x, ξ) for ∂ξf(x, ξ).
Let us set

A(Γ ) := {v ∈W 1,p(Ω \ Γ ) : v = 0 on ∂DΩ \ Γ}. (2.6)

Let us denote by f∗ the convex conjugate of f with respect to the second variable defined by

f∗(x, ζ) := sup{ζ · ξ − f(x, ξ) : ξ ∈ R
N}.

We refer the reader to [30] for the main properties of the conjugate function f∗. Notice that f∗ is
of class C1 since f is strictly convex. The main result of this section is the following.

Theorem 2. Let Γ be a closed subset of Ω, and let σ := ∂f(x,∇u) be the stress associated to the
elastic configuration u. Then we have

∫

Ω

[f(x,∇u) − f(x,∇uΓ )] dx ≤
∫

Ω

[τ − σ] · [∂f∗(x, τ) − ∂f∗(x, σ)] dx (2.7)

for all τ ∈ Lq(Ω; RN ) (q = p′ := p
p−1) such that

∫

Ω

τ · ∇v dx = 0 for all v ∈ A(Γ ). (2.8)

Proof. For all η ∈ Lp(Ω; RN ) let us set

Φ(η) := min
w∈u+A(Γ )

∫

Ω

f(x,∇w + η) dx, (2.9)

where A(Γ ) is defined in (2.6). Then the convex conjugate of Φ defined on Lq(Ω; RN ) has the form

Φ∗(τ) := sup
w,η

∫

Ω

[τ · η − f(x,∇w + η)] dx (2.10)

= sup
w,η

∫

Ω

[τ · (η + ∇w) − f(x,∇w + η) − τ · ∇w] dx

=

∫

Ω

[f∗(x, τ) − τ · ∇u] dx+ sup
v∈A(Γ )

∫

Ω

τ · ∇v dx.

We conclude that

Φ∗(τ) =







∫

Ω

[f∗(x, τ) − τ · ∇u] dx if τ satisfies (2.8)

+∞ otherwise.
(2.11)

Notice that Φ(0) = Φ∗∗(0) because Φ is weakly lower semicontinuous and

Φ(0) =

∫

Ω

f(x,∇uΓ ) dx < +∞.
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(In fact, Φ is locally finite, hence locally Lipschitz). Therefore we obtain

−
∫

Ω

f(x,∇uΓ ) dx = −Φ(0) = −Φ∗∗(0) = min
τ
Φ∗(τ),

so that by (2.11) we deduce

−
∫

Ω

f(x,∇uΓ ) dx = min
τ

{
∫

Ω

[f∗(x, τ) − τ · ∇u] dx : τ satisfies (2.8)

}

.

For all τ satisfying (2.8), we get
∫

Ω

[f(x,∇u) − f(x,∇uΓ )] dx ≤
∫

Ω

[f(x,∇u) + f∗(x, τ) − τ · ∇u] dx.

Let σ(x) := ∂f(x,∇u(x)) be the stress of the elastic solution u. Since for a.e. x ∈ Ω

f∗(x, τ(x)) ≤ f∗(x, σ(x)) + ∂f∗(x, τ(x)) · (τ(x) − σ(x)),

and
f(x,∇u(x)) + f∗(x, σ(x)) = ∇u(x) · σ(x),

and since ∇u(x) = ∂f∗(x, σ(x)), we finally obtain our main estimate (2.7), so that the proof is
concluded.

Remark 1. If Γ is sufficiently regular, condition (2.8) implies that τ has zero divergence outside
Γ , and τ(x) is tangent to ∂Γ for every x ∈ ∂Γ .

3. The minimality result in anti-plane elasticity

In this section we prove that under some assumptions on the elastic configuration u, small
cracks are not convenient for the total energy

∫

Ω

f(x,∇v) dx + kH1(Γ ), (3.1)

where f is a Carathéodory function satisfying conditions (2.1), (2.2) and (2.3), and k > 0.
Let us consider Ω bounded connected Lipschitz open subset of R2, and let ∂DΩ ⊆ ∂Ω be

open in the relative topology and such that ∂NΩ := ∂Ω \ ∂DΩ has a finite number of connected
components.

Let m be a positive integer. The class of admissible cracks is given by

Km(Ω) := {Γ ⊆ Ω : Γ has at most m connected components and H1(Γ ) < +∞}. (3.2)

Given ψ ∈W 1,p(Ω) ∩ L∞(Ω) and Γ ∈ Km(Ω), the displacement

uΓ ∈W 1,p(Ω \ Γ )

associated to Γ and ψ is given by problem (2.4). We denote with u the solution of (2.4) relative
to Γ = ∅, and we refer to u as the elastic solution.

The basic assumption on the elastic configuration u involves the behavior of the energy con-
centration of the stress. We require that u has at most uniformly weak singularities in Ω, in the
sense of the following definition.

Definition 1. We say that u ∈ W 1,p(Ω) has at most uniformly weak singularities in A, open
subset of Ω, if there exist constants 1 < α < 2 and C > 0 such that for every x ∈ A and for every
r small (independent of x)

∫

Br(x)∩Ω

|∇u|p dx ≤ Crα. (3.3)
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As mentioned in the Introduction, the condition of at most uniformly weak singularities means
that the bulk energy of the elastic configuration u in a ball Br(x) is an infinitesimal of higher
order than the length of ∂Br(x) as r goes to zero, uniformly with respect to x ∈ A.

The main result of this section is the following theorem.

Theorem 3. Let the elastic solution u of problem (2.4) have at most uniformly weak singularities
in Ω according to Definition 1. Then there exists a critical length l∗ > 0 depending on Ω, m, f , k
and ψ such that for all Γ ∈ Km(Ω) with H1(Γ ) < l∗ we have

∫

Ω

f(x,∇u) dx <

∫

Ω

f(x,∇uΓ ) dx+ kH1(Γ ), (3.4)

where uΓ is a minimum of (2.4).

Remark 2. (Local minimality in the L1-topology) The minimality condition (3.4) implies
that the elastic solution u is a local minimum for the total energy (3.1) with respect to the L1-
topology. More precisely, for every sequence (Γh)h∈N in Km(Ω) and for every uh ∈ W 1,p(Ω \ Γh)
with uh = ψ on ∂DΩ \ Γh and uh → u strongly in L1(Ω), for h large enough we have

∫

Ω

f(x,∇u) dx <

∫

Ω

f(x,∇uh) dx+ kH1(Γh). (3.5)

In fact, it is not restrictive to assume that (∇uh)h∈N is bounded in Lp(Ω,R2) and that H1(Γh) ≤ C.
By Ambrosio’s lower semicontinuity theorem [2] we have

∫

Ω

f(x,∇u) dx ≤ lim inf
h→+∞

∫

Ω

f(x,∇uh) dx.

If the sequence (H1(Γh))h∈N is not infinitesimal, then (3.5) clearly holds. If H1(Γh) → 0, we have
H1(Γh) ≤ l∗ for h large enough, and hence (3.5) follows from (3.4).

Actually, using Ambrosio’s compactness theorem [2], one can show that the local minimality
in the L1-topology and the minimality result of Theorem 3 are equivalent.

In order to prove Theorem 3 we will use the main estimate given by Theorem 2. Our aim is to
construct a vector field τ ∈ Lq(Ω; R2) which is an admissible competitor in (2.7) and which shows
that the difference between the bulk energies of u and uΓ is smaller than kH1(Γ ). In order to do
so, we need some preliminary lemmas.

Lemma 1. Let x ∈ Ω, and let r > 0 be such that B2r(x) ⊆ Ω. Let ϕ be a smooth function
with 0 ≤ ϕ ≤ 1, ϕ = 0 on Br(x), ϕ = 1 outside B2r(x) and ‖∇ϕ‖∞ ≤ 2

r . Then there exists
η ∈ Lq((B2r(x) \Br(x)); R2) with q := p′ = p/(p− 1) such that

{

div η = −div(ϕσ) on B2r(x) \Br(x),

η · n = 0 on ∂(B2r(x) \Br(x))

and
∫

B2r(x)\Br(x)

|η|q dx ≤ C

∫

B2r(x)\Br(x)

|σ|q dx, (3.6)

where σ := ∂f(x,∇u) is the stress of the elastic solution u, n is the outer normal to ∂(B2r(x) \
Br(x)), and C is a constant independent of r.

Proof. Let us set η := |∇v|p−2∇v, where v ∈ W 1,p(B2r(x) \Br(x)) satisfies the equation
{

div(|∇v|p−2∇v) = −div(ϕσ) in B2r(x) \Br(x),

|∇v|p−2∇v · n = 0 on ∂(B2r(x) \Br(x)).
(3.7)

Notice that the equation is well posed because

− div(ϕσ) = −∇ϕ · σ ∈ Lq(Ω) (3.8)
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and
∫

B2r(x)\Br(x)

div(ϕσ) dx =

∫

∂B2r(x)

σ · n dH1 = 0

since σ is divergence free in Ω.
It remains to prove inequality (3.6). To this aim, note that we can always assume that v has

zero mean value, so that by Poincaré inequality and by a rescaling argument, we have that there
exists C > 0 independent on r such that

∫

B2r(x)\Br(x)

|v|p dx ≤ Crp
∫

B2r(x)\Br(x)

|∇v|p dx. (3.9)

Recalling that ‖∇ϕ‖∞ ≤ 2/r and taking into account (3.8) and (3.9) we get

∫

B2r(x)\Br(x)

|∇v|p dx =

∫

B2r(x)\Br(x)

∇ϕ · σv dx ≤ ‖∇ϕ · σ‖Lq(B2r(x)\Br(x))‖v‖Lp(B2r(x)\Br(x))

≤ 1

r
‖σ‖Lq(B2r(x)\Br(x),R2)C

1/pr‖∇v‖Lp(B2r(x)\Br(x),R2)

= C1/p‖σ‖Lq(B2r(x)\Br(x),R2)‖∇v‖Lp(B2r(x)\Br(x),R2)

so that
∫

B2r(x)\Br(x)

|η|q dx =

∫

B2r(x)\Br(x)

|∇v|p dx ≤ Cq/p
∫

B2r(x)\Br(x)

|σ|q dx,

and this concludes the proof.

