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Data Sharing in P2P Systems

Rabab Hayek and Guillaume Raschia and Patrick ValdurieNemuoeddine
Mouaddib

Abstract In this chapter, we survey P2P data sharing systems. Algalee focus
on the evolution from simple file-sharing systems, with tedi functionalities, to
Peer Data Management Systems (PDMS) that support advappédations with
more sophisticated data management techniques. AdvarReapplications are
dealing with semantically rich data (e.g. XML documentdatienal tables), us-
ing a high-level SQL-like query language. We start our sumwith an overview
over the existing P2P network architectures, and the aasacirouting protocols.
Then, we discuss data indexing techniques based on thé&iibdifon degree and
the semantics they can capture from the underlying data.|8d¢ediéscuss schema
management techniques which allow integrating heteramendata. We conclude
by discussing the techniques proposed for processing &najpieries (e.g. range
and join queries). Complex query facilities are necessaraflvanced applications
which require a high level of search expressiveness. Thigpkt shows the lack of
querying techniques that allow for approximate query answering
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1 Introduction

The recent years have withessed a paradigm shift in therdesigternet-scale dis-
tributed systems, with widespread proliferation of peepéer technologies. Nowa-
days, the P2P model is used for diverse applications anétesrincluding content
storage and sharing (file-sharing, content distributi@aekiop storage) and commu-
nication (voice, instant messages, multicast) to name a few

But, what is the P2P paradigm?

From the application perspective, the P2P paradigm is a wdgverage vast
amounts of computing power, storage, and connectivity fparsonal computers
distributed around the world [31]. Thus, the P2P model alalistributed systems
to scale up on a world wide scale without the need for an expensrastructure,
like the one it would be incurred by a client-server model.

From the system perspective, the P2P paradigm is about imgreagtonomous,
unreliable resources that connect to the system in ordenowddge together the de-
sired objectives, which that system is supposed to achidwemanagement of such
resources should be done without any global informatioreatral control.

In other words, the P2P model overcomes the limitations oftreézed and
client-server models by introducing symmetry in roles, reheach node is both a
client and a server. But unlike Grid systems, P2P networksadarise from the col-
laboration between established and connected groups tnsgsinstead, they are
characterized by ad hoc connections between autonomoudyaadnic resources.
Thus, P2P systems pose new challenges including resosicza/éry, reliability and
availability.

Inlate 1999, P2P systems gained much attention with Napstgsport for music
sharing, and then have became a very interesting mediumghmwhich users share
huge amount of data. Popular examples of P2P data sharitegrsyée.g. Gnutella,
KaZaa) report millions of users, sharing petabytes of dédsvever, a key challenge
is implementing efficient techniques for search and datéxet, without which an
enormous shared data collection remains useless.

In a P2P data sharing system, users should be able to lodewantdata in a
resource-efficient manner. Let us examine the generictaathre of a given peer,
as shown by Figure 1. Queries are submitted through a usefdoe. Then, they are
handled by a data management layer which includes sevehalitpies for support-
ing an efficient distributed query processing. This dataageament layer has been
enriched all along the evolution of P2P systems from simpdesharing systems
with limited functionalities, to Peer Data Management 8gst (PDMSs) which are
dealing with semantically rich data.

In early P2P file sharing systems, the data management kgks several com-
ponents. At a given peer, filename-based queries are blindhdcasted in the net-
work in order to locate the requested files. Besides, all ibged peers locally
evaluate the received queries and return results, if ag foally merged at the re-
questing peer. The performance of these systems is quiendept of the topology
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of theunderlying networkand the associated routing protocol. This is discussed in
Section 2.
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Fig. 1 Peer Generic Architecture

To enhance the search performance, P2P works started toedgih indexing
techniques (e.g. [6], [82]). At a given peer, the index allda/select a set of relevant
peers to which the query is directly sent (i.e. location ket, or to determine the
direction through which relevant peers may be located forvarding indexes).
Section 3 discusses the P2P indexing schemes.

Parallel works have focused on dagplicationandcachingtechniques in order
to improve the availability and the consistency of data,irggahe dynamic and
autonomous nature of P2P systems. In this work, we do noil tietae techniques,
however good pointers can be found in [11, 46, 15].

In Schema-based P2P systems [93], each peer can provideritslatabase
with its own schema, and may issue queries according toée kchema. In this
case, irrespective of using data indexes, peers have ty appeéma management
techniques that provide a common ground for distributedygpeocessing (e.g.
[12],[45]). The basic idea is to identify content or struetgimilarities among peers.
Semantic mappingasre then defined to specify these similarities, and basetden t
semantic mapping definitions, queries are reformulate@éah specific peer. Se-
mantic mappings and other metadata are stored in a spegi@isitery. The schema
management techniques are presented in Section 4.

Network clusterindnas been also proposed as a viable solution to improve query
processing in P2P systems (e.qg. [55], [7]). Clusteringni@ples aim to organize the
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network into groups based on some criteria. A clusteringdan may be a physical
network parameter (e.g. latency, bandwidth), peer prgfishavior (e.g. connec-
tivity, stability), or application-dependent parameteig( similarity of interests). In
this chapter, we do not discuss P2P clustering techniquesettr, representative
works are [81], [83], [7], [56].

Finally, we note that the data management layer presentEdjure 1 may in-
clude additional components depending on other applicagquirements, such as
trust and security.

All the above techniques have a common objective which igavipg the effi-
ciency of locating data. However, they should not resthetsearch expressiveness.
Certainly, the required level of search expressivenessléded to the data model
used by the application. For instance, advanced P2P apptisavhich are deal-
ing with semantically rich data require a higher expressags level than key-based
lookups or keyword searches. Processing complex queriB2hsystems is dis-
cussed in Section 5.

Note that throughout this thesis, the terms “node” and “pees used inter-
changeably to refer to the entities that are connected irratpepeer network.

2 P2P Networks

P2P systems are application-level virtual networks witkirtown overlay topolo-
gies and routing protocols. The overlay topology defines bwevnodes are con-
nected to each other, while the routing protocol defines hodes can exchange
messages in order to share information and resources. Tivenketopology and
the associated routing protocol have significant influencagplication properties
such as performance, scalability, and reliability. P2Rvoek overlays can be classi-
fied into two main categoriesnstructuredandstructured based on their structure.
By “structure we refer to the control on overlay creation and data placggme

2.1 Unstructured

Most popular P2P applications operate on unstructuredar&sylin these networks,
peers connect in an ad-hoc fashion and the placement ofrddateompletely un-
related to the overlay topology. Although P2P systems appased to operate in
a fully decentralized manner (i.e. fully decentralizedtiogi mechanisms), in prac-
tice, unstructured networks with various degrees of cén#tion are encountered.
Accordingly, three categories can be identified.
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2.1.1 Hybrid Decentralized Architectures

In these networks, a central server facilitates the intemadetween nodes by in-
dexing all their shared files (Figure 2). Whenever a querymstted, the central
server is addressed to identify the nodes storing the réegiéites. Then, the file
exchange may take place directly between two nodes. Chyrttiis approach pro-
vides a very good search efficiency. However, the centrakesewhich is a single
point of failure, renders hybrid decentralized networkiseirently unscalable and
vulnerable to malicious attacks.
The class of P2P systems relying on such hybrid architegtiee including a

server (e.g. red node) and peers (e.g. blue nodes), is ysadlid the first genera-
tion of P2P systems @P). A well-known example is Napster [4].

Fig. 2 Hybrid decentralized architecture Fig. 3 Pure decentralized architecture

2.1.2 PureDecentralized Architectures

In pure decentralized networks, there is a complete synynretrode roles without
any central coordination. Each node is both a client a senereach node may
issue requests and serve/forward requests of other nodesl@bed nodes in 3).
Hence, they exhibit high fault tolerance against node dyoigyrand failure. How-
ever, resources are maintained locally and nodes haveimitgd knowledge. Thus,
guarantees on lookup efficiency and content availabilityrwat be provided. Here,
search mechanisms range from brute flooding to more sopdtisti mechanisms,
such as random walks [11] and routing indices [6]. These iaeisims have direct
implications on network scalability.

Representative examples of pure decentralized P2P syatereutella [2], and
FreeHaven [79].
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2.1.3 Partially Decentralized Architectures

In these networks, there is a differentiation in roles betws&ipernodeandleafn-
ode Each supernode acts as a proxy for all its neighboring Ehyéndexing their
data and forwarding queries on their behalf. In practiceeis# supernodes are des-
ignated in the system to avoid all the problems associatedsiogle server (Fig-
ure 4). Like pure decentralized P2P networks, the set ofraigples can be organized
in a P2P fashion and communicate with one another in sopaisti ways. They are
dynamically assigned and, if they fail, the network will anatically take action to
replace them with others.

Examples of partially decentralized P2P systems are KaZa&hutella2 [1],
and Edutella [12]. Note that partially decentralized netsgoare also referred as
hierarchicalnetworks, while pure decentralized ones are referreithbaetworks.
Both categories represent the so-called, second P2P giend25P).

Fig. 4 Partially decentralized architecture

2.2 Structured

In an attempt to remedy the scalability problem of unstriedusystems, some
works have focused on introducingtfucture€ into network topologies. The topol-
ogy overlay is tightly controlled, and the content may berthiated according to
specific rules. These works led to the third generation of Zems (&P), i.e.
structured systems. Aiming basically to act as a deceng@lndex, structured over-
lays provide a mapping between content (e.qg. file identiéiag location (e.g. node
address), in the form of a distributed routing table.

Structured networks consist in partitioning a key space ragneeers, so that
each peer is responsible for a specific key space partitienitishould store all
the resources (or pointers) which are mapped into keys,hwéiie in the respec-
tive key-space partition. Then a routing algorithm is defiteallow a deterministic
search based on key content. A representative class ofigtedooverlays are the
Distributed Hash Tables DH (e.g. [44], [82]). Freenet [43] is often qualified as
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a loosely structured system because the nodes of its P2Rnketan produce an
estimate (not with certainty) of which node is most likelystore certain data. They
use a chain mode propagation approach, where each node méd@d decision

about which node to send the request message next.