Now we need to construct a suitable field η also around points x on the boundary of Ω. Since
Ω is Lipschitz, for every x ∈ ∂Ω we can find an orthogonal coordinate system (x′1, x

′
2) with origin

at x, ε1, ε2 > 0 and a Lipschitz function g : [−ε1, ε1] → [−ε2, ε2] such that setting

Rr(x) := {(x′1, x
′
2) : |x′1| ≤ rε1, |x′2| ≤ rε2} (3.10)

we have for r small enough

Ω ∩Rr(x) = {(x′1, x
′
2) ∈ Rr(x) : x′2 ≥ g(x′1)}. (3.11)

Notice moreover that the Lipschitz constant Cg of the function g is determined only by Ω, and
that we can assume Cgε1 < ε2. Let us set

Ar(x) := (R2r(x) \Rr(x)) ∩Ω. (3.12)

Lemma 2. Let r > 0 be small enough (so that (3.11) holds everywhere on ∂Ω). Let x ∈ ∂Ω such
that one of the following three situations holds:

(1) x ∈ ∂DΩ and Ar(x) ∩ ∂Ω ⊂ ∂DΩ;
(2) x ∈ int(∂NΩ) and Ar(x) ∩ ∂Ω ⊂ ∂NΩ (where int(·) indicates the interior relative to ∂Ω);
(3) x ∈ ∂Ω \ (∂DΩ ∪ int(∂NΩ)).

Let ϕ be a smooth function with 0 ≤ ϕ ≤ 1, ϕ = 0 on Rr(x), ϕ = 1 outside R2r(x) and ‖∇ϕ‖∞ ≤ 2
r .

Then there exists η ∈ Lq(Ar(x); R
2) with q := p′ = p/(p− 1) such that

{

div η = −div(ϕσ) in Ar(x)

η · n = 0 on ∂Ar(x) ∩ (Ω ∪ ∂NΩ)

and
∫

Ar(x)

|η|q dx ≤ C

∫

Ar(x)

|σ|q dx,

where σ := ∂f(x,∇u) is the stress of the elastic solution u, n is the outer normal to ∂Ar(x) ∩
(Ω ∪ ∂NΩ), and C is a constant depending only on Ω.
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We observe that only the points in ∂Ω at distance less than r
√

ε21 + ε22 to ∂Ω \ (∂DΩ ∪ int(∂NΩ))
might not fall into one of first two cases.

Proof. In all the three cases of the lemma, we will use the fact that the Poincaré inequality
holds in W 1,p(Ar(x)) with a constant that rescales as r, i.e., there exists a positive constant C
independent of r such that

∫

Ar(x)

|v|p dx ≤ Crp
∫

Ar(x)

|∇v|p dx (3.13)

for all v ∈W 1,p(Ar(x)) with

∫

Ar(x)

v = 0 or v = 0 on ∂DΩ ∩ ∂Ar(x).

This can be seen rescaling Ar(x) with the transformation Tr(x
′, y′) = (x

′

r ,
y′

r ), and using Proposi-
tion 4 (see Appendix B) in the domains {Tr(Ar(x))}: it shows that the Poincaré inequality holds
in Tr(Ar(x)) with a constant that is independent of r, and by rescaling we deduce that (3.13)
holds.

In case (1), we can consider η := |∇v|p−2∇v, with v ∈ W 1,p(Ar(x)) satisfying the equation











div(|∇v|p−2∇v) = −div(ϕσ) in Ar(x),

v = 0 on ∂Ar(x) ∩ ∂DΩ,
|∇v|p−2∇v · n = 0 on ∂Ar(x) ∩Ω.

(3.14)

Notice that −div(ϕσ) = −∇ϕ · σ (σ is divergence free) and ‖∇ϕ‖∞ ≤ 1
r . Taking into account the

Poincaré inequality (3.13) we get

∫

Ar(x)

|∇v|p dx =

∫

Ar(x)

∇ϕ · σv dx ≤ ‖∇ϕ · σ‖Lq(Ar(x))‖v‖Lp(Ar(x))

≤ 1

r
‖σ‖Lq(Ar(x),R2)C

1/pr‖∇v‖Lp(Ar(x),R2) = C1/p‖σ‖Lq(Ar(x),R2)‖∇v‖Lp(Ar(x),R2)

so that
∫

Ar(x)

|η|q dx =

∫

Ar(x)

|∇v|p dx ≤ Cq/p
∫

Ar(x)

|σ|q dx.

Cases (2) and (3) can be treated as case (1) considering η := |∇v|p−2∇v with v ∈W 1,p(Ar(x))
defined by the equations

{

div(|∇v|p−2∇v) = −div(ϕσ) in Ar(x),

|∇v|p−2∇v · n = 0 on ∂Ar(x),
(3.15)

and










div(|∇v|p−2∇v) = −div(ϕσ) in Ar(x),

|∇v|p−2∇v · n = 0 on ∂Ar(x) ∩ (Ω ∪ ∂NΩ),

v = 0 on ∂Ar(x) ∩ ∂DΩ
(3.16)

respectively. Notice in particular that equation (3.15) is well posed since its right hand side has
zero mean value, because σ is divergence free in Ω, and σ · n = 0 on ∂NΩ so that

∫

Ω

div(ϕσ) dx =

∫

Ar

div(ϕσ) dx =

∫

∂Ar

σ · n dH1 = 0.

We are now in a position to prove our minimality result.
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Proof (Proof of Theorem 3). First of all, we claim that there exist at most m open balls
Br1(x1), . . . , Brk

(xk), k ≤ m such that Γ ⊆ ∪iBri
(xi),

ri ≤ CH1(Bri
(xi) ∩ Γ ),

and
B2ri

(xi) ∩B2rj
(xj) = ∅ for all i 6= j,

where C depends only on m. In fact let us consider the decomposition of Γ in its connected
components, i.e.,

Γ := Γ1 ∪ · · · ∪ Γk,
with k ≤ m. For all i = 1, . . . , k let Bsi

(yi) be an open ball with si = H1(Γi) and such that
Γi ⊆ Bsi

(yi). If the balls B2si
(yi) are disjoint, then the covering {Bsi

(yi)}i=1,...,k satisfies the
claim. Otherwise we proceed in this way. Let us consider

B1 :=

k
⋃

i=1

B2si
(yi),

and let B1
j , j = 1, . . . , k̃ ≤ k − 1 be its connected components. For all j, let Bτj

(zj) be an open

ball with τj = diam(B1
j ) such that B1

j ⊆ Bτj
(zj). Again, if the balls B2τj

(zj) are disjoint, then the
covering {Bτj

(zj)}j=1,...,k̃ satisfies the claim. Otherwise we construct in a similar way as before

the set B2 which has at most k − 2 connected components. Clearly in at most m steps we come
up with at most m balls satisfying the requirements of the claim.

Since Ω is Lipschitz, we have that if H1(Γ ) is sufficiently small (depending on Ω), we can
assume that the balls {Bri

(xi)}i=1,...,k intersecting ∂Ω can be replaced by rectangles Rsj
(yj) of

the form (3.10) satisfying (3.11), centered at some point yj that falls into case (1), (2) or (3) of
Lemma 2. More precisely, there exists a constant C depending only on Ω and m, and there exist at
most m open balls {Bri

(xi)} and at most m rectangles {Rsj
(yj)} defined in (3.10) with yj falling

into case (1), (2) or (3) of Lemma 2, such that B2ri
(xi) ⊆ Ω, and

Γ ⊆ ∪i,jBri
(xi) ∪Rsj

(yj),

diam(Bri
(xi)) ≤ CH1(Bri

(xi) ∩ Γ ), diam(Rsj
(yj)) ≤ CH1(Rsj

(yj) ∩ Γ ), (3.17)

B2ri
(xi) ∩B2rj

(xj) = ∅, R2si
(yi) ∩R2sj

(yj) = ∅, B2ri
(xi) ∩R2sj

(yj) = ∅ for all i, j.

Let ϕ be a smooth function with

0 ≤ ϕ ≤ 1, ϕ = 0 on
⋃

i,j

(

Bri
(xi) ∪Rsj

(yj)
)

, ϕ = 1 outside
⋃

i,j

(

B2ri
(xi) ∪R2sj

(yj)
)

.

Let us denote with Ari
(xi) and Asj

(yj) the sets B2ri
(xi) \Bri

(xi) and R2sj
(yj) \Rsj

(yj) respec-
tively. Let

ηi ∈ Lq
(

Ari
(xi); R

2
)

and ηj ∈ Lq
(

Asj
(yj); R

2
)

with q := p′ = p/(p−1) be the vector fields given by Lemmas 1 and 2. Let us consider η ∈ Lq(Ω; R2)
defined as

η :=











ηi in Ari
(xi),

ηj in Asj
(yj),

0 otherwise,

and let us set
τ := ϕσ + η,

where σ = ∂f(x,∇u) is the stress of the elastic solution u. By construction we have that
∫

Ω

τ · ∇v = 0 for all v ∈ A(Γ ), (3.18)
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where A(Γ ) is as in (2.6). Moreover we have that for all i, j
∫

Ah

|η|q dx ≤ C

∫

Ah

|σ|p dx,

where Ah denotes one of the Ari
(xi)’s or one of the Asj

(yj)’s, and C is a constant depending only
on Ω and the bulk energy density f .

In view of (3.18) we can put τ in inequality (2.7) getting
∫

Ω

[f(x,∇u) − f(x,∇uΓ )] dx ≤
∑

j

∫

Ah

[τ − σ] · [∂f∗(x, τ) − ∂f∗(x, σ)] dx. (3.19)

Since f∗ is the convex conjugate of f , and since f satisfies the growth conditions (2.3), we deduce
that

|f∗(x, ζ)| ≤ C(|ζ|q + 1)

and
|∂ζf∗(x, ζ)| ≤ C(|ζ|q−1 + 1).

We claim that for every Ah
∫

Ah

[τ − σ] · [∂f∗(x, τ) − ∂f∗(x, σ)] ≤ Cdiam(Ah)α, (3.20)

where C is independent of Ah, and depends only on m, Ω and f . Here α > 1 is the exponent
defining the weak singularities of u (see Definition 1). From (3.20) and (3.19), taking into account
(3.17) and the fact that α > 1, we obtain that there exists l∗ depending only on Ω, m, f and k
such that for every Γ ∈ Km(Ω) with H1(Γ ) < l∗ we have

∫

Ω

[f(x,∇u) − f(x,∇uΓ )] dx ≤ C
∑

h

diam(Ah)α ≤ CH1(Γ )α < kH1(Γ ),

so that the minimality result holds.
In order to conclude the proof, we need to show that claim (3.20) holds true. This can be seen

making all the products and estimating each addend. Let us check the first one, the other ones
being similar. We have

∫

Ah

τ · ∂f∗(x, τ) dx ≤ C

∫

Ah

(|σ| + |η|) · (|σ|q−1 + |η|q−1 + 1) dx.