Structure _ Decentr_alization
Hybrid| Partial Full
Napstef KaZaa | Gnutella
Unstructured PubliugMorpheus FreeHaven
Gnutella2
Edutella
Chord
Structured Infrastructures CAN
Trapestry
Pastry
OceanStor¢
Structured Systems Mnemosyng
Scan, Pas
Kademlia

Table 1 A classification of P2P Systems and Infrastructures BaseNeaiwork Structure, and
Degree of Decentralization [13]

Table 1 summarizes the P2P categories we outlined, with pbesnof P2P sys-
tems and infrastructures. P2P infrastructures do not itotestvorking applications,
but provide P2P based-services (e.g. location and rouéingnymity, reputation
management) and application frameworks. The infrastrastlisted here are loca-
tion and routing infrastructures. Note that according edentralization criteria, all
structured systems and infrastructures rely on pure desdizeid topologies where
all participants have equal roles.

2.3 Unstructured vs. Structured: Competition or Complementarity?

An important question is: should the P2P overlay be “Stmextli or “Unstruc-
tured”? Are the two approaches competing or complementary?

Some have considered unstructured and structured rougiogtams as compet-
ing alternatives. When generic key lookups are requiredgttred routing schemes
guarantee locating relevant nodes within a bounded nunilbeps, based on strong
theoretical foundations. The routing unstructured apghesa, however, may have
large costs or fail to find available data (in particular upplar data). Despite of the
lookup efficiency of structured overlays, several resegrclups are still leverag-
ing unstructured P2P schemes. In fact, there are two mdioisms for structured
systems [98]. First, the strict network structure impodgh loverhead for handling
node join and leave, although some works have defendedrpaafwe during churn
(e.g. [26]). Second, the lookup efficiency of these systenfimited to exact-match
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queries. Their ability to implement keyword searches andenmmmplex queries
is still an open issue. Therefore, given a P2P applicatios best suited network
overlay depends on that application functionalities arfigpmance metrics.

Recently, some have started to justify that unstructuredsemictured approaches
are complementary, not competing. The approach presemtgD] improves the
unstructured Gnutella network by adding structural congmts. The motivation
behind is that unstructured routing mechanisms are ineffidor data that are not
highly replicated across the P2P network, while structkegbased lookup per-
forms efficiently, irrespective of replication. In [21] @fauthors leverage the idea of
cohabiting several P2P overlays on a same network, so thdtest overlay could
be chosen depending on the application. The distinctivieifeaf this proposal is
that, in thejoint overlay, the cohabiting overlays share information to reduce their
maintenance cost while keeping the same level of performanc

Finally, we agree with the statement saying that the “urstined vs. structured”
taxonomy is becoming less useful, for two reasons. Finstpat no network topolo-
gies are truly “unstructured”. Unstructured P2P propgseatich used initially blind
flooding and random walks, have evolved to exploit inherémnicsure (e.g. small
world and scale-free features), or to incorporate strectiarough clusters and su-
perpeers. Second, a new classdiiema-based P28/stems, also called Peer Data
Management systems PDMSs, has emerged [93]. Examplesiokgatems com-
bine approaches from P2P research as well as from the databdsemantic web
research areas. These systems allow the aggregation agdaitidn of data from
autonomous, distributed data sources. They are dealitgheterogeneity of nodes
and structure within data.

Following this statement, some studies have adopted dsggbaonomy rather
than networking taxonomy (e.g. [20], [39]) in order to caiege P2P search net-
works. The structure is implicitly determined by the typelad employed index. In
the following section, we discuss the different data indgxdchemes that have been
proposed in the P2P literature.

3 Data Indexing in P2P Systems

P2P search techniques rely basically on data indexes. Aiddéxing scheme
should take into account the following requirements. et creation/maintenance
of indexes should not overload either the nodes by an extensiage of their re-
sources, or the network by a large bandwidth consumpticcor@k the mechanism
of maintaining indexes should not restrict peer autonomstead, it should recover
from node leave and join in a resource-efficient manner.

Obviously, the use of indexes should contribute to enhaheeefficiency of
searches made in the system. For instance, this efficiemcheaguantified by the
rate of successful searches (a searcuexessfuf it locates, at least, one replica of
the requested object), the response time, the number ohestuesults, the number
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of hops made to find a first query matching, and the number ofages exchanged
in the network, which is an important metric from the systesmpof view.

The related trade-offs between index update cost, effigi@fiche associated
search technique, and peer churn are critical to evalua@®arfllexing scheme.

3.1 Index Types

A P2P index can be local, centralized or distributed acegydd where it is main-
tained in the system, and to the distribution of data whichfirs to.

3.1.1 Local Index

A node only keeps references to its own data, without obtgimainy information
about data stored at other nodes. The very early Gnuteligrd§?] adopted the
local-indexapproach. This approach enables rich queries, but alsaaeséduge
traffic overhead since the query needs to be flooded widelyamé&twork. Further-
more, any guarantees on search success can not be provided.

Considering that the key part of P2P searching approacleeseafficient routing
mechanism, the local-index approaches can be se@mdasz-free since they do
not support query routing with arfgrwardingor locationhints [97]. A forwarding
index allows to reach the requested object within a varyingioer of hops (with the
network size), while a location index allows to reach thgéam a single hop. Based
on the same reasoning, the search techniques that have tm®sed to improve
the performance of index-free systems, are referrdiiad search techniques [86].

Breadth First Search (BFS)

The originally Gnutella algorithm uses flooding (BFS trazdrof the underlying
graph) for object discovery, and contacts all accessibesavithin a Time-To-
Leave T TL) value (Figure 5). Small T L values reduce the network traffic and the
load at peers, but also reduce the chances of a successfth sea

Modified BFS [89] is a variation of the BFS scheme in which tleens ran-
domly choose only a ratio of their neighbors to forward therguo (Figure 6).
This approach reduces the number of messages needed fgrquing at the cost
of loosing available query answers, which might be foundigydriginal BFS.

I terative Deepening

In[11], the idea of iterative deepening has been borrowe fartificial intelligence
and used in P2P searching. This method is also caltpdnding ring The querying
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Fig. 6 Example of Modified BFS: the received query is forwarded taredomly selected set of
neighbors

node periodically issues a sequence of BFS with increakihgvalues. The query
terminates when sufficient number of results is found, omptreelefined maximum
value of TTL is reached. Iterative deepening is tailoredgplizations where the
initial number of results found at peers that are closer &oghery originator is
important. In this case, it achieves good performance gaingared to the original
BFS. In other cases, its overhead and response time may behigher.

Random Walks

In thestandard random walklgorithm, the querying node forwards the query mes-
sage to one randomly chosen neighbor. This neighbor rardsehécts one of its
neighbors and forwards the query to that neighbor, and satihtlere is a query
match. This algorithm indeed reduces the network traffit,nbassively increases
the search latency.

In thek-walker random wallalgorithm [11], the query is replicated at the origina-
tor, so it send& query messages to an equal number of randomly chosen negghbo
Each of these messages follows its own path, having inteateedodes forward it
to a randomly chosen neighbor at each step. These query gesssee also known
aswalkers When the TTL of a walker reaches zero, it is discarded.
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Fig. 7 Example of Random Walks: each received walk is forwardechtp one neighbor

The algorithm’s most important advantage is the significa@ssage reduction it
achieves. It producds« T TL messages in the worst case, a number which seldom
depends on the underlying network. It also achieves sontdiocal “load bal-
ancing”, since no nodes are favored in the forwarding preogsr others. However,
the most serious problem of this algorithm is its highly aate performance. Suc-
cess rates and number of hits vary greatly depending on nietapology and the
random choices made. Another drawback is its inability tapado different query
loads.

Adamic et al [50] addressed the first problem of random wajksssommend-
ing that instead of using purely random walks, the searckopod should bias its
walks toward high-degree nodes (i.e. nodes with large nuofl@®nnections). They
assume that high-degree nodes are also capable of highgrthoeughputs. Cer-
tainly, the relevance of such assumption is constrainedeydesign of balancing
rules to avoid overloading high-degree nodes, which mayhawgé the capacity to
handle a large number of queries.

Finally we note that, in spite of their name, thecal Indicegproposed in [24] do
not belong to this type of indexes. An index is locally mainéal at a given node,
however, it refers to remote data stored at other nodes.

3.1.2 Centralized Index

The index is centralized at dedicated servers, but the itbestdata is distributed.
In fact, the centralized schemes [4] were the first to dennatesthe P2P scalability
that comes from separating data index from the data itsél. dentralized index
is a location (non-forwarding) index that allows to locagéervant data within one
hop, which is very efficient. However, the central serveessingle points of failure
which renders the system inherently unscalable and vubteeta malicious attack.
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The P2P research community has rapidly turned its back otradizied archi-
tectures. Furthermore, P2P systems that only use locak@sdcere becoming rare,
since routing the query in a blind manner is still providingaor trade-off between
the traffic overhead and the lookup efficiency. In practidec@rent P2P systems
are implementing distributed indexes.

3.1.3 Distributed Index

The index refers to data from distributed sources, andef itéstributed across the
network. Here, we are talking about the global index, whikniay be virtually)
obtained from the set of indexes materialized in the netwditkybrid decentralized
approach consists in distributing such global index amamyesspecialized nodes
(e.g. supernodes and ultrapeers). A pure decentralizedappdistributes the index
among all participants, thatis, each node in the systemtaiaga part of that index.
An early P2P proposal for a distributed index was Freendt r@enet uses a
hash function to generate keys, by which the shared filedardified. Each node
maintains a dynamic routing table containing the addrestether nodes and the
file keys they are thought to hold. To search for a file, the ssads a request mes-
sage specifying thkeyand aT T L value. Upon receiving a query message, a node
checks its local table for either a match or another node kéifs close to the tar-
get. If the file is eventually found at a certain node (beforeeedingT TL), the
query response traverses the successful query path irseg\adding a new rout-
ing table entry (the requested key and the file provider) el geer. A subsequent
request with the same key will be served with this cachedyemtre request will
be forwarded directly to the node that had previously predithe data. Freenet
allows to significantly reduce the traffic overhead in theteiys However, it only
supports exact-match queries, and only one result is retiunother limitation is
that Freenet takes time to build an efficient index upon theairof a new node.

As said before, almost all of the current P2P proposals reljistributed indexes,
which can range from simple forwarding hints to exact objecations. These in-
dexes can be distinguished according to whether they arargemriree, or they cap-
ture data semantics. The semantic index is human-readairiexample, it might
associate information with keywords, document names, tabdae keys. A free-
semantic index typically corresponds to the index by a hasbhanism, i.e. the
DHT schemes.

3.2 Semantic-free Index: DHT

Structured systems have emerged mainly in an attempt teessidnat scalability
problem of Gnutella-like systems. They use the Distributedh Table (DHT) as
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a substrate, in which the overlay topology and the data piac¢ are tightly con-
trolled.

Various DHT schemes differ in the topologies, routing poots, fault tolerance,
and resilience to churn. In the following, we present themggometries (i.e. the
topology and the associated routing strategies) used for-Bd$ed systems, and
discuss their search efficiency and their robustness.

3.2.1 Tree

Tree is the first geometry which is used for organizing thepeta DHT and rout-
ing queries among them. In this approach, nodes and objeetssaigned unique
identifiers (e.g. 160-bit key). The leaf nodes of the binaegtrepresent the key-
space partitions (peer’s identifiers). The depth of that tséog(n), wheren is the
number of peers. The responsible for a given object key ipéee whose identifier
has the highest number of prefix bits which are common withkéhye A search is
routed toward the requested object based on longest prefoching at each inter-
mediate peer until reaching the responsible peer. Themtisthetween two peers is
then the height of the smallest common subtree. Tapestiyu@ss similar prefix
matching in order to forward query messages. To avoid thbleno of single point
of failure that root nodes constitute in the Plaxton Tree elgthpestry assigns mul-
tiple roots to each object. Such approach allows religtdlithe cost of redundancy.

Fig. 8 Tapestry routing mesh from the perspective of a single nOdégoing neighbor links point
to nodes with a common matching prefix. Higher level entriesam more digits. Together, these
links form the neighbor map [25].

For each level in a tree topology there are several choicsslézt routing table
entries. To illustrate, each Tapestry node maintains ahbeigmap as shown in
Figure 8. The neighbor map has multiple levels, each legehtaining pointers to
nodes whose identifier must be matched witlits. For instance, the node in figure 8
maintains at the third level of its routing table one poiriteone node matching his
identifier with 3 digits.
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The tree geometry has good neighbor selection flexibiliéygach peer has21
options in choosing a neighbor at a leuéHowever, it has no flexibility for message
routing: there is only one neighbor which the message mus$bivearded to, i.e.
this is the neighbor that has the most common prefix bits wigtgiven key. Several
applications have been designed on the top of Tapestry, asi€hceanStore [47].
Pastry [14] is a scheme similar to Tapestry, however, itediffin the approach to
achieving network locality and object replication. It isgloyed by the PAST large-
scale persistent P2P storage utility [15].

3.2.2 Ring

The Ring geometry is based on a one dimensional cyclic spadethat the peers
are ordered on the circle clockwise with respect to theirsk&hord [44] is the
prototypical DHT ring. Chord supports one main operationd fa peer with the
givenkey. The keys are assigned both to data and peers by means ofhatwatri
Consistent Hashing [48]. Each key on the key-space is matopibe peer with the
least identifier greater or equal to the key, and this pealisathe key’'successar
Thus to say, this peer is responsible for the corresponditey @he use of consistent
hashing tends to balance load, as each node receives rahghtame number of
keys.

Finger Table
Ny [NB+L
NS [Ng4[ Nz
N5. [ N8+8| Nz
N8+16 N32
N8+32 N42
N5 N14
N48
N42 N21
N38
N32

Fig. 9 Thefinger tableat node 8 on a Chord ring of 10 nodes= 6 [44].

In Chord, a peer needs to track the addresses oframther peers, not all peers
such in the original Consistent Hashing proposal. Each pewraintains dfinger
table” containingm = log(n) entries such that thid' entry provides the address of
the peer whose distance framelockwise in the circle is’2- 1 mod n(see Figure 9).
Hence, any peer can route a given key to its responsiligimhops because each
hop reduces the distance to the destination by half. In Cleopagter needs to track
the addresses of ontm = O(logn) other peers, not all peers such as in the original
Consistent Hashing proposal.
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The correctness of the Chord routing protocol relies on éleethat each peer is
aware of its successors. When peers fail, it is possiblegtipaier does not know its
new successor, and that it has no chance to learn about itdid tais situation,
peers maintain a successor list of sizevhich contains the peer’s firstsuccessors.
When the successor peer does not respond, the peer simpgctothe next peer
on its list.

3.2.3 Hypercube

The Hypercube geometry is based on partitionimy@mensional space into a set
of separate zones and attributing each zone to one pees.iRaerunique identifiers
with log nbits, wherenis the total number of peers Each pgdraslog nneighbors
such that the identifier of théh neighbor ang differ only in theith bit. Thus, there
is only one different bit between the identifier pfand each of its neighbors. The
distance between two peers is the number of bits on which idhentifiers differ.
Query routing proceeds by greedily forwarding the given\kiayintermediate peers
to the peer that has minimum bit difference with the key. Thtus somehow similar
to routing on the tree. The difference is that the hypercuibea bit differences to
be reduced in any order while with the tree bit differencegeha be reduced in
strictly left-to-right order.

The number of options for selecting a route between two peisk bit differ-
ences igllog n)  (log n— 1) x--- x (log n— k), i.e. the first peer on the route has
log nchoices, and each next peer on the route has one choicedesisstipredeces-
sor. Thus, in the hypercube, there is great flexibility fonteoselection. However,
each node in the coordinate space does not have any choicigsaveighbors coor-
dinates since adjacent coordinate zones in the coordipatesan not change. The
high selection flexibility offered by the Hypercube is at firéce of poor neighbor
selection flexibility.

The routing geometry used in CAN [82] resembles a hypercebegtry. CAN
uses ad-dimensional coordinate space which is partitioned mwones and each
zone is occupied by one peer (see Figure 10). Wherlog n, the neighbor sets in
CAN are similar to those of bbg ndimensional hypercube.
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1,0 ‘4 1,1
c b S E
(0-0.5,05-1) -~ (0.75-1, 0.5-
A , B
(0-0.5,0-05) .° (0.5-1, 0-0.5)
’ 7
0,0, L /
0,0 01

node B’s virtual coordinate zone

Fig. 10 2-dimensional0; 1] x [0; 1] coordinate space partitioned between 5 CAN nodes [82].
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Other DHTs geometries are tBaitterflygeometry which is used in Viceroy [30],
and the XOR geometry which is used by Kademlia [69]. Cenyaitvio or more
geometries can be combined together to provide a hybrid gegrthat satisfies
better the DHT requirements. To illustrate, Pastry [14] boras the tree and ring
geometries in order to achieve more efficiency and flexibilit

3.3 Semantic | ndex

The initial unstructured file sharing P2P systems offeredeadime-based search
facility, while the DHT-based systems offered only a kewdxhlookup. However,
as stated before, the P2P systems should be able to do mar#ititing” things,
i.e. to capture data semantics and to allow for rich, comglesties. Works on both
P2P networks, unstructured and structured, have beeedtartorder to support
P2P applications with higher levels of search expressa®nerst enhancements
to existing file sharing P2P systems have early provided kegwearch facilities.
Later, providing large-scale Information Retrieval (IR)g. for searching the world
wide web, becomes an appealing application for P2P netw@issequently, the
well known IR techniques have been brought into the cont&R2aP networks,
in order to support a decentralized document managementstering, clustering,
indexing) and retrieval.

Recently, the Database and P2P paradigm have meet. Therformseslowly
moving toward a higher degree of distribution, and thus irtg a new class of
scalable, distributed architecture. The latter has stadexplore more expressive-
ness infrastructures in order to extend the representatidrguery functionalities
it can offer to advanced applications. The P2P Data Manage8ystems (PDMS)
are the point where the two paradigms meet.

As the P2P networks are going to be adaptable, i.e. to suppaide range of
applications, they need to accommodate many search typex engineering has
been always at the heart of P2P search methods. In the fallpwie introduce
the various types of semantic indexes employed by curreRtdyatems. Then, the
query capabilities will be discussed in Section 5.

3.3.1 Keyword Lookup

Gnutella [2] provides a simple keyword match. Queries dorgatring of keywords
and peers answer when they have files whose names contdiatddeywords. In its
first version, Gnutella was a local-index system. Querievileoded in the entire
network and peers only used their local indexes for filenarathes.

As a way to improve the performance of unstructured Gnutidéasystems, the
notion ofultrapeerwas introduced, so that the peer are organized into a hieécaic
network overlay. In [16], each peer maintains an index oféilme keywords, called
the Query Routing Table (QRT), and forwards it to its ultrp&pon receiving a
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query, the latter sends the query only to leaves which havataimbased on their
QRTs. Later, there has been a proposal to exploit the nethierkrchy in order to
build a hierarchical index. Aggregated QRTs are distrid@mongst the ultrapeers
to improve the query forwarding from an ultrapeer to anather

In other approach, [24] suggested tbeal indices data structures where each
node maintains an index of the data stored at nodes locatbmhwiradiug from it-
self. The query routing is done in a BFS-like way, exceptthatjuery is processed
only at the peers that are at certain hop distances from they quiginator. To min-
imize the overhead, the hop distance between two consecpéigrs that process
the query must be 2r 4+ 1. In other words, the query must be processed at peers
whose distance from the query originatomis: (2xr + 1) for m=1,2,.... This
allows querying all data without any overlap. The procegsime of this approach
is less than that of standard BFS because only a certain mwhpeers process the
query. However, the number of routing messages is compatalhat of standard
BFS. In addition, whenever a peer joins/leaves the netwonkpalates its shared
data, a flooding witilf TL=r is needed in order to update the peers’ indices, so the
overhead becomes very significant for highly dynamic emrirents.