Then, in view of Lemmas 1 and 2, since u has at most uniformly weak singularities in Ω we get
for r small enough

∫

Ah

|σ|q dx ≤ C

∫

Ah

|∇u|p dx+ C|Ah| ≤ Cdiam(Ah)α,

∫

Ah

|η|q dx ≤ C

∫

Ah

|σ|p dx ≤ Cdiam(Ah)α,

∫

Ah

|η||σ|q−1 dx ≤
(
∫

Ah

|η|q dx
)

1
q
(
∫

Ah

|σ|q dx
)

1
p

≤ Cdiam(Ah)α,

∫

Ah

|η|q−1|σ| dx ≤
(
∫

Ah

|η|q dx
)

1
p
(
∫

Ah

|σ|q dx
)

1
q

≤ Cdiam(Ah)α,

∫

Ah

|σ| dx ≤ C

(
∫

Ah

|σ|q dx
)

1
q

diam(Ah)
2
p ≤ Cdiam(Ah)α,

and
∫

Ah

|η| dx ≤ C

(
∫

Ah

|η|q dx
)

1
q

diam(Ah)
2
p ≤ Cdiam(Ah)α.

Summing up we obtain that (3.20) holds.
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Remark 3. Notice that the arguments of the previous proof also work in the case in which the
elastic solution u has critical singularities, i.e. in the case α = 1, provided that there exists ε > 0
and δ sufficiently small (depending only on Ω, m, f and k), such that

∫

Br(x)∩Ω

|∇u|p dx ≤ δr for every r < ε.

Using the same arguments of the proof of Theorem 3, we can easily deduce the following
localized version of the minimality result.

Proposition 1. Let the elastic solution u of problem (2.4) have at most uniformly weak singular-
ities in A, where A is an open subset of Ω. Then there exists a critical length l∗ > 0 depending on
A, m, f , and k such that for all Γ ∈ Km(Ω) with Γ ⊆ Ā and H1(Γ ) < l∗ we have

∫

Ω

f(x,∇u) dx <

∫

Ω

f(x,∇uΓ ) dx+ kH1(Γ ),

where uΓ is a minimum of (2.4).

Remark 4. (The case of strong singularities) Theorem 3 is false if the elastic solution u has
strong singularities in Ω, i.e., there exists x ∈ Ω such that

lim sup
r→0

1

r

∫

Br(x)∩Ω

|∇u|p dx = +∞. (3.21)

In fact if such a point x exists, then the pair (vr , ∂Br(x) ∩Ω), where vr is defined as

vr(y) :=

{

u(y) in Ω \Br(x),

0 in Ω ∩Br(x)
(3.22)

is energetically more convenient with respect to u for r small. Note also that this example needs
the right hand-side of (3.21) to be just greater than 2π

k .

The previous remark and Proposition 1 seem to suggest that in presence of strong singularities,
energetically convenient small cracks prefer to stay near the singular points. Let us prove that this
intuition is indeed true in the case in which u has only one point of strong singularity x.

For every l > 0 let Γl ∈ Km(Ω) be such that (uΓl
, Γl) minimizes the total energy (3.1) among all

pairs (uΓ , Γ ) with Γ ∈ Km(Ω) and H1(Γ ) ≤ l. The existence of Γl can be proved using the direct
method of the Calculus of Variations in view of the lower semicontinuity of the H1-measure with
respect to Hausdorff converging sequences in Km(Ω) given by Go̧ lab’s Theorem (see for example
[14] for details).

Notice that Γl 6= ∅ for l small because the pair (vl, ∂Bl), where vl is defined in (3.22), is
energetically more convenient than the elastic solution. Moreover, for every r > 0, we have that
Γl ∩Br(x) 6= ∅ when l is small enough because otherwise, in view of Proposition 1, (uΓl

, Γl) would
not be energetically more convenient than the elastic solution. So we deduce that the following
proposition holds.

Proposition 2. Assume that x ∈ Ω is a point of strong singularity for the elastic solution u, and
that u has at most uniformly weak singularities in Ω \ Br(x) for every r > 0. Then for every
neighborhood U of x, if l is small enough we have Γl 6= ∅, and Γl ∩ U 6= ∅.

Remark 5. (Singularities in materials) Theorem 3 and Remark 4 show that the quantity
∫

Ω∩Br(x)

|∇u|p dx, (3.23)

where u is a solution of
{

div∂ξf(x,∇u) = 0 in Ω

u = ψ on ∂DΩ,
(3.24)
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determines the feasibility of the appearance of small cracks in Ω when imposing a boundary datum
ψ. By Theorem 3, small cracks are not energetically convenient if u has at most uniformly weak
singularities in Ω according to Definition 1. This is certainly the case if ∇u has a summability
sufficiently higher than p, as one can check by means of Hölder inequality. In fact we have

∫

Br(x)

|∇u|p dx ≤
(

∫

Br(x)

|∇u|q dx
)p/q

|Br(x)|(q−p)/q ≤
(
∫

Ω

|∇u|q dx
)p/q

r2(q−p)/q .

We deduce that u has at most weak singularities in Ω if ∇u ∈ Lq(Ω; R2) with q > 2p.
It is well known that if Ω, ψ and f are sufficiently regular, then the solution u of (3.24)

is regular, so that u has at most uniformly weak singularities in Ω. However the assumption
of regularity of f with respect to the variable x is not suitable for applications to continuum
mechanics, since discontinuity in the variable x models the important case of composite materials.

Several papers in the literature address the issue of higher integrability properties of the gra-
dient of solutions of (3.24) without continuity assumptions on x. Usually, the behavior of ∇u is
studied on compactly contained open subsets of Ω, and this is the natural price to pay in order
to concentrate on properties depending only on the material (i.e., on the bulk energy density f)
and not on the boundary datum.

In the fundamental paper [26] due to Meyers (and based on some ideas by Boyarski on higher
integrability for quasiconformal mappings in dimension two, see [8], [9]), it is proved in particular
the following result. Let A be a N ×N symmetric matrix with eigenvalues between K−1 and K
(K ≥ 1). Then the gradient of the solution of the linear elliptic PDE

{

div
(

A(x)∇u
)

= 0 in Ω

u = ψ on ∂DΩ,
(3.25)

belongs to Lqloc(Ω) for some q > 2. Moreover in the same paper it is conjectured that the optimal
integrability exponent q(K) is equal to 2K/(K − 1). This conjecture in particular implies that

q(K) → +∞ for K → 1 and q(K) → 2 for K → +∞.

The long standing conjecture for the optimal exponent q(K) in the context of planar quasicon-
formal mappings was solved by Astala in [6]. Then Leonetti and Nesi [22] proved the conjecture
in the context of PDE’s: any solution of (3.25) has gradient in Lqloc(Ω) for every q < 2K/(K − 1).

In the two dimensional setting required by Theorem 3, we conclude that in order to guarantee
that u has at most uniformly weak singularities in compactly contained open subsets of Ω, it
suffices that K < 2. On the other hand, a famous example due to Meyers [26] shows that for every
K ≥ 2 we can find materials which exhibit strong singularities inside the body. In fact, assuming
that the origin belongs to Ω we can consider

A(x) := Kn⊗ n+
1

K
τ ⊗ τ,

where n := x
|x| , τ is obtained from n through a rotation of 90 degrees counterclockwise, and a⊗ b

denotes the matrix with coefficients (a⊗ b)ij = aibj. Then it is easy to see that the solution of

{

div
(

A(x)∇u
)

= 0 in Ω

u(x) = x1 on ∂Ω

is given by

u(x) := |x|K−1−1x1.

A simple computation shows that if K ≥ 2, the origin is a point of strong singularity for u.
Higher integrability results for the gradient in the case of composite materials composed of a

finite number of phases with some geometrical constraints can be found in Li-Vogelius [24] and in
Li-Nirenberg [23] (for the case of systems).
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Higher integrability results in the case of nonlinear PDE’s can be found in Caffarelli and Peral
[11]. They prove [11, Theorem C] that under mild assumptions on f , for any fixed q > p there
exists ε = ε(q) > 0 such that if

||ξ|p−2ξ − ∂ξf(x, ξ)| ≤ ε|ξ|p−1

(i.e., ∂ξf is sufficiently close to the p-Laplacian operator), then every solution u ∈ W 1,p(Ω) also

belongs to W 1,q
loc (Ω). In particular if ε is small enough, u has at most uniformly weak singularities

on every compactly contained open subset of Ω.

Remark 6. (The vectorial 2D-case) The minimality result given by Theorem 3 holds also in
the case of RM -valued displacements provided that we choose them in the Deny-Lions space

L1,p(Ω \ Γ ; R
M ) := {v ∈ W 1,p

loc (Ω \ Γ,RM ) : ∇v ∈ Lp(Ω \ Γ ;MM×2)}. (3.26)

We have that W 1,p(Ω \ Γ,RM ) ⊆ L1,p(Ω \ Γ ; R
M ), and the two spaces are equal if Ω \ Γ is

sufficiently regular (for example an union of a finite number of Lipschitz domains). A notion of
trace for functions in L1,p(Ω \ Γ ; RM ) near the points of ∂DΩ \ Γ is well defined, so that given
ψ ∈ W 1,p(Ω,RM ) and Γ ∈ Km(Ω), the displacement uΓ is a solution of the minimum problem

min

{
∫

Ω

f(x,∇u) dx : u ∈ L1,p(Ω \ Γ ; R
M ), u = ψ on ∂DΩ \ Γ

}

. (3.27)

(Notice that in this vectorial setting the maximum principle does not hold, so that only a control
on the gradient is available and this is why Deny-Lions spaces are required). Since Definition 1
relies only on the behavior of ∇u, it turns out that the notion of uniformly weak singularities is
well defined in the context of L1,p-spaces.

The minimality result in the vectorial setting follows because estimate (2.7) still holds provided
we set

A(Γ ) := {v ∈ L1,p(Ω \ Γ ; R
M ) : v = 0 on ∂DΩ \ Γ},

and the constructions of Lemmas 1 and 2 can easily be adapted to the case of matrix valued vector
fields.