Routing Indice46] have been proposed to support query routing with inferma
tion about “direction” towards data, rather than providitsgactual location. Doc-
uments are assumed to fall into a number of topics, and qetgiest documents
on particular topics. Routing Indices (RIs) store inforimatabout the approximate
number of documents from every topic that can be retrievesitth each outgoing
link (i.e. not only from that neighbor but from all nodes agsible from it).
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Fig. 11 Example of Routing Indices [6]

Figure 11 shows an example of a P2P network with RIs built &mertopics of
interest. The first row of each RI contains the summary ofdicallindex presented
before (i.e. radius = 2). In particular, the summary @éfs local index shows thak
has 300 documents: 30 about databases, 80 about netwonlesabout theory, and
10 about languages. The rest of the rows represent a compiutdthe example,
the RI shows that noda can access 100 database documents thréu¢go in D,
25inl, and 15 inJ).
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Given a query, the termination condition relates to a mimmmumber of hits. A
node that can not satisfy the query stop condition with ital@epository will for-
ward it to the neighbor with the highest “goodness” valuaeBdifferent functions
which rank the out-links according to the expected numbeéloafiments that could
be discovered through them are proposed. The routing hgobacktracks if more
results are needed. A limitation of this approach is thatrBdgiire flooding in order
to be created and updated, so they are not suitable for haymgmic networks.
Moreover, stored indices can be inaccurate due to topieladions, over-counts or
under-counts in document partitioning and network cycles.

3.3.2 Peer Information Retrieval

The amount of data published in the internet and its amaziogth rate become
beyond centralized web search engines. Recently, P2Pnsystiart to represent
an interesting alternative to build large-scale, decdim&d Information Retrieval
systems.

IR systems define representations of both documents anggLiEney may only
support a boolean retrieval model, in which documents atexad and a document
can match or not a given query. Note that the local and routidiges described
in the above section allow for such a retrieval model. CurlBrsystems are sup-
porting the retrieval model with a ranking function that gtifkes the order amongst
the documents matching the query. This becomes essentia icontext of large
document collections, where the resulting number of matghiocuments can far
exceed the number a user could possibly require. To thisteadR system defines
relationships between document and query representasorthat a score can be
computed for each matching document, w.r.t. the query ad han

A P2P system differs from a distributed IR system in that iyjsically larger,
more dynamic with node lifetimes measured in hours. Funtioee, a P2P system
lacks the centralized mediators found in many IR systemisabsume the respon-
sibility for selecting document collections, rewritingeries, and merging ranked
results [18]. In the following, we first introduce the main t&hniques used for
indexing documents. Then, we present the P2P IR systemkatateen proposed
in the literature.

Inverted Index

The inverted index, or sometimes called inverted file, hasitve the standard tech-
nique in IR. For each term, a list that records which docus\r@ term occurs in is
maintained. Each item in the list is conventionally callggbating The list is then
called apostings list(or inverted list), postings list and all the postings litken
together are referred to as the postings.
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Vector Space Model

The representation of the set of documents and queries &sryég a common
vector space is known as the Vector Space Model (VSM) andriddmental to
support the operation of scoring documents relative to ayq&ach component of
the vector represents the importance téranin the document or query. The weight
of a component is often computed using ffe@m Frequency * Inverse Document
FrequencyTF*IDF) scheme.

e Term Frequencythe frequency of each term in each document.

e Inverse Document Frequendpe document frequend/f; is the number of doc-
uments, in a collection dl documents, that contain a term t. The Inverse Docu-
ment Frequency of termis given by:log(N/d f;).

Viewing a collection ofN documents as a collection of vectors leads to a natural
view of a collection as germ-document matrixhis is anM x N matrix whose rows
represent th&! terms (dimensions) of thid columns, each of which corresponds to
a document.

L atent Semantic I ndex

Latent Semantic Index (LSI) uses Singular Value Decomjuosi{SVD) to trans-
form and truncate the term-document matrix computed fronMV$his allow to
discover the semantics underlying terms and documentstitely, LS| transforms
a high-dimensional document vector into a medium-dimeradisemantic vector
by projecting the former into a medium-dimensional sentasitbspace. The basis
of the semantic subspace is computed using SVD. Semantgrsere normalized
and their similarities are measured as in VSM.

Several solutions for text-based retrieval in decentealenvironments have been
proposed in the literature.

PlanetP [33] is a publish-subscribe service for P2P comtiesnsupporting con-
tent ranking search. PlanetP maintains a detailed invertkxk describing all docu-
ments published by a peer locally (i.e. a local index). Inithald, it uses gossiping to
replicate aerm-to-peerindex everywhere for communal search and retrieval. This
term-to-peer index contains a mapping p if termt is in the local index of peep.
PlanetP approximafeF x IDF by dividing the ranking problem into two stages. In
first, peers are ranked according to their likehood of havéevant documents. To
this end, PlanetP introduces theverse Peer Frequency (IPF)easure. Similar to
IDF, the idea behind is that a term is of less importance if it @spnt in the index
of every peer. Second, PlanetP contacts only the first grbappeers from the top
of the peer ranked list, to retrieve a relevant set of docusménstops contacting
peers when the top-document ranking becomes stable, wheigspecified by the
user. A primary shortcoming of PlanetP is the large amountetidata that should
be maintained, which restricts its scalability.
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The PeerSearch system [28] proposes another approachdhas glocuments
onto a DHT network according to their semantic vectors peeduby Latent Se-
mantic Indexing (LSI) in order to reduce document dimenaiibypand guarantee
solution scalability. However, as semantic vectors haveealefined a priori, the
method cannot efficiently handle dynamic scenarios andtadaghanging collec-
tions.

A query-driven indexing method has recently been proposdd]. However,
the solution is based on single-term indexing and does n@ider indexing with
term combinations. A recent work proposes the AlvisP2Pcbeamgine [85], which
enables retrieval with multi-keywords from a global docutneollection available
in the P2P network. One of the merits of the proposed apprisatiat indexing is
performed in parallel with retrieval. However, a main liatibn is that the quality
of the answer obtained for a given query depends on the pafyutd the term
combinations it contains.

3.3.3 Peer Data M anagement

While existing architectures for distributed systems Hasen reaching their matu-
rity (e.g. distributed database systems, data integragistems), the P2P paradigm
has emerged as a promising alternative to provide a largle-siecentralized in-
frastructure for resource sharing. Grible et al. have agidh@ an important question
“how data management can be applied to P2P, and what the dsgadzammunity
can learn from and contribute to the P2P aref@B]. The P2P paradigm has gained
much popularity with the first successful file sharing systéeng. Gnutella, KaZaa)
because of the ease of deployment, and the amplificatioreafdhired system prop-
erties as new nodes join (i.e. this is aligned with the definibf the P2P paradigm).
However, the semantics provided by these systems is typivabk. So far in this
report, we have reviewed P2P systems that support key I@oduigeyword search.
In order to support advanced applications which are dealiitly structured and
semantically rich data, P2P systems must provide more stigditied data access
techniques. The overlapping of P2P and database areasdtbtola new class of
P2P systems, called Peer Data Management Systems (PDM3$jevna-based P2P
systems (see Figure 12).

In distributed databases, the location of content is gdlgetaown, the query
optimizations are performed under a central coordinatm, answers to queries
are expected to be complete. On the other side, the ad-hatyaadic membership
of participants in P2P systems makes difficult to predictalioe location and the
quality of resources, and to maintain globally accessitidexes which may become
prohibitive as the network size grows.

The work that has been done in PDMSs mainly addresses thenafon in-
tegration issue. In fact, the potential heterogeneity ¢ dahemas makes sharing
structured data in P2P systems quite challenging. Thigigsll be discussed in
Section 4. Besides, PDMSs have started to study the desijthanmplementa-
tion of complex query facilities (e.g. join and range qus)id his is a fundamental
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Fig. 12 Schema capabilities and distribution [93]

building block of a given PDMS which attempts to be a fullytdisuted data system,
with a high level of query expressiveness. Processing cexipleries requires the
employment of data access techniques which deal with thetstie and semantics
within data. Section 5 discusses complex queries in P2rsgst

4 Schema Management in P2P Systems

Semantic heterogeneity is a key problem in large scale detang systems [57].
The data sources involved are typically designed indepghdand hence use dif-
ferent schemas. To be able to allow meaningful inter-opmrdietween different
data sources, the system needs to define schema mafpahgsna mappingkefine
the semantic equivalence between relations and attrilit®g or more different
schemas.

The traditional approach for querying heterogeneous daiecss relies on the
definition ofmediated schemiaetween data sources [38] (see Figure 13). This me-
diated schema provides a global unified schema for the ddteeisystem. Users
submit their queries in terms of the mediated schema, anensalmappings be-
tween the mediated schema and the local schemas allow thiearquery to be
reformulated into subqueries executable at the local sekeifhere is a wrapper
close to each data source that provides translation serbiesveen the mediated
schema and the local query language [88].