Remark 7. (The N-dimensional case) Let us consider the case Ω ⊆ RN with N ≥ 3. The
two dimensional setting is employed in the proof of Theorem 3 only to ensure the existence of a
covering of the crack Γ which satisfies conditions (3.17). In the case Γ is connected, the covering
condition can be reduced to the existence of an open set A (a ball if Γ is well inside Ω, or a
rectangle if it is near the boundary) such that Γ ⊆ A and

diam(A) ≤ CH1(Γ ),

where C is a given constant. This inequality is not implied by connectedness in dimension N ≥
3, because “needle-like” cracks can have very small HN−1-measure and big diameter. So the
machinery of the proof of Theorem 3 can be employed in dimension N ≥ 3 if we restrict to a class
of admissible cracks which excludes the elongated ones. Namely we can consider the family

KC(Ω) := {Γ ⊆ Ω : Γ is closed and diam(Γ ) ≤ CHN−1(Γ )}, (3.28)

where C is a given constant. The displacement uΓ relative to a crack Γ ∈ KC(Ω) and the boundary
datum ψ ∈W 1,p(Ω,RM ), with M ≥ 1, is given again by problem

min

{
∫

Ω

f(x,∇u) dx : u ∈ L1,p(Ω \ Γ ; R
M ), u = ψ on ∂DΩ \ Γ

}

, (3.29)

where the space L1,p(Ω \ Γ ; R
M ) is defined in (3.26).
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The notion of uniformly weak singularities can be rephrased in the N -dimensional setting in
the following way: we say that u ∈ L1,p(Ω; RN ) has at most uniformly weak singularities in Ω if
there exist constants N − 1 < α ≤ N and C > 0 such that for every x ∈ Ω and for r small enough

∫

Br(x)∩Ω

|∇u|p dx ≤ Crα. (3.30)

The intuitive meaning of condition (3.30) is the same as in the two-dimensional setting, namely
that the bulk energy of u inside a ball of center x and radius r is asymptotically negligible for
r → 0 and uniformly in x with respect to the surface of the ball.

4. The minimality result in linearized elasticity

We briefly show in this section that the results obtained up to now are also true if the bulk
energy f(x,∇u) is replaced with a quadratic linearized elasticity energy

C(x)e(u) : e(u) = Ci,j,k,l(x)e(u)i,je(u)k,l,

that is a positive-definite quadratic form of the symmetrized gradient

e(u) := (∇u + (∇u)T )/2

of the displacement u : Ω → RN . As before, the main conclusions will be drawn in dimension 2
(Theorem 3 or rather, since u is vectorial, the result of Remark 6), whereas in higher dimension
the same restrictions of Remark 7 will apply.

Let us consider in Ω a measurable function C, such that for any x ∈ Ω, C(x) is a N×N×N×N
4th-order tensor that defines a positive-definite quadratic form on the vector space of symmetric
N ×N matrices, that we denote by SN×N . We assume that for any ξ ∈ SN×N and a.e. x ∈ Ω, it
holds

λ|ξ|2 ≤ C(x)ξ : ξ ≤ Λ|ξ|2 , (4.1)

where ξ : η = Tr(ξηT ) = ξi,jηi,j and |ξ|2 = ξ : ξ is the standard Euclidean (Frobenius) norm.
Given Γ ⊂ Ω a compact one-dimensional fracture, the space of admissible displacements with

finite energy will be the space of measurable displacements u : Ω → R
N whose symmetrized

distributional gradient in Ω \Γ , denoted by e(u), is in L2(Ω \Γ ;SN×N), and that satisfy in some
sense u = ψ on ∂DΩ\Γ . Thanks to Korn’s inequality, it is known that such a displacement belongs
in fact to H1

loc(Ω \ Γ ), and since we have assumed that the boundary of Ω is Lipschitz, we also
have that u ∈ H1(Ω ∩B) for any ball B with B ∩ Γ = ∅, so that the trace of u on ∂Ω \ Γ is well
defined. As in Section 6, we introduce the space

LD1,2(Ω \ Γ ) := {u ∈ H1
loc(Ω \ Γ ; R

N) : e(u) ∈ L2(Ω \ Γ ;SN×N)}

and for Γ a closed subset of Ω, the displacement uΓ is given by

min

{
∫

Ω

C(x)e(u) : e(u) dx : u ∈ LD1,2(Ω \ Γ ), u = ψ on ∂DΩ \ Γ
}

.

We denote by u the solution in the non-cracked domain. The set of admissible variations is now

A(Γ ) := {v ∈ LD1,2(Ω \ Γ ) : v = 0 on ∂DΩ \ Γ}.

The proof of Theorem 2 can be reproduced in this situation, yielding the estimate (we assume
|Γ | = 0)

∫

Ω

[C(x)e(u) : e(u) − C(x)e(uΓ ) : e(uΓ )] dx ≤ 2

∫

Ω

[τ − σ] : [C(x)−1(τ − σ)] dx,
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with σ(x) := C(x)e(u)(x) and τ ∈ L2(Ω;SN×N ) is any stress field compatible with the variations
in A(Γ ), that is, such that

∫

Ω\Γ

τ : e(v) dx = 0 (4.2)

for any v ∈ A(Γ ). The last estimate, together with (4.1), yields

∫

Ω

[C(x)e(u) : e(u) − C(x)e(uΓ ) : e(uΓ )] dx ≤ 2

λ

∫

Ω

|τ − σ|2 dx , (4.3)

for any τ satisfying (4.2).

In order to prove Theorem 3 in this setting, we do exactly the same construction as before.
We build a τ from σ by letting τ = σ in Ω except in a finite union of balls or rectangles B2ri

(xi)
or R2sj

(yj) (cf the proof of Theorem 3 pp. 11 and following). Inside the smaller balls/rectangles
Bri

(xi) and Rsj
(yj), we choose τ = 0, and in each crown Ari

(xi) = B2ri
(xi)\Bri

(xi) or Asj
(yj) =

R2sj
(yj) \Rsj

(yj), τ is of the form: τ = ϕσ + η where ϕ is the appropriate cut-off function.

Again, to achieve (4.2), one needs to choose η in an appropriate way. An additional difficulty
here follows from the fact that η(x) has to be almost everywhere a N × N symmetric matrix.
In order to find a suitable η, one needs to replace problems (3.7), (3.14), (3.15) or (3.16) by the
appropriate variant.

The right way to do it is obviously to solve the vectorial equation

div e(v) = −div (ϕσ) (4.4)

in the appropriate domain, and to replace the Neumann boundary condition, when present, with
the corresponding condition e(v) · n = 0. We then set η = e(v) in each crown.

We get an estimate on
∫

Ω |τ − σ|2 dx from standard estimates on e(v), that will follow from
appropriate Poincaré-Korn inequalities. For instance, one shows (see Appendix B for details) that

∫

Ar(x)

|v|2 dx ≤ Cr2
∫

Ar(x)

|e(v)|2 dx (4.5)

for any v ∈ H1(Ar(x); RN ) with

(

∫

Ar(x)

v(y) dy = 0 and

∫

Ar(x)

y × v(y) dy = 0

)

, or v = 0 on ∂DΩ ∩ ∂Ar(x) .

The first set of conditions ensure that the “average rigid motion” of v vanishes in Ar(x). Rigid
motions, of the form x 7→ Kx+p with K antisymmetric, are the kernel of the symmetrized gradient
(in any connected domain).

Multiplying (4.4) by v and integrating by parts, we find that

∫

Ar(x)

|e(v)|2 dx = −
∫

Ar(x)

σ : (∇ϕ ⊗ v(x)) dx

≤ ‖σ‖L2(Ar(x))‖∇ϕ‖L∞(Ar(x))

(√
Cr‖e(v)‖L2(Ar(x))

)

,

where we have used (4.5). Since ‖∇ϕ‖L∞(Ar(x)) ≤ 2/r and η = e(v), we deduce that

∫

Ar(x)

|η(x)|2 dx ≤ C

∫

Ar(x)

|σ(x)|2 dx

for some constant C that does not depend on x or r. We conclude as in the proof of Theorem 3.
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5. Qualitative properties of crack initiation

In this Section we use the results of Section 3 to address the problem of crack initiation in
elastic bodies. We restrict our analysis to the case of antiplane elasticity. In view of the minimality
result of Section 4, the same conclusions hold also for the case of planar linearized elasticity.

First of all we consider the classical Griffith’s theory of quasistatic crack propagation, and we
prove that it cannot explain the formation of a crack in an elastic body Ω without singularities
within the class Km(Ω) of closed sets with a finite number of connected components, which is
much richer than the family of smooth curves usually considered in the mechanical literature.

In the second part of the section, we remove the assumption, implicit in Griffith’s theory, that
the crack growth is progressive, namely that the length of the crack is continuous in time. Inspired
by the variational theory of quasistatic crack evolution proposed by Francfort and Marigo in [20],
we replace the classical Griffith’s equilibrium condition with a static equilibrium condition and an
energy balance. The static equilibrium condition is a unilateral minimality property which states
that, during the crack evolution, the total energy is minimal among all configurations with larger
cracks (so that discontinuities of the crack’s length are allowed). The energy balance requires that
the total energy of the system evolves in relation with the power of external loads in such a way
that no dissipation occurs (except the surface energy spent to enlarge the crack).

Within this framework, we prove that a crack appears immediately at a point of strong singu-
larity for the body. Moreover we prove that if the body has at most uniformly weak singularities,
then it deforms elastically until a critical time ti after which a ”big” crack Γ (t) appears. These
results have been established by Francfort and Marigo in [20, Proposition 4.19, point (ii)] un-
der the assumptions that the crack Γ (t) is union of m fixed curves {γi(t)}i=1,...,m which can be
parametrized by arc length. Thank to our local minimality result (Theorem 3), we prove these
facts removing the restrictions on the path of the crack.

The mathematical setting we consider is that of Section 3. Namely Ω is a bounded Lipschitz
open set in R2, ∂DΩ ⊆ ∂Ω is open in the relative topology, and ∂NΩ := ∂Ω \ ∂DΩ is composed
of a finite number of connected components. The family of admissible cracks is given by the class
Km(Ω) of closed subsets of Ω with at most m connected components and with finite length, while
the class of admissible displacements relative to a crack Γ is given by W 1,p(Ω\Γ ) with p ∈]1,+∞[.
The total energy is given by

E(u, Γ ) :=

∫

Ω

f(x,∇u) dx+ kH1(Γ ), (5.1)

where f is a Carathéodory function satisfying (2.1), (2.2) and (2.3), and k > 0.

5.1. Crack initiation and Griffith’s theory

Let Γ0 be a crack inside Ω of length l0, and suppose that a boundary displacement ψ is assigned
on ∂DΩ \ Γ . According to Griffith theory, Γ0 is in equilibrium if, taking any family of increasing
cracks Γl containing Γ0 with length l0 + l, then

lim sup
l→0+

W(l0) −W(l0 + l)

l
≤ k, (5.2)

where W(l0) and W(l0 + l) denote the bulk energy of the displacements uΓ0
and uΓl

associated to
the boundary datum ψ and the cracks Γ0 and Γl respectively, and k represents the toughness of
the material. Moreover, during a quasistatic crack evolution, if Γ0 propagates along the Γl, then
(5.2) holds with equality.

Let us prove that the rate of energy release that appear in the left hand side of (5.2) is zero
in the case in which Γ0 = ∅ and the elastic solution u relative to the boundary displacement ψ
has at most uniformly weak singularities. This means that the elastic configuration is always in
equilibrium according to Griffith’s theory, and moreover that a quasistatic crack evolution which
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begins in the elastic configuration remains at all subsequent times in the elastic regime, i.e.,
Griffith’s theory cannot explain crack initiation.

To this aim for every l > 0, let us set

W(l) := inf

{
∫

Ω

f(x,∇uΓ ) dx : Γ ∈ Km(Ω),H1(Γ ) ≤ l

}

,

where uΓ ∈ W 1,p(Ω \ Γ ) denotes the displacement associated to Γ and the boundary datum ψ.
Notice that we have clearly W(0) =

∫

Ω
f(x,∇u) dx, where u is the elastic displacement relative

to ψ. The following proposition holds.

Proposition 3. Let us assume that the hypothesis of Theorem 3 are fulfilled. Then we have

lim
l→0+

W(0) −W(l)

l
= 0.

Proof. For every k̃ > 0, by Theorem 3 we have that for l small enough and Γ ∈ Km(Ω) with
H1(Γ ) ≤ l

∫

Ω

f(x,∇u) dx ≤
∫

Ω

f(x,∇uΓ ) + k̃H1(Γ ).

We deduce that

lim sup
l→0+

W(0) −W(l)

l
≤ k̃.

Since k̃ is arbitrary, and since W(l) ≤ W(0), we conclude that the result holds.

Remark 8. (The case of strong singularities) If the elastic solution u has a strong singularity
at x ∈ Ω, then by Remark 4 we have that

lim
l→0+

W(0) −W(l)

l
= +∞,

so that the elastic configuration is not in equilibrium in the framework of Griffith’s theory.

5.2. Crack initiation in variational theories of crack propagation

As explained at the beginning of the section, we consider now irreversible quasistatic crack
evolutions governed by a static equilibrium condition and an energy balance. More precisely if ψ(t)
is a time dependent boundary displacement, and u(t), Γ (t) are the displacement and the crack at
time t relative to ψ(t), we assume that the pair (u(t), Γ (t)) satisfies the following properties:

(a) Irreversibility: Γ (t) is increasing in time, i.e., Γ (t1) ⊆ Γ (t2) for all 0 ≤ t1 ≤ t2 ≤ T ;

(b) Static equilibrium: if t > 0, E(u(t), Γ (t)) ≤ E(u,H) for all cracks H such that ∪s<tΓ (s) ⊆ H
and all displacements v : Ω \H → R with v = ψ(t) on ∂DΩ \H ;

(c) Energy balance: the total energy E(u(t), Γ (t)) is absolutely continuous in time, and it satisfies

E(u(t), Γ (t)) = E(u(0), Γ (0)) +

∫ t

0

∫

Ω

∂f(x,∇u(τ))∇ψ̇(τ) dx dτ.

Condition (a) stands for the irreversibility of the evolution: the crack can only increase in time,
i.e., no healing processes are admitted. Condition (b) asserts that the pair (u(t), Γ (t)) is a unilateral
minimizer of the total energy, i.e., it is a minimum among all configuration with larger cracks.
In particular u(t) is the elastic deformation relative to the boundary datum ψ(t) in the domain
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Ω \ Γ (t), i.e., u(t) satisfies equation (2.5) with Γ = Γ (t) and ψ = ψ(t). Finally, notice that under
suitable regularity assumptions on u(t) and Γ (t), condition (c) can be rewritten as

∫

Ω

f(x,∇u(t)) dx −
∫

Ω

f(x,∇u(s)) dx+ kH1(K(t) \K(s))

=

∫ t

s

∫

∂DΩ\K(τ)

∂

∂n
f(x,∇u(τ)) · ψ̇(τ) dH1(x) dτ. (5.3)

Therefore the energy balance condition states that the sum of the variation of the bulk energy and
of the dissipation due to the creation of a new crack is equal to the work inserted in the system
by the boundary datum ψ. We refer the reader to the paper by Francfort and Marigo [20] for
further details on crack evolutions satisfying conditions (a), (b) and (c) (see also Mielke [27] for a
connection with the theory of rate-independent processes).

In order to treat the problem of crack initiation, we consider as in [20] the case in which f is
p-homogeneous in the gradient, i.e., for all x ∈ Ω, ξ ∈ R2 and t > 0

f(x, tξ) = tpf(x, ξ).

We consider a time dependent boundary displacement of the form t → tψ, where t ∈ [0, T ]
and ψ ∈W 1,p(Ω)∩L∞(Ω) is a given function. We refer the reader to the paper by Dal Maso and
Toader [14] for the existence of a quasistatic crack evolution {t→ (u(t), Γ (t))} with

Γ (t) ∈ Km(Ω) and u(t) ∈W 1,p(Ω \ Γ (t))

for every t ∈ [0, T ] satisfying (a), (b) and (c).
Since we are dealing with a crack initiation problem, and since ψ(0) = 0, we assume that

(u(0), Γ (0)) = (0, ∅). Notice that if v denotes the elastic displacement associated to the boundary
datum ψ, then tv is the elastic displacement associated to tψ. Then from the static equilibrium
condition, comparing (u(t), Γ (t)) with (tv, Γ (t)), we have that for all t ∈]0, T ]

∫

Ω

f(x,∇u(t)) dx ≤ tp
∫

Ω

f(x,∇v) dx. (5.4)

Finally, since we can replace tψ by tu in the energy balance condition, we can write

∫

Ω

f(x,∇u(t)) dx + kH1(Γ (t)) =

∫ t

0

∫

Ω

∂f(x,∇u(τ)) · ∇v dx dτ. (5.5)

This implies that
∫

Ω

f(x,∇u(t)) dx + kH1(Γ (t)) ≤ tp
∫

Ω

f(x,∇v) dx. (5.6)

In fact, from the inequality

zw ≤ f(x, z) + f∗(x,w),

taking into account the p-homogeneity of f , we can write for a, b > 0

(z/a)(w/b) ≤ (1/ap)f(x, z) + (1/bq)f∗(x,w)

where q = p′ := p/(p− 1). For z, w : Ω → R measurable functions on Ω, integrating over Ω, and
setting

ap = p

∫

Ω

f(x, z) dx and bq = q

∫

Ω

f(x,w) dx,

we obtain the following Hölder type inequality

∫

Ω

zw ≤ p1/pq1/q
(
∫

Ω

f(x, z) dx

)1/p (∫

Ω

f∗(x,w) dx

)1/q

. (5.7)
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Taking z = ∇v and w = ∂f(x,∇u(τ)) we get (using f∗(∂f(z)) + f(z) = ∂f(z) · z = p f(z))

∫

Ω

∂f(x,∇u(τ))∇v dx ≤ p1/pq1/q
(
∫

Ω

f(x,∇v) dx

)
1
p
(
∫

Ω

f∗(x, ∂f(x,∇u(τ))) dx

)
1
q

= p1/pq1/q
(
∫

Ω

f(x,∇v) dx

)
1
p

(p− 1)
1
q

(
∫

Ω

f(x,∇u(τ)) dx

)
1
q

.

In view of (5.4) we have

∫

Ω

∂f(x,∇u(τ))∇v dx ≤ τ
p
q p1/pq1/q(p− 1)

1
q

∫

Ω

f(x,∇v) dx.

Integrating from 0 to t we obtain

∫ t

0

∫

Ω

∂f(x,∇u(τ))∇v dx ≤ p1/pq1/qp−1(p− 1)
1
q tp
∫

Ω

f(x,∇v) dx.

Since

p1/pq1/qp−1(p− 1)
1
q = 1,

by (5.5) we conclude that (5.6) holds.
Notice that we can rescale (5.6) obtaining for t small

∫

Ω

f(x,∇v(t)) dx + H1(Γ (t)) ≤
∫

Ω

f(x,∇v) dx, (5.8)

where v(t) := 1
tu(t) is the displacement associated to Γ (t) and ψ.

As noticed by Francfort and Marigo in [20], if T is large enough, a crack will appear during
the evolution, i.e., Γ (s) 6= ∅ for some s ∈]0, T [. In fact if T is such that

H1(∂DΩ) < T p
∫

Ω

f(x,∇v) dx, (5.9)

then we get that creating a crack along ∂DΩ is more convenient that deforming Ω elastically. We
are now in a position to state the first crack initiation result.

Theorem 4. Let us assume that T satisfies (5.9), and let us suppose that the elastic displacement
v associated to the boundary datum ψ has at most uniformly weak singularities in Ω, i.e., it
satisfies (3.3). Then the crack initiation is brutal, i.e., there exists a positive time ti ∈]0, T ] such
that Γ (t) = ∅ for every t ≤ ti, and H1(Γ (t)) > l∗ for all t ∈]ti, T ] for some l∗ > 0 depending on
Ω, f , k, m and ψ.

Proof. Notice that by (5.6) we have H1(Γ (t)) → 0 as t → 0. By Theorem 3, we get that for t
small the elastic solution v is energetically convenient with respect to (v(t), Γ (t)), where v(t) is
the displacement associated to Γ (t) and ψ. But this is against (5.8) unless H1(Γ (t)) = 0. In view
of (5.9) we deduce that there exists ti ∈]0, T [ such that Γ (t) = ∅ for every t ≤ ti and H1(Γ (t)) > 0
for all t ∈]ti, T ].