In data integration systems, there are two main approachekefining the map-
pings: Global-as-view (GAV) which defines the mediated stheas a view of the
local schemas, and Local-as-View (LAV) which describeslttal schemas as a
view of the mediated schema [54]. In GAV, the autonomy of datarces is higher
than LAV because they can define their local schemas as thety Wawever, if any
new source is added to a system that uses the GAV approactidecaible effort
may be necessary to update the mediator code. Thus, GAVaheldavored when
the sources are not likely to change. The advantage of a LAetmy is that new
sources can be added with far less work than in GAV. LAV shdadavored when
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Fig. 13 Schema Mapping using a Global Mediated Schema

the mediated schema is not likely to change, i.e. the metiEtbema is complete
enough that all the local schemas can be described as a view of

Given the dynamic and autonomous nature of P2P systemsegfhétion of a
unique global mediated schema is impractical. Thus, theapeiblem is to sup-
port decentralized schema mapping so that a query on oné& geema can be
reformulated in a query on another peer’s schema. The agpesavhich are used
by P2P systems for defining and creating the mappings betpeers’ schemas
can be classified as follows: pairwise schema mapping, mgggsed on machine
learning techniques, common agreement mapping, and schrappging using IR
techniques.

4.1 Pairwise Schema Mappings

In this approach, the users define the mapping between tuail $chemas and the
schema of any other schema which is interesting for thenyiiebn the transitivity
of the defined mappings, the system tries to extract mapgiegseen schemas
which have no defined mapping.

Piazza [45] follows this approach (see Figure [45]). In Béazhe data are shared
as XML documents, and each peer has a schema, expressed iBctidina, which
defines the terminology and the structural constraints@pier. When a new peer
(with a new schema) joins the system for the first time, it miggpschema to the
schema of some other peers of the network. Each mapping taefibiegins with
an XML template that matches some path or sub-tree of annicstaf the target
schema, i.e. a prefix of a legal string in the target DTD’s graan Elements in the
template may be annotated with query expressions (in a sab&@uery) that bind
variables to XML nodes in the source.

The Local Relational Model (LRM) [66] is another examplettfudlows this ap-
proach. LRM assumes that the peers hold relational datajmse each peer knows
a set of peers with which it can exchange data and services.s€h of peers is



Data Sharing in P2P Systems 23

Cv_> DELE

Fig. 14 An Example of Pairwise Schema Mapping in Piazza

called p's acquaintancesEach peer must define semantic dependencies and trans-
lation rules between its data and the data shared by each afquaintances. The
defined mappings form a semantic network, which is used feryqreformulation

in the P2P system.

PGrid also assumes the existence of pairwise mappings eéetpers, initially
constructed by skilled experts [10]. Relying on the trawisytof these mappings and
using a gossiping algorithm, PGrid extracts new mappingsritlate the schemas
of the peers between which there is no predefined schema ntappi

4.2 Mapping based on Machine Learning Techniques

This approach is usually used when the shared data is defassdlon ontologies
and taxonomies as proposed in the Semantic Web [5]. It usesinelearning
techniques to automatically extract the mappings betweeshared schemas. The
extracted mappings are stored over the network, in ordee tesied for processing
future queries.

GLUE [8] uses this approach. Given two ontologies, for eashcept in one,
GLUE finds the most similar concept in the other. It gives welinded proba-
bilistic definitions to several practical similarity meass. It uses multiple learn-
ing strategies, each of which exploits a different type dbimation either in the
data instances or in the taxonomic structure of the ontekgio further improve
mapping accuracy, GLUE incorporates commonsense knowladd domain con-
straints into the schema mapping process. The basic ide@isvide classifiers for
the concepts. To decide the similarity between two concaad B, the data of
concept B is classified using As classifier and vice versa. diount of values that
can be successfully classified into A and B represent thdagiityi between A and
B.
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4.3 Common Agreement Mapping

In this approach, the peers that have a common interest agr@eommon schema
description for data sharing. The common schema is usuatlygused and main-
tained by expert users. APPA [76] makes the assumption #espwishing to co-
operate, e.g. for the duration of an experiment, agree onman@m Schema De-
scription (CSD). Given a CSD, a peer schema can be specifiad ugws. This
is similar to the LAV approach in data integration system&ept that, in APPA,
queries at a peer are expressed in terms of the local viewsha@dSD. Another
difference between this approach and LAV is that the CSD isargiobal schema,
i.e. it is common to a limited set of peers with common intefese Figure 15).
Thus, the CSD makes no problem for the scalability of theesystWhen a peer
decides to share data, it needs to map its local schema toSbe & APPA, the
mappings between the CSD and each peer’s local schema ead kioally at the
peer. Given a query Q on the local schema, the peer reforesu@tto a query on
the CSD using locally stored mappings.

AutoMed [70] is another system that relies on common agre¢srfer schema
mapping. It defines the mappings by using primitive bidie@l transformations
defined in terms of a low-level data model.

Community | Community 2

Fig. 15 Common Agreement Schema Mapping in APPA

4.4 Schema Mapping using IR Techniques

This approach extracts the schema mappings at query ear¢imie using IR tech-
niques by exploring the schema descriptions provided bssuBeerDB [62] follows
this approach for query processing in unstructured P2ParksvFor each relation
which is shared by a peer, the description of the relationinaltributes is main-
tained at that peer. The descriptions are provided by ugens creation of relations,
and serve as a kind of synonymous names of relation namegtaibdtes. When a
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query is issued, some agents are flooded to the peers to firgbtaritial matches
and bring the corresponding meta-data back. By matching&egs from the meta-
data of the relations, PeerDB is able to find relations thatpatentially similar to
the query relations. The found relations are presentecetaskr who has issued the
query, and she decides on whether or not to proceed with #iérn of the query
at the remote peer which owns the relations.

Edutella [12] also follows this approach for schema mappinguper-peer net-
works. Resources in the Edutella are described using therR&&data model, and
the descriptions are stored at superpeers. When a uses ssjuery at a peer p, the
query is sent to p's super-peer where the stored schemaiptests are explored
and the address of the relevant peers are returned to thdfuibersuper-peer does
not find relevant peers, it sends the query to other supesgeeh that they search
relevant peers by exploring their stored schema descnigtim order to explore
stored schemas, super-peers use the RDF-QEL query landqRR§eQEL is based
on Datalog semantics and thus compatible with all existingrg languages, sup-
porting query functionalities which extend the usual lielzl query languages.

Independently of the approach used to implement the scheappings, P2P sys-
tems attempt to exploit the transitive relationships amopegr schemas to perform
data sharing and integration [99]. While in traditionaltdizuted systems, schema
mappings form a semantic tree, in P2P systems the mappimgs&emantic graph
By traversing semantic paths of mappings, a query over oae ga obtain rele-
vant data from any reachable peer in the network. Semantis zae traversed by
reformulating queries at a peer into queries on its neighbor

5 Queryingin P2P Systems

The support of a wider range of P2P applications motivategtolution of current
P2P technologies in order to accommodate many search tygexaid before, a
P2P system should support the operating application withpgmopriate level of
query expressiveness. Advanced applications which adindesith semantically
rich data require an expressiveness level higher than fileAaased or key-based
lookup. In the following, we discuss the different techréquised for processing
complex queries in P2P systems. These querying techniguebe distinguished
according to:

e Search completenestie network is entirely covered by the search mechanism.
Relaxing the search completeness leadsatitial lookup

e Result completenessie found result set is entirely returned to the user. Retaxi
the result completeness leadgtartial answering

e Result granularity:generally, the returned results are retrieved from, and thu
have the same type as, the original queried data (e.g. mies¢ XML docu-
ments, database tuples). Returning results at a diffeegat bf granularity (by
making data abstraction) leads dpproximate answeringrhe term “approxi-
mate” may still be ambiguous, due to its wide employment iargyprocessing
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proposals. However, the following sections tend to give ecise definition of
what we are referring to by “approximate answers”.

5.1 Partial Lookup

The advantages of P2P data sharing systems, like scaladnilit decentralization,
do not come for free. In large-scale dynamic systems, it &lpempossible to
guarantee a complete search. Qdbe a query issued by a peem the system, and
Po the set of relevant peers, i.e. the peers that store, at masguery resulQ is
said to be aotal-lookupquery if it requiresall the results available in the system.
Here, the seffg should be entirely visited. In the case wh&eequiresany kresults,
Qs said to be artial-lookupquery.

The impracticality of an exhaustive flooding, the limitecblkredge provided by
indexes and the errors they may contain, and the incorretaiséc mappings are
reasons among others for considering that all queries indy&@ms are in reality
processed as being partial-lookup queries. In other tetimesqueryQ issued by
peerp in a P2P network of siz&l will be routed in a subnetwork of siz¢’, and
thus a subse% C Pg can be targeted. The filename-based, key-based and keyword-
based searches have been presented earlier in this chiégter.we discuss three
types of complex queries: range, multi-attribute and jaieries. The importance of
these queries has been recognized in many distributedommrénts (e.g. parallel
databases, Grid resource discovery) since they signifjcanhance the application
ability to precisely express its interests.

5.1.1 RangeQueries

Range querieare issued by users to find all the attribute values in a ceréaige
over the stored data.

Several systems have been proposed to support range quefigB networks.
The query processing in these systems rely on underlyingfHiTother indexing
structures. Some argue that DHTSs are not suited to rangeegy@}. The hash func-
tions used to map data on peers achieve good load balancingpmot maintain
data proximity, i.e. the hash of two close data may be two famipers. Despite of
this potential shortcoming, there have been some range/ queposals based on
DHTs.

Instead of using uniform-hashing techniques, Gt [9] employ locality sen-
sitive hashing to ensure that, with high probability, sanilanges are mapped to the
same peer. They propose a family of locality sensitive hasletfons, called min-
wise independent permutations. The simulation resultevsimod performance of
the solution. However, there is the problem of load unbadnc large networks.
In [64] the authors extend the CAN protocol using the Hillsrace-filling curve
and load balancing mechanisms. Nearby ranges map to nedhyzGnes, and
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if a range is split into two sub-ranges, then the zones of tiieranges partition
the zone of the primary range. Thus, the one-dimensionalespédata items is
mapped to the multi-dimensional CAN zones. Converselytindihensional data
items are mapped to data points in one-dimensional spageghithe space-filling
curve in [27]. Such a construction gives the ability to shascross multiple at-
tributes.