In order to prove that H1(Γ (t)) > l∗ for all t ∈]ti, T ] and for some l∗ > 0, notice that by (5.6)
we deduce that

∫

Ω

f(x,∇v(t)) dx + kT−pH1(Γ (t)) ≤
∫

Ω

f(x,∇v) dx.

Then by Theorem 3 we deduce that

lim inf
tցti

H1(Γ (t)) ≥ l∗

for some positive constant l∗ depending only on Ω, f , kT−p, m and ψ. The proof is thus concluded.



22 A. Chambolle, A. Giacomini, M. Ponsiglione

Remark 9. Note that Theorem 4 holds true whenever the elastic solution v is a local minimum
for the total energy. Therefore, in view of the results of Section 4, Theorem 4 can be extended to
the setting of planar elasticity. Moreover we will prove (see Theorem 6) that if v is C1, and the
associated stress is continuous, then v is a local minimizer in the class of SBV displacements. In
view of this result, we conclude that crack initiation is always brutal whenever the elastic solution
has no singularities at all, without assuming the cracks to be closed, or with a finite number of
connected components.

Let us now study the crack initiation in the case in which the elastic displacement u associated
to the boundary datum ψ has strong singularities. We recall that a point x ∈ Ω is a point of strong
singularity for v if

lim sup
r→0

1

r

∫

Br(x)∩Ω

|∇v|p dx = +∞.

It is well expected that during a loading process, a crack will appear at a point of strong singularity.
The following theorem establishes this fact for a general quasistatic crack evolution satisfying
properties (a), (b) and (c). The result, stated in the setting of anti-plane elasticity, can be easily
generalized (see Remark 9) to the case of planar elasticity.

Theorem 5. Let us suppose that the elastic displacement v associated to the boundary datum ψ
has a strong singularity at x ∈ Ω, and that v has at most uniformly weak singularities in Ω \Br(x)
for every r > 0. Then we have that H1(Γ (t)) > 0 for all t ∈]0, T ], and the crack starts at the point
{x}, i.e.,

x ∈
⋂

t>0

Γ (t).

Moreover the crack departs with zero speed, i.e.,

lim
t→0

H1(Γ (t))

t
= 0. (5.10)

Proof. In view of Remark 4, and since x is a point of strong singularity for v, we have that for a
positive time t > 0 the elastic displacement tv relative to the boundary datum tψ cannot satisfy
condition (b). As a consequence, we deduce that H1(Γ (t)) > 0 for all t ∈]0, T ].

Let us come to the properties of Γ at time t = 0. By (5.6) we have

lim
t→0

H1(Γ (t)) = 0,

so that
⋂

t>0

Γ (t) = {y1, . . . , yh},

with h ≤ m. Let us suppose by contradiction that yi 6= x for all i = 1, . . . , h. Then there exists
r > 0 such that for t small enough we have Γ (t) ⊆ Ω \Br(x). Since v has at most uniformly weak
singularities in A := Ω \ B̄r(x), and in view of Proposition 1, we have that inequality (5.8) implies
that H1(Γ (t)) = 0 for t small, which is a contradiction.

Finally, in order to prove (5.10), we rescale (5.6) obtaining

∫

Ω

f(x,∇v(t)) dx +
k

tp
H1(Γ (t)) ≤

∫

Ω

f(x,∇v) dx,

where v(t) is the displacement associated to Γ (t) and ψ. We deduce that H1(Γ (t)) ≤ Ctp for some
constant C, and so (5.10) easily follows.
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Appendix A. The two dimensional SBV case

The aim of this appendix is to prove a minimality result in the lines of Theorem 3 which does
not require an a priori bound on the number of the connected components of the admissible cracks.
Small cracks are still not energetically convenient if the gradient of the elastic solution of problem
(2.4) and the related stress are continuous in Ω. This condition excludes however that the elastic
configuration presents (weak) singularities.

In order to make the mathematical setting of this section precise, we need to recall some facts
about rectifiable sets and the functional space SBV of special functions with bounded variation.
We refer the reader to [4] for a complete treatment of these subjects.

A set Γ ⊆ R
N is rectifiable if there exists N0 ⊆ Γ with HN−1(N0) = 0, and a sequence (Mi)i∈N

of C1-submanifolds of RN such that

Γ \N0 ⊆
⋃

i∈N

Mi.

For every x ∈ Γ ∩Mi, we define the normal to Γ at x as nMi
(x). It turns out that the normal is

well defined (up to the sign) for HN−1-a.e. x ∈ Γ .
Let U ⊆ RN be an open bounded set with Lipschitz boundary. SBV (U) is the set of functions

u ∈ L1(U) such that the distributional derivative Du is a Radon measure which, for every open
set A ⊆ U , can be represented as

Du(A) =

∫

A

∇u dx+

∫

A∩S(u)

[u](x)ν dHN−1(x),

where ∇u is the approximate differential of u, S(u) is the set of jump of u (which is a rectifiable
set), ν(x) is the normal to S(u) at x, and [u](x) is the jump of u at x.

For every p ∈]1,+∞[ we set

SBV p(U) := {u ∈ SBV (U) : ∇u ∈ Lp(U,RN ), HN−1(S(u)) < +∞}.

If u ∈ SBV (U), then u admits a trace γ(u) on ∂U which is characterized by the relation (see [4,
Theorem 3.87])

lim
r→0

r−N
∫

Ω∩Br(x)

|u(y) − γ(u)(x)| dy = 0 for HN−1-a.e. x ∈ ∂U.

We will denote the trace γ(u) on ∂U again by u. If Γ ⊆ U is rectifiable and oriented by a normal
vector field n, then we can define the traces γ+

Γ (u) and γ−Γ (u) of u ∈ SBV (U) on Γ (see [4,
Theorem 3.77]) which are characterized by the relations

lim
r→0

r−N
∫

Ω∩B±
r (x)

|u(y) − γ±Γ (u)(x)| dy = 0 for HN−1-a.e. x ∈ Γ,

where B±
r (x) := {y ∈ Br(x) : (y − x) · n ≷ 0}. It turns out that the jump [u](x) for HN−1-a.e.

x ∈ S(u) is given by the difference of the traces of u at x on both sides of S(u).
A set E ⊆ U has finite perimeter in U if the characteristic function 1E belongs to SBV (U).

We denote by ∂∗E the set of jumps of 1E. ∂∗E is usually referred to as the reduced boundary of
E in U .

Let us now come to our problem of local minimality. Let Ω ⊆ R
2 be open, connected and with

Lipschitz boundary. Let ∂DΩ ⊆ ∂Ω be open in the relative topology, and let ∂NΩ := ∂Ω \ ∂DΩ.
Let f(x, ξ) be a Carathéodory function satisfying (2.1), (2.2) and (2.3). Let us moreover assume
that the boundary displacement on ∂DΩ is given by the trace of a continuous function ψ ∈
C0(Ω) ∩W 1,p(Ω). We denote by u the elastic solution relative to ψ, namely the solution to the
problem

min

{
∫

Ω

f(x,∇u) dx : u ∈W 1,p(Ω), u = ψ on ∂DΩ

}

.



24 A. Chambolle, A. Giacomini, M. Ponsiglione

The class of admissible cracks we consider is

R(Ω) := {Γ ⊆ Ω : Γ is rectifiable and H1(Γ ) < +∞}. (A.1)

Let us come to the class of admissible displacements relative to a crack Γ and to the boundary
displacement ψ. Since Γ is not supposed to be closed, the Sobolev space W 1,p(Ω \ Γ ) is not well
defined. So we consider as class of admissible displacements the functions u ∈ SBV p(Ω) such that
Sψ(u) ⊆ Γ , where

Sψ(u) := S(u) ∪ {x ∈ ∂DΩ : u(x) 6= ψ(x)},
and the inequality on ∂DΩ is intended for the traces. Notice that if Γ is closed then u ∈ W 1,p(Ω\Γ ),
and u = ψ on ∂DΩ \ Γ .

The displacement uΓ ∈ SBV p(Ω)∩L∞(Ω) associated to Γ and ψ is a solution of the minimum
problem

min

{
∫

Ω

f(x,∇u) dx : u ∈ SBV p(Ω), Sψ(u) ⊆ Γ

}

. (A.2)

The proof of the existence of uΓ is standard: it relies on Ambrosio’s compactness and lower
semicontinuity theorem [2], together with a truncation argument.

The main result of the section is the following one.

Theorem 6. Let u be the elastic displacement relative to ψ ∈W 1,p(Ω)∩C0(Ω), and let us assume
that u satisfies

∇u ∈ C0(Ω; R
2) and σ := ∂ξf(x,∇u) ∈ C0(Ω; R

2). (A.3)

Then there exists a critical length l∗ > 0 depending on Ω, f , k and ψ such that for all Γ ∈ R(Ω)
with H1(Γ ) < l∗ we have

∫

Ω

f(x,∇u) dx <

∫

Ω

f(x,∇uΓ ) dx+ kH1(Γ ).

In order to prove Theorem 6 we need the following lemma.

Lemma 3. For every Γ ∈ R(Ω) we have

∫

Ω

[f(x,∇u) − f(x,∇uΓ )] dx ≤
∫

Γ

σ · n(u+
Γ − u−Γ ) dH1, (A.4)

where σ is the stress of the elastic displacement u defined in (A.3), uΓ is a minimum of (A.2),
and u±Γ are the traces of uΓ on Γ (if Γ touches ∂DΩ, we set u+

Γ (x) = ψ(x) and u−Γ (x) = γ(u)(x),
γ(u) being the trace of u on ∂Ω, while if Γ touches ∂NΩ we set u±Γ (x) = ψ(x)).