Some works rely on Skip list data structure which, unlike DHAdes not require
randomizing hash functions and thus can support rangeegie3kipNet [63] is a
lexicographic order-preserving DHT that allows data itemith similar values to
be placed on contiguous peers. It uses names rather thaedhideimtifiers to order
peers in the overlay network, and each peer is responsible fange of strings.
This facilitates the execution of range queries. Howevas, mot efficient because
the number of peers to be visited is linear in the query range.

Other proposals for range queries avoid both DHT and Skipstisictures. P-
Grid [10] is based on a randomized binary prefix tree. Onetéitian is that P-
Grid considers that all nodes in the system have a fixed dgpacid content is
heuristically replicated to fill all the node capacity. Hoxeg there is no formal
characterization of either the imbalance ratio guaranteetie data-movement cost
incurred.

BATON [40] is a balanced binary search tree with in-leveké$irfor efficiency,
fault-tolerance, and load-balancing. VBI-tree [41] prees a virtual binary overlay
which is an enhancement of BATON, and focuses on employinig-eimensional
indexes to support more complex range query processingnt@mproblems to bal-
anced tree overlay structures is that peer joining or lepwém cause a tree structural
change, and the update strategies may get prohibitive untigh churn environ-
ment.

5.1.2 Join Queries

Distributed data among peers could be seen, in some casesgtsf large relational
tables fragmented horizontally. Running efficient join deg over such massively
dispersed fragments is a challenging task. Two researafistbave done some ini-
tial works on P2P join operations.

In [80], the authors describe a three layer architecturd@fRIER system and
implement two equi-join algorithms. In their design, a keycbnstructed from a
“namespace” (relation) and a “resourcelD” (primary key lefadilt). Queries are
multicast to all peers in the two namespaces to be joined fif$tealgorithm is a
version of the symmetric hash join algorithm [WA91]. Eaclepia the two names-
paces finds the relevant tuples and hashes them to a new cammgspace. The
resource ID in the new namespace is the concatenation ojtibutes. The sec-
ond algorithm, called “fetch matches”, assumes that onaef¢lations is already
hashed on the join attributes. Each peer in the second naicefpds tuples match-
ing the query and retrieves the corresponding tuples franfitkt relation. The au-
thors leverage two other techniques, namely the symmedrid-pin rewrite and
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the Bloom filter rewrite, to reduce the high bandwidth ovedieof the symmetric
hash join. For an overlay of 1000 peers, they evaluated the performance of their
algorithms through simulation. The results show good perémce of the proposed
algorithms. However, for the cases where the join relatltms a large number of
tuples, this solution is not efficient, especially in termis@mmunication cost.

In [72], the authors considered multicasting to a large nemnolbpeers inefficient.
Thus, they propose using a set of dedicated peers calle@ iguyds to monitor
partitions of join attributes. Join queries are therefaatonly to range guards
which decide the peers that should be contacted to exeitpitry.

5.1.3 Multi-Attributes Queries

There has been some work on multi-attribute P2P queriesMitigAttribute Ad-
dressable Network (MAAN) [59] is built on top of Chord to pide multi-attribute
and range queries. They use a locality preserving hashifumct map attribute val-
ues to the Chord identifier space, which is designed withskaraption that the data
distribution could be known beforehand. Multi-attribuéenge queries are executed
based on single-attribute resolution@tlogn+ n* smin) routing hops, whera is
the number of peers of the DHT asgi, is the minimum range selectivity across
all attributes. The range selectivity is defined to be thmrat the query range to
the entire attribute domain range. However, the authoris@ttat there is a query
selectivity breakpoint at which flooding becomes bettenttieeir scheme. Another
drawback of MAAN is that it requires a fixed global schema wahis known in
advance to all peers. The authors followed up with the RDFEPggstem to allow
heterogeneity in peers schemas [58]. Each peer containstiaBéd data items de-
scribed as triplegsub ject predicateobject. The triples are hashed onto MAAN
peers. The experimental results show improvement in loghbe, but no test for
skewed query loads was done.

5.1.4 Fuzzy Queries

Information Need vs Queryn information systems, thimformation needs what
the user (or group of users) desires to know from the storéal ta satisfy some
intended objective (e.g. data analysis, decision makkigyever, thequeryis what
the user submits to the system in an attempt to get that irsfthomneed.

Precision vs Accuracy:et us examine what is the relation betweeacisequery
statements and theccuracyof the returned results according to the information
need. Consider the following relational table (Table 2} thaintains some patient
records in a given hospital

Suppose now that a doctor requires information about yoatigmts diagnosed
with Malaria (i.e. the information need). In a conventio®#L query, we must

1 Body Mass Index (BMI): patient’s body weight divided by tleuare of the height.
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Table 2 Patient Table

[Id][Age] Sex [BMI] Disease |
t1|| 36 |female 17 | Malaria
to|| 23| male | 20 | Malaria
t3|| 45 |femalel1l6.5| Anorexia
t4|| 33 |female 23 | Malaria
ts|| 55 |female 21 |Rheumatis|
tg|| 19| male | 18 | Malaria

=]

decide what are the ages of people considered as young. taskavhere such age
values fall into thg21, 35| range, the SQL query is written as follows:

Select all From Patient Where age in [21, 35]
and Di sease = Malaria

The query above will return two tuplet: andt,. Unlike other contexts where
theyoungterm is well defined, such in banking applications where theed clients
precisely decides of the advantages they may benefit framtegtm may not have
a precise definition in biological contexts. For instante, tuplets may bring ad-
ditional information to the doctor, affecting its analysisdecision. From this point
of view, we say that the query results are not accurate, adfhthe query has been
precisely stated. One way to include tupjén the result set is to expand the scope
of the selection predicate in order to encompass more dhates, The previous query
is modified as follows:

Select all From Patient Where age in [18, 35]
and Di sease = Malaria

Although it selects more tuples, the query still fails to fingles lying just out-
side the explicit range of the selection predicate (e.detty). This is due to the
crisp boundaries of the search range. Furthermore, thaenseasure of inclusion,
i.e. there is no way to know which tuples are strongly saitigfythe information
need and which are weakly satisfying it. Introducing fuegs into user queries is
a viable solution for that problem, i.e. introducing somgigtision in query state-
ments may in some cases improve accuracy.

A fuzzy set is a class withinsharpboundaries. The grade of membership of an
object in a fuzzy set is a number in the unit interval or, mazaegally, a pointin a
partially ordered set [51].

The application of gradual predicates, such astbeNG predicate presented
in Figure 16, results in associating membership degreasled in aPATIENT re-
lational table. For example, a tuple whose attribute valageis equal to 21 will
be associated with a membership degree.bfa@cording to the'OUNG predicate.
Hence, tuples can “partially” belong to the result set delegmon how well they fit
the information need.

In [77], fuzzy techniques have been used in the design of BRiation systems
based on collecting and aggregation peers’ opinions. Cteiaing peer’s reputa-
tion by either “bad” or “good” based on some defined thresiwoitt adequate, as it
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16 30 Age (years)

Fig. 16 Gradual predicate on attributes e

would characterize in the same way a positive reputatiodyred by the collection
of only positive opinions by many users and a reputatiort kiih a limited number
of heterogeneous opinions that produce a value immedialbelye the threshold; the
same reasoning can be applied to negative reputations.

A recent work tends to introduce fuzziness into the Bestidgiform [94].
In [68], the authors propose FuzzyPeer, a generic P2P sysglech supports simi-
larity queries. An image retrieval application is implertezhas a case study. Fuzzy
queries like “find the togk images which are similar to a given sample” are very
common in such applications because it is difficult for husntanexpress precisely
an image’s content in keywords or using precise attributeeg The authors in-
vestigate the problem of resolving similarity queries. Bpgroach that consists in
setting a similarity threshold and accepting objects oblyv& this value is rejected.
In fact, choosing the threshold value is not trivial giveattthe interpretation of
an image depends on the user’s perception of the domain. gpjreach proposed
in [68] is based on the following observation: if two querae similar, the topk
answers for the first one may contain (with high probabil#gjne of the answers
for the second query. In FuzzyPeer some of the queries asegddue. they are not
propagated further) and stay resident inside a set of p&kerase the terrfrozenfor
such queries. The frozen queries are answered by the strie@sudts that passes
through the peers, and was initiated by the remaining rugaireries. Then, the au-
thors propose distributed optimization algorithm in ortteimprove the scalability
and the throughput of the system.

5.2 Partial Answering

As seen before, a first repercussion of the scale of P2P systemuery processing

is that all queries capartially search the network. Another issue is that the amount
of available data in P2P systems is dramatically increadutmye specifically, it
becomes difficult to retrieve a few data items within a laryactured data set in
current PDMSs. Consider that a user issues the followingygQeselect hotels in
Nice where price j 100(euros) and proximity j 8(kmihe seRq of results returned

by the set of relevant peeF% may include a number of hotels that is so far from
the one required by the user. Therefore, rank-aware quidteetopk and skyline
queries started to emerge in order to provide a partial wgsukﬂseRQ, with thek
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results having the highest grades of membership to thetrestiRg, i.e. R’Q C Rao.
Indeed, the user is interested in the most relevant availasdults, which may be
specified in the query as followselect hotels with cheap price, and yet close to the
beach The degree of relevance (score) of the results to the gseatgtermined by

a scoring function.

Ranking results in a distributed manner is difficult becaasking is globalall
results (matching a query) have to be ranked w.r.t. eaclr.dtha completely dis-
tributed system, the results returned for identical qgesi®uld ideally be the same,
which is not an issue in a centralized implementation. Irrgdascale P2P system,
the lack of a central location to aggregate global knowletig&es the problem of
ranking challenging.