Proof. By the convexity of f we have

∫

Ω

[f(x,∇u) − f(x,∇uΓ )] dx ≤
∫

Ω

∂f(x,∇u)(∇u−∇uΓ ) dx =

∫

Ω

σ(∇u −∇uΓ ) dx. (A.5)

We can assume that ψ is defined on R2, i.e., ψ ∈W 1,p(R2)∩C0(R2). Let B be a ball centred at 0
such that Ω ⊆ B. Let us set Ω′ := B \ ∂NΩ. We can extend u and uΓ to Ω′ setting u = uΓ = ψ
on B \Ω. Let us consider un ∈ C1(Ω′) with un = ψ on B \Ω and such that

Dun → DuΓ strictly in the sense of measures,

that is (see [4, Theorem 3.9])

lim
n→+∞

∫

Ω′

ϕdDun =

∫

Ω′

ϕdDuΓ for all ϕ ∈ C0(Ω′) ∩ L∞(Ω′).
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Since u is a minimum for problem (A.2) with Γ = ∅, and un = ψ on ∂DΩ, then we have that
u− un is an admissible variation for u so that for all n ∈ N

0 =

∫

Ω

σ(∇u−∇un) dx =

∫

Ω

σ dD(u − un). (A.6)

Since by assumption σ ∈ C0(Ω), we can extend σ to Ω′ in such a way that σ ∈ C0(Ω′)∩L∞(Ω′).
Notice that since u = un = ψ on B \Ω, from (A.6) we have

∫

Ω′

σ dD(un − u) = 0.

Then by strict convergence we deduce

0 = lim
n→∞

∫

Ω′

σ dD(u − un) =

∫

Ω′

σ∇u dx−
∫

Ω′

σ dDuΓ

=

∫

Ω′

σ(∇u −∇uΓ ) dx −
∫

S(uΓ )

σ · n(u+
Γ − u−Γ ) dH1. (A.7)

Since S(uΓ ) ⊆ Γ , u+
Γ = u−Γ on Γ \ S(uΓ ), and ∇u = ∇uΓ = ∇ψ on B \Ω, by (A.7) we deduce

∫

Γ

σ · n(u+
Γ − u−Γ ) dH1 =

∫

Ω′

σ(∇u −∇uΓ ) dx =

∫

Ω

σ(∇u −∇uΓ ) dx,

so that, in view of (A.5), we have that (A.4) follows.

We are now in a position to prove the minimality result in the SBV context.

Proof (Proof of Theorem 6). Let us consider l > 0, and let Γ ∈ R(Ω) be a minimum for the
functional

F(Γ ) :=

∫

Ω

f(x,∇uΓ ) dx + kH1(Γ )

among the cracks Γ ∈ R(Ω) such that H1(Γ ) ≤ l. The existence of such a Γ follows by taking a
minimum ṽ of the functional

F (v) :=

∫

Ω

f(x,∇v) dx + kH1(Sψ(v))

among all v ∈ SBV p(Ω) with H1(Sψ(v)) ≤ l, and choosing Γ := Sψ(ṽ). As a consequence, we
can assume that Γ ∩ ∂NΩ = ∅, and moreover that for every x ∈ Γ we have |[uΓ ](x)| > 0 (on ∂DΩ
we mean |ψ(x) − γ(u)(x)|, with γ(u) the trace of u on ∂Ω). Theorem 6 will be proved if we show
that Γ = ∅ for l small enough.

The main idea to prove that Γ = ∅ for l small enough is to look at the the quantity |[uΓ ]|, to
prove that it is infinitesimal as l → 0, and to apply (A.4). There are some problems connected
to this strategy. Recall that, while the strain ∇uΓ is uniquely determined, the displacement uΓ
is not, because, at least if Γ is closed, uΓ can be any constant on the connected components of
Ω \ Γ which do not touch ∂DΩ. This is also the case, in a suitable weak sense, when Γ is only
rectifiable. Consider indeed E ⊆ Ω with finite perimeter in R2, such that ∂∗E ⊆ Γ ∪ ∂NΩ, where
∂∗E denotes the reduced boundary of E with respect to R2. Notice that we can assume that uΓ
is equal to a constant c on E. In fact we have that

ũΓ :=

{

uΓ in Ω \ E
c in E

belongs to SBV (Ω), and it is an admissible displacement for Γ and ψ (see [4, Theorem 3.84]) with
∫

Ω

f(x,∇ũΓ ) dx ≤
∫

Ω

f(x,∇uΓ ) dx.
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We conclude that ũΓ is a minimum energy displacement relative to Γ and ψ. Coming back to
|[uΓ ]|, we see that this quantity is not well defined unless we fix a representative of uΓ . Moreover,
having fixed such a representative, we have that we can estimate at most the oscillation of [uΓ ] on
∂∗E, and not prove that |[uΓ ]| converges to zero as l → 0. So in what follows, we split Γ in two
pieces Γ \ Γ ∗ and Γ ∗, where Γ ∗ is related to the sets E on which uΓ is constant (so that only an
estimate for the oscillation holds, see (A.15)), while on the rest the quantity [uΓ ] tends to zero as
l → 0 (see (A.14)).

Let E ⊆ Ω be the set with finite perimeter in R2, maximal with respect to inclusion, such that
∂∗E ⊆ Γ ∪ ∂NΩ. As we have seen, we can assume that

uΓ = 0 on E. (A.8)

Notice that, in view of (A.8), we may assume also that if x ∈ Γ \ ∂∗E, then x has not density 1
for E, i.e.,

lim inf
r→0+

|E ∩B(x, r)|
|B(x, r)| < 1. (A.9)

Otherwise, we would get [uΓ ](x) = 0.
Let us divide E in the union of its indecomposable components according to [5, Theorem 1],

i.e., let (Ei)i∈N be a family of sets with finite perimeter in R2 such that E =
⋃

i∈N
Ei, H1(∂∗E) =

∑

i∈N
H1(∂∗Ei), |Eh ∩ Ek| = 0, H1(∂∗Eh ∩ ∂∗Ek) = 0 for every h 6= k, and such that for every

k ∈ N the set Ek cannot be written as Ek = E1
k ∪ E2

k with |E1
k ∩ E2

k| = 0 and H1(∂∗Ek) =
H1(∂∗E1

k) + H1(∂∗E2
k). Let us set

Γ ∗ := ∂∗E \ ∂NΩ =

(

∞
⋃

i=0

∂∗Ei

)

\ ∂NΩ, (A.10)

and let us assume that n denotes the outward normal to Ei. Since the stress σ is a divergence free
vector field, in view of the Generalized Gauss-Green formula for sets with finite perimeter (see [4,
Theorem 3.36]) we have for all i ∈ N

∫

∂∗Ei

σ · n dH1 =

∫

Ei

divσ dx = 0. (A.11)

In order to prove our minimality result, by contradiction let us assume that there exists lh → 0
and Γh with H1(Γh) ≤ lh, such that setting uh := uΓh

we have
∫

Ω

f(x,∇uh) dx+ kH1(Γh) <

∫

Ω

f(x,∇u) dx. (A.12)

By Ambrosio’s lower semicontinuity Theorem [2] and by (A.12), we deduce that for every open
set A ⊆ Ω

lim
h→+∞

∫

A

f(x,∇uh) dx =

∫

A

f(x,∇u) dx. (A.13)

Let Eh, (Ehi )i∈N and Γ ∗
h be the sets associated to Γh described above. We claim that

|[uh]| := |u+
h − u−h | → 0 uniformly on Γh \ Γ ∗

h as h→ +∞ (A.14)

and
ess-sup∂∗Eh

i
(u+
h ) − ess-inf∂∗Eh

i
(u+
h ) → 0 uniformly in i as h→ +∞. (A.15)

If xh ∈ Γh \ Γ ∗
h and xh ∈ ∂DΩ, we intend ψ(xh) for u+

h (xh), and γ(uh)(x) for u−h (x) (with γ(u)
the trace of u on ∂Ω), while if xh ∈ ∂∗Ehi ∩ ∂NΩ, we intend ψ(xh) = u+

h (xh).
In view of (A.14) and (A.15), the proof of the proposition is readily concluded. In fact, given

ε > 0, and choosing h so large that

|[uh]| ≤ ε on Γh \ Γ ∗
h
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and for all i ∈ N

ess-sup∂∗Eh
i
\∂NΩ(u+

h ) − ess-inf∂∗Eh
i
\∂NΩ(u+

h ) ≤ ε,

by Lemma 3, in view also of (A.8) and of (A.11), and recalling that σ · n = 0 on ∂NΩ, we have
that

∫

Ω

[f(x,∇u) − f(x,∇uh)] dx ≤
∫

Γh

σ · n(u+
h − u−h ) dH1

=

∫

Γh\Γ∗
h

σ · n(u+
h − u−h ) dH1 +

∫

Γ∗
h

σ · n(u+
h − u−h ) dH1

=

∫

Γh\Γ∗
h

σ · n(u+
h − u−h ) dH1 +

∞
∑

i=0

∫

∂∗Eh
i
\∂NΩ

σ · nu+
h dH1

=

∫

Γh\Γ∗
h

σ · n(u+
h − u−h ) dH1 +

∞
∑

i=0

∫

∂∗Eh
i

σ · nu+
h dH1

≤ ε‖σ‖∞H1 (Γh \ Γ ∗
h ) +

∞
∑

i=0

(ess-inf∂∗Eh
i
u+
h )

∫

∂∗Eh
i

σ · n dH1 + ε‖σ‖∞
∞
∑

i=0

H1(∂∗Ehi )

= ε‖σ‖∞
(

H1 (Γh \ Γ ∗
h ) + H1 (Γ ∗

h ∪ ∂NΩ)
)

= ε‖σ‖∞H1 (Γh ∪ ∂NΩ) ,

and this is against (A.12).
In order to conclude the proof, we have to prove the claims (A.14) and (A.15). Let us consider

(A.14), the proof of the other claim being similar. Let us assume that there exists δ > 0 and
xh ∈ Γh \ Γ ∗

h with

|[uh](xh)| ≥ δ > 0. (A.16)

Up to a subsequence we have xh → x̄ ∈ Ω. Let us assume that x̄ ∈ Ω. For h large enough, and for
r small we have B̄r(xh) ⊆ Ω. Notice that for every almost every r such that ∂Br(xh) ∩ Γh = ∅,
we have that uh ∈ W 1,p(∂Br(xh)). Moreover by the maximum principle we have that

max
∂Br(xh)

uh − min
∂Br(xh)

uh = Mh −mh > δ. (A.17)

In fact otherwise, we can consider ũh defined as

ũh :=

{

uh outside Br(xh),

max{min{uh,Mh},mh} inside Br(xh).