5.2.1 Top-k Queries

Given a datasdDd and a scoring functiofi, a topk query retrieves th& data items
in D with the highest scores accordingftoThe scoring function is specified by the
user according to its criteria of interests.

In unstructured P2P systems, one possible approach foegsing topk queries
is to route the query to all peers, retrieve all availablengars, score them using the
scoring function, and return to the user theighest scored answers. However, this
approach is not efficient in terms of response time and conmation cost. Togkis
a popular aspect of IR. As mentioned before, PlanetP [33)aip content ranking
search in Peer IR systems. The foguery processing algorithm works as follows.
Given a quenQ, the query originator computes a relevance ranking of peghs
respect td, contacts them one by one from top to bottom of ranking and tsm
to return a set of their top-scored document names togettierteir scores. To
compute the relevance of peers, a global fully replicateléxris used that contains
term-to-peer mappings. This algorithm has very good peréorce in moderate-
scale systems. However, in a large P2P system, keeping-datéothe replicated
index is a major problem that hurts scalability.

In the context of APPA, a fully distributed solution is pregeal to execute tok-
queries in unstructured P2P systems [74]. The solutionhiegoa family of algo-
rithms that are simple but effective. It executes togueries in completely dis-
tributed fashion and does not depend on the existence dilcqreers. It also ad-
dresses the volatility of peers during query execution aadsiwith situations where
some peers leave the system before finishing query progessin

In [92], the authors leverage the usage of super-peer nk$ywand propose an
algorithm for distributed processing of tégueries on the top of Edutella [12]. In
Edutella, a small percentage of nodes are super-peers @aadsumed to be highly
available with very good computing capacity. The superpaee responsible for
topk query processing and other peers only execute the quedabyl@and score
their resources. A limitation of this framework is that itsames a global shared
schema as well as consistent ranking methods employed &t pee
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As for other complex queries, processing togueries in DHTSs is quite chal-
lenging. A solution is to store all tuples of each relationisyng the same key (e.g.
relation’s name), so that all tuples are stored at the sarae phen, topk query
processing can be performed at that central peer usingkmelisn centralized algo-
rithms. However, the central peer becomes a bottleneckiagtegoint of failure.
In the context of APPA, a recent work has proposed a novetisaldor Topk
query processing in DHT systems [75]. The solution is basethe TA algorithm
[FLNO3, GKB00, NR99] which is widely used in distributed si1s. The solution
is based on a data storage mechanism that stores the sh#add tee DHT in a
fully distributed fashion, and avoids skewed distributafrdata among peers.

5.2.2 Skyline Queries

Top-k queries are sometimes difficult to define, especially if iplétaspects (i.e.
scoring functions) have to be optimized. It is often not cleaw to weight these
aspects in order to obtain a global rank. Given such a mugtiepence criteria, the
concept of skyline queries provide a viable solution by firgda set of data points
that are nodominatedby any other points in a given data set. A point dominates
another point if it is no worse in all concerning dimensiond aetter in at least one
dimension according to user preferences. Objects belgrigiskyline are precisely
those objects that could be the best under some monotoniagdaonctions. Most
existing studies have focused mainly on centralized systamd resolving skyline
queries in a distributed environment such as a P2P netwestilian emerging topic.

[73] is the first attempt on progressive processing of skytjueries on a P2P
network such as CAN [82]. The authors present a recursiviemggartitioning and
a dynamic region encoding method to enforce a partial orderthe CAN's zones,
so that all the participating machines can be correctlylpipd for query execu-
tion. During the query propagation, data spaces are dyrsdiynjgruned and query
results are progressively generated. Therefore, userstdoane to wait for query
termination to receive partial results, substantiallyueidg the query response time.
However, this work focuses only @onstrained skyline queri¢32] where users are
only interested in finding the skyline points among a subfdata items that satis-
fies multiplehard constraints. Besides, it suffers from workload imbalareesed
by skewed query ranges.

A more recent work [84] has proposed an efficient solutionskyline query
processing in the context of BestPeer. BestPeer [94] is goR2fdrm that supports
both structured and unstructured overlays. The solutiopgsed in [84] is called
Skyline Space Partitionin¢SSP), and is implemented in the BestPeer’s structured
network, called BATON [40]. It supports processimgconstrainedgkyline queries,
which search skyline points in the whole data space. Thikweals with the issue
of imbalanced query load.
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5.3 What about Approximate Answering?

To fix the ideas previously presented, and to eliminate anlyigumity, we precise
here that &pproximate answeririg

e Is not only about approximating the search spade: Section 5.1, the fact of
relaxing search completeness, due either to the limitedre@e of routing pro-
tocols or to the inaccuracy of data indexes, has been refas‘partial lookup” .

e Is not only about introducing flexibility into user’'s quesieBy flexible queries
we refer to queries that may contain keywords, wildcardsges, or include
user’s preferences (e.g. tépskyline queries) or user’s perception of the queried
domain (e.g. fuzzy queries). This flexibility certainly guguts users with more
facilities to express their interests.

e Is not only about approximating query evaluation techngju@uery evaluation
techniques, which are initially defined in centralized eomiments, can be only
approximated in the context of P2P systems. Examples aifeirf4®hich the
notion of relaxed skylinds introduced, and [42] in which the well-known TA
algorithm [87] is extended to adapt to P2P scenarios. Foerflostration, the
topk answers returned to a user in a P2P system do not exactly rietcet
of topk answers which would be obtained if all data were availabie jamo-
cessed under a central coordination. This is consideredhatiaal repercussion
of the nature of P2P networks on any computation method riegisome global
information.

e It is about returning approximate results, represented diféerent level of ab-
straction: As P2P systems start getting deployed in e-business antificie
environments, the vast amount of data within P2P databasssspa different
challenge that has not been intensively researched uogihty. In collaborative
and decision support applications, a user may prefepgmoximatebut fast an-
swer. Approximate answers do not belong to the originalltestiR,. However,
they provide data descriptioRg, which may be queried or used as an alternative
dataset for other operations input, including queryingwsing, or data mining.

Aggregation Queries

Aggregation queries have the potential of finding applaraiin decision support,
data analysis and data mining. For example, millions of paeross the world may
be cooperating on a grand experiment in astronomy, andrastrers may be inter-
ested in asking decision support queries that require theeggtion of vast amounts
of data covering thousands of peers [17].

Consider a single tabl& that is horizontally partitioned and distributed over a
P2P system. An aggregation query can be defined as follows:

Sel ect Agg- Op(col) From T \Were sel ection-condition

TheAggOpmay be any aggregation operator sucBas, COUNT, AVG, MAX , and
MIN. Col may be any numeric column @f, or even an expression involving multi-
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ple columns, and theelection-conditioecides which tuples should be involved in
the aggregation. Recently, traditional databases andidacsupport systems have
witnessed the development of néyproximate Query Processing techniqé«€3P
(e.g.[19], [95]) for aggregation queries. These techrscare mainly based on sam-
pling, histograms, and wavelets.

Initial works have aimed to support aggregation querie2iR Bystems by intro-
ducing OLAP technigues which employ materialized viewsralaga ( [67], [61]).
However, the distribution and management of such views sderne very difficult
in such dynamic and decentralized environments. A recenmk Wwas investigated
the feasibility of online sampling techniques for AQP in P&Btems [17]. The au-
thors abandon trying to pick uniform random samples, whiehreearly impossible
to obtain in P2P systems. Instead, they have proposed towitirlskewed samples
while being able to accurately estimate the skew during §amprocess.

Note that aggregation queries are not flexible, i.e. theypeseisely formulated
with specific operators. However, the aggregate valuesnetlto the user provide
information about tendencies within data. For exampledtta cube [35], which is
the most popular data model used for OLAP systems, genesdliecGROUP BY
operation toN dimensions. Pre-computed aggregate values are storeeé cutie
cells and then, the OLAP system provides tools to navigatieinvihese cells. This
allows, for example, to examine the total number of salesgifen product in the
last week of the current year, which have been reported icitéds of France (see
Figure 17).

city

product | so

date
Fig. 17 Data cube

Fuzzy summaries

As seen before, fuzziness can be introduced into the usenfage to allow more
flexibility in query formulation. Fuzzy queries may be irgegted in a quantitative
preference framework, provided that: 1) a membership fandives a similarity

value of tuples to elementary query requirements (the fauzzyradual predicates)
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and 2) fuzzy aggregation computes an overall score thatgltanking items in the
result set. However, we believe that it could not be the usenry first intention
when they deal with such fuzzy queries. The simple fact they heed to define
membership functions to compute attribute-oriented scisreomehow less natural
than explicitly formulating preferences into query [90].

The literature also offers studies of how to express coscepheeds through
constructs such as operators or linguistic variables [58E of the main challenges
of extending query languages is to enrich query formulati@hout drastically re-
ducing the performance of the query evaluation procesguistic summaries, stud-
ied by Yageret alin [96], serve that concern by expressing the content of afset
data. The new expression is a description of the data usiggiktic terms. Many
works, some prior to Yager’s, fall into the domain of lingigssummaries.

Quantified summaries approaches [71, 78] use fuzzy quastifieaddition to
linguistic terms to describe the data. For instance, in Sarg8QL [78], evaluating
“summary most frorRATIENTS where age is yourigorovides a degree of validity
for the proposition MosStPATIENTS are yound. Linguistic summaries also com-
prise fuzzy rules-based summaries. Such summaries arevdigt by searching
associations and relations between attribute values 23} exploiting fuzzy func-
tional dependencies [22, 29]. They produce, in the caseanfug rules of Boset
al [23], propositions such agie more age is old, the more patient day is Riglt
is also possible to summarize records by repeatedly gériamlinguistic descrip-
tions. This approach uses techniques from automatic leguand classification. Its
output is a tree of descriptions. Lee and Kimis-&” hierarchies [53] and the Sain-
tEtiQ model [34] are instances of this approach.