Since xh ∈ Γh \ Γ ∗
h , and in view (A.9) and of (A.16), we deduce that

|{uh 6= ũh} \Eh| > 0

so that
∫

Ω

f(x,∇ũh) dx <

∫

Ω

f(x,∇uh) dx

which is against the minimality of uh. Then (A.17) holds.
Let ∂ϑuh denote the angular derivative of uh, i.e., ∂ϑuh := d

dϑuh(x1
h + r cosϑ, x2

h + r sinϑ).
Setting Ch := {s ∈ [0, r] : H1 (∂Bs(xh) ∩ Γh) = 0}, by (A.17) we have for every r ∈ Ch

∫ 2π

0

|∂ϑuh|p dϑ ≥ 2πδp.

Notice that |Ch| ≥ r − H1(Γh). In fact we can obtain H1(Γh) considering coverings of Γh made
up by disks, and taking the sum of the length of their boundaries: through suitable rotations we
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can move the disks in such a way that their centers lie on a fixed radius of B(xh, r), so that the
relation follows. We deduce that

∫

Br(xh)

|∇uh|p dx ≥
∫ r

0

∫ 2π

0

s1−p|∂ϑuh|p dϑ ds

≥
∫

Ch

∫ 2π

0

s1−p|∂ϑuh|p dϑ ds ≥ 2πδp
∫

Ch

s1−p ds ≥ 2πδp
∫ r

H1(Γh)

s1−p ds. (A.18)

Let us distinguish two cases, namely p ≥ 2 and 1 < p < 2. If p ≥ 2, choosing r = 2H1(Γh) we
obtain

lim inf
h→+∞

∫

Brh
(xh)

f(x,∇uh) dx ≥ 2πδp ln 2.

But this is against (A.13): in fact for all r such that Br(x̄) ⊆ Ω by (A.13) we have

∫

Br(x̄)

f(x,∇u) dx = lim
h→+∞

∫

Br(x̄)

f(x,∇uh) dx ≥ lim
h→+∞

∫

Brh
(xh)

f(x,∇uh) dx ≥ 2πδp ln 2,

and this gives a contradiction for r small enough. If 1 < p < 2, then we have

lim inf
h→+∞

∫

Br(xh)

f(x,∇uh) dx ≥ lim inf
h→+∞

2πδp

2 − p

(

r2−p −H1(Γh)2−p
)

=
2πδp

2 − p
r2−p

from which by (A.13) we deduce that

∫

Br(x̄)

f(x,∇u) dx ≥ Cr2−p (A.19)

for some C > 0. Since ∇u ∈ C0(Ω; R2) and f satisfies (2.3) we get that

∫

Br(x̄)

f(x,∇u) dx ≤ C̃r2

for some C̃ > 0, which together with (A.19) gives a contradiction.

The case in which x̄ ∈ ∂Ω can be treated almost in the same way as the case x̄ ∈ Ω. In fact it
is sufficient to choose r so small that

max
Br(xh)∩∂DΩ

ψ − min
Br(xh)∩∂DΩ

ψ < δ,

and to take into account the fact that there exists a constant C depending only on Ω such that

H1(∂Brh
(xh) ∩Ω) ≥ Crh.

In this way, integrations involved in (A.18) can be performed on a set of angle ϑ which has a positive
measure uniformly bounded from below, and the contradiction follows by the same arguments used
above.
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Appendix B. Uniform Poincaré and Poincaré-Korn inequalities

In this section, we show that very basic arguments lead to the uniform Poincaré and Poincaré-
Korn inequalities that are needed respectively in Sections 3 and 4.

To simplify, we will only consider the case of N -dimensional domains of the form

Qf =
{

x = (x′, xN ) ∈ R
N : 0 ≤ xi ≤ 1 , i = 1, . . . , N − 1 , 0 ≤ xN ≤ f(x′)

}

where f : Q′ → [1,M ] is a L-Lipschitz function. Here Q′ is the (N−1)-dimensional cube (0, 1)N−1

and L > 0 and M > 1 are fixed constants. The adaptation of the argument that we will present
here to the “real” cases that are useful in the paper is straightforward. Also, for simplicity, we
consider here the “linear” case p = 2. However, the proofs would be identical with any other
exponent p ∈ (1,+∞).

With a slight abuse in the notation we also identify Q′ with the base of Qf , that is, the subset
(0, 1)N−1 × {0} of ∂Qf . We show that the following result holds:

Proposition 4. There exists a constant C > 0 depending only on L and M such that

(i) For any u ∈ H1(Qf ) with u = 0 on Q′, ‖u‖L2(Qf ) ≤ C‖∇u‖L2(Qf );
(ii) For any u ∈ H1(Qf ) with

∫

Qf
u(x) dx = 0, ‖u‖L2(Qf ) ≤ C‖∇u‖L2(Qf );

(iii) For any u ∈ H1(Qf ; RN ) with u = 0 on Q′, ‖u‖L2(Qf ) ≤ C‖e(u)‖L2(Qf );

(iv) For any u ∈ H1(Qf ; RN ) with both
∫

Qf
u(x) dx = 0 and

∫

Qf
x × u(x) dx = 0, one has

‖u‖L2(Qf ) ≤ C‖e(u)‖L2(Qf ).

In the last assertion, x×u is the skew-symmetric matrix (xiuj−xjui)Ni,j=1, and the condition means

that u is orthogonal (in L2) to the rigid motions (of the form a +Bx with B skew-symmetric).
Let us sketch the proof of this proposition. First of all, the proof of point (i) is standard (by

integration along vertical lines starting from Q′) and it is well known that the constant C, in this
case, only depends on M (f could then be any l.s.c. function below M). In the same way, the proof
of (iii) is significantly simpler than the proof of (iv) (note however that it does require that f is
Lipschitz and C will depend on both M and L), and we will not discuss it. (See [7] for a detailed
proof, in dimension two).

To prove (ii) one first establishes the following inequality: there exists C0 depending only on
M such that for any f and any u ∈ H1(Qf ), one has

∫

Qf

u(x)2 dx ≤ C0

(

∫

A

u(x)2 dx +

∫

Qf

|∇u(x)|2
)

dx , (B.1)

where A denotes the set Q′ × (0, 1) (the important fact here being that A is an open set that
belongs to all the domains Qf , for all admissible f). The proof of (B.1), again, is standard. It
relies on integration along vertical lines starting from the base Q′ and on the obvious fact that for
any b ∈ [1,M ] and any v ∈ C1(0, b),

∫ y

0

v(t)2 dt ≤ 2M

∫ 1

0

v(t)2 dt + 2M2

∫ b

0

v′(t)2 dt . (B.2)

Now, if (ii) is not true, it means that there exists functions fn and un with 1 ≤ fn ≤ M , fn
L-Lipschitz, un ∈ H1(Qfn

),
∫

Qfn
un dx = 0 and

‖un‖L2(Qfn ) ≥ n‖∇un‖L2(Qfn )

for any n.
Without loss of generality we may renormalize un so that

∫

A u
2
n dx = 1. Then, by (B.1) we find

‖∇un‖L2(Qfn ) ≤ 1

n
‖un‖L2(Qfn ) + ≤

√
C0

n

(

1 + ‖∇un‖L2(Qfn )

)

.
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If we extend both un and ∇un with the value 0 outside of Qfn
, this inequality shows that ∇un

goes to zero strongly in L2(QM ; RN ) (QM = Q′ × (0,M)), and, up to a subsequence, that there
exists u ∈ L2(QM ) such that un ⇀ u weakly in L2(QM ).

On the other hand, by Rellich’s theorem, un → u strongly in L2(A) and since ∇u = 0 in A
and

∫

A u
2 = 1, u is the constant ±1/

√

|A|.
Now, since the functions fn are uniformly equibounded and equicontinuous, up to a further

subsequence, we may assume also that fn converges to some f uniformly. It is now easy to check
that u ∈ H1(Qf ), u = 0 outside of Qf , and ∇u = 0 (the limit of ∇un) in Qf so that u is a constant

in Qf . We deduce that u = (1/
√

|A|)χQf
. Now, for each n, one had

∫

Qfn
un dx =

∫

QM
un dx = 0,

hence in the limit
∫

QM
u dx = 0 6= |Qf |/

√

|A|, a contradiction. Hence (ii) must be true.

We observe here that (ii) holds in fact as long as f belongs to a fixed set of functions which
is compact in C0(Q′, [1,+∞)) (the constant C depending only on this compact set). The case of
L-Lipschitz functions uniformly bounded by the constant M is a particular case. On the other
hand, for the Poincaré-Korn inequalities (iii) and (iv), the fact that the functions f are uniformly
Lipschitz seems to be essential, as we now show.

Let us now prove (iv). It is enough to show that the vectorial version of (B.1) holds, that is,

∫

Qf

|u(x)|2 dx ≤ C0

(

∫

A

|u(x)|2 dx +

∫

Qf

|e(u)(x)|2
)

dx . (B.3)

This will be shown, again, by integration along lines and using (B.2), however, this time, it is not
sufficient to consider only vertical lines starting from Q′. Indeed, one has for any smooth vectorial
field u ∈ C1(Qf ) that

d(u(x+ sξ) · ξ)/ds = (e(u)(x+ sξ)ξ) · ξ
for any x ∈ Qf , ξ ∈ SN−1, and s ∈ R such that x + sξ ∈ Qf . Hence, integration along vertical
lines will control the component uN of u = (u1, . . . , uN ). To control the other components, one
needs to integrate along lines in at least N − 1 other independent directions (as is done in [7]).

Given p > max{L, 2M} let us consider, for any i = 1, . . . , N − 1, the vectors

ξ±i =
1

√

1 + p2
(0, . . . , 0,±1, 0, . . . , p)

where ±1 appears at the ith position. Given i ≤ N − 1, if we considers the lines starting from
Q′ in the direction ξ+i , we see that they “see” all points x ∈ Qf with xi ≥ 1/2. On the other
hand, the lines starting from Q′ in the direction ξ−i “see” all the points with xi ≤ 1/2. Integrating
along these lines and using (B.2), one controls the L2-norms on one half of the domain Qf of

(ui+puN)/
√

1 + p2 and, on the other half, of (−ui+puN)/
√

1 + p2. Together with the control of
∫

Qf
u2
N dx obtained previously, this shows that one can control

∫

Qf
u2
i dx with the right-hand side

of (B.3). Repeating this argument for all i, we find that (B.3) holds, with now a constant that
depends on M and L, through p.

We deduce, exactly as before, that (iv) holds. ⊓⊔
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