At the end of this chapter, we lighten the importance of gimerysuch fuzzy
summaries in centralized as well as in distributed P2P enwilents. First of all,
these database summaries are a means of significantly ngdhei volume of input
for processes that require access to the database. Thensesjioe benefits from
the downsizing. However, this response time gain is madarlglat the expense
of a loss of precision in the answer (i.e. this what we ardr@alpproximate an-
swering. This is of no importance when only a rough answer is reguiBesides,
imprecision can be sometimes a requirement. This is the foasastance when
querying a medical database for anonymous, statisticatrimdtion. Indeed, precise
information can violate medical confidentiality. The loggoecision is also of no
importance when a request only aims at determining the abs#rinformation in a
database. This is the case when one wants to know if a datebldedy to answer
the query.

Existing techniques have been proposed for querying fuarynsaries in cen-
tralized environments [65, 91], however, such technique® mot been studied in
P2P environments yet. The next chapter proposes a soludomdinaging fuzzy
summaries in P2P systems to support DB applications withceqapate query fa-
cilities.

2 Patient day: number of days spent in a hospital.



36

Rabab Hayek and Guillaume Raschia and Patrick Valduné2\@ureddine Mouaddib

References

oA WNR

10.
11.

12.
13.

14.

15.

16.
. B.Arai, G.Das, D.Gunopulos, V.Kalogeraki: Approxiingt aggregation queries in peer-to-

18.

19.
20.

21.

22.
23.
24.
25.

26.

27.

. http://lwww.gnutella2.com
. http://www.gnutella.com
. http://lwww.kazaa.com

http://www.napster.com

. http://lwww.w3.0rg/2001/sw/
. A.Crespo, H.G.Molina: Routing indices for peer-to-psgstems. In: Proc. of the 28 tn Con-

ference on Distributed Computing Systems (2002)

. A.Crespo, H.G.Molina: Semantic overlay networks for gggtems. Tech. rep., Computer

Science Department, Stanford University (2002)

. A.Doan, J.Madhavan, R.Dhamankar, P.Domingos, A.Haleegprning to match ontologies

on the semantic web. The VLDB Jourri(4), 303-319 (2003)

. A.Gupta, D.Agrawal, A.El-Abbadi: Approximate rangeesgion queries in peer-to-peer sys-

tems. In: CIDR (2003)

etal, K.: P-grid: a self-organizing structured p2p systenGDD Rec.32(3), 29-33 (2003)
etal, Q.: Search and replication in unstructured peer-ta-peevorks. In: ACM Int. confer-
ence on Supercomputing (2002)

etal, W.: Edutella: a p2p networking infrastructure baseddfn In: WWW’02 (2002)
Androutsellis-Theotokis, S., Spinellis, D.: A surveypeer-to-peer content distribution tech-
nologies. ACM Comput. SunB6(4), 335-371 (2004)

A.Rowstron, P.Druschel: Pastry: Scalable decenédlabject location and routing for large-
scale peer-to-peer systems. In: IFIP/ACM Internationahf€eence on Distributed Systems
Platforms (Middleware) (2001)

A.Rowstron, P.Druschel: Storage management and @gaohiPAST, a large—scale, persistent
peer-to-peer storage utility. In: Proc.SOSP (2001)

A.Singla, C.Rohrs: Ultrapeers: another step towardsedjia scalability. Tech. rep. (2002)

peer networks. In: ICDE (2006)

Bawa, M., Manku, G.S., Raghavan, P.: Sets: search eetidnc topic segmentation. In:
SIGIR '03: Proceedings of the 26th annual international ASIGIR conference on Research
and development in informaion retrieval, pp. 306—-313 (2003

B.Babcock, S.Chaudhuri, G.Das: Dynamic sample seledtir approximate query process-
ing. In: SIGMOD (2003)

B.Cooper, H-G.Molina: Ad hoc, self-supervising peepeer search networks. ACM Trans.
Inf. Syst.23(2), 169—200 (2005)

B.Maniymaran, M.Bertier, A-M.Kermarrec: Build one,tgme free: Leveraging the coexis-
tence of multiple p2p overlay networks. In: Proc of the 2%teinational Conference on
Distributed Computing Systems ICDCS, p. 33. IEEE Computaiedy, Washington, DC,
USA (2007)

Bosc, P., Dubois, D., Prade, H.: Fuzzy functional depeaigs and redundancy elimination.
JASIS49(3), 217-235 (1998)

Bosc, P., Pivert, O., Ughetto, L.: On data summariescoesggradual rules. In: Fuzzy Days,
pp. 512-521 (1999)

B.Yang, H-G.Molina: Improving search in peer-to-peetworks. In: Proc of the 22 nd Inter-
national Conference on Distributed Computing Systems SP(2002)

B.Zhao, J.Kubiatowicz, A.Joseph: Tapestry: An infizcture for fault-tolerant wide-area lo-
cation and routing. Tech. rep., Computer Science DividibrC.Berkeley (2001)

B.Zhao, L.Huang, J.Stribling, S.Rhea, A.Joseph, Jatalvicz: Tapestry: A resilient global-
scale overlay for service deployment. IEEE Journal on $ede&reas in Communicatior2?,
41-53 (2004)

C.Schmidt, M.Parashar: Enabling flexible queries withrgntees in p2p systems. IEEE In-
ternet Computin@®8(3), 19-26 (2004)



Data Sharing in P2P Systems 37

28.
29.
30.
31.
32.
33.
34.

35.

36.
37.
38.

39.
40.

41.

42.

43.
44.
45.
46.

47.

48.

49,
50.
. L.A.Zadeh: Fuzzy sets. Information and Con80838—-353 (1965)
52.

53.

C.Tang, Z.Xu, M.Mahalingam: Peersearch: Efficientrimfation retrieval in peer-to-peer net-
works. Tech. Rep. HPL-2002-198, HP Labs (2002)

Cubero, J.C., Medina, J.M., Pons, O., Miranda, M.A.\atdsummatrization in relational
databases through fuzzy dependencies. Information Sx3at(3-4), 233-270 (1999)
D.Malkhi, M.Naor, D.Ratajczak: Viceroy: a scalable aythamic emulation of the butterfly.
In: Proc of the twenty-first annual symposium on Principléslistributed computing, pp.
183-192 (2002)

D.Milojicic, et al: Peer-to-peer computing. Tech. rep., HP labs (2002)

D.Papadias, Y.Tao, G.Fu, B.Seeger: An optimal and pssire algorithm for skyline queries.
In: ACM SIGMOD, pp. 467478 (2003)

F.Cuenca-Acuna, C.Peery, R.Martin, T.Nguyen: Plardspg gossiping to build content ad-
dressable peer-to-peer information sharing communitieddPDC-12 (2003)

G.Raschia, N.Mouaddib: A fuzzy set-based approachtabdae summarization. Fuzzy sets
and systems 129(2) pp. 137-162 (2002)

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., RaithD., Venkatrao, M., Pellow, F.,
Pirahesh, H.: Data cube: A relational aggregation opegegoeralizing group-by, cross-tab,
and sub-totals. J. Data Mining and Knowledge Discovéfl), 29-53 (1997)

Gribble, S., Halevy, A., Ives, Z., Rodrig, M., Suciu, DVhat can databases do for peer-to-
peer? In: WebDB Workshop on Databases and the Web (2001)

G.Skobeltsyn, T.LuwZarko, I.P., M.Rajman, K.Aberer: Query-driven indexing &zalable
peer-to-peer text retrieval. Infoscale p. 14 (2007)

G.Wiederhold: Mediators in the architecture of futurimation systems. IEEE Computer
25, 38-49 (1992)

Hellerstein, J.M.: Toward network data independent&M®D Rec32, 200-3 (2003)
H.Jagadish, B.Ooi, Q.Vu: Baton: A balanced tree strecfar peer-to-peer networks. In:
VLDB (2005)

H.Jagadish, B.Ooi, Q.Vu, R.Zhang, A.Zhou: Vbi-tree:gepto-peer framework for support-
ing multi-dimensional indexing schemes. In: ICDE, p. 340@D

I.Chrysakis, D.Plexousakis, |.Chrysakis, D.Plex&issaSemantic query routing and dis-
tributed top-k query processing in peer-to-peer networksh. rep., Department of Computer
Science, University of Crete (2006)

I.Clarke, S.Miller, T.Hong, O.Sandberg, B.Wiley: Ryciing free expression online with
freenet. IEEE Internet Computirgf1), 40—49 (2002)

|.Stoica, R.Morris, D.Karger, M.F.Kaashoek, H.Baisknan: Chord: A scalabale peer-to-peer
lookup service for internet applications. In: Proc ACM SIGKM (2001)

|.Tartinov,et al The Piazza peer data management project. In: SIGMOD (2003)

lyer, S., Rowstron, A., Druschel, P.: Squirrel: a deadized peer-to-peer web cache. In:
PODC '02: Proceedings of the twenty-first annual symposiumPanciples of distributed
computing, pp. 213-222 (2002)

J.Kubiatowicz, D.Bindel, Y.Chen, S.Czerwinski, PdfatD.Geels, R.Gummadi, S.Rhea,
H.Weatherspoon, C.Wells, B.Zhao: Oceanstore: an arthiedor global-scale persistent
storage. SIGOPS Oper. Syst. R&¥(5), 190-201 (2000)

Karger, D., Lehman, E., Leighton, T., Panigrahy, R.,iheyM., Lewin, D.: Consistent hash-
ing and random trees: distributed caching protocols foevalg hot spots on the world wide
web. In: STOC '97: Proceedings of the twenty-ninth annualVAS§/mposium on Theory of
computing, pp. 654-663 (1997)

K.Hose, C.Lemke, K.Sattler: Processing relaxed skglin pdms using distributed data sum-
maries. In: CIKM, pp. 425-434 (2006)

L.Adamic,etal: Search in power law networks. Physical Review4:46,135-46,143 (2001)

L.A.Zadeh: Concept of a linguistic variable and its &gilon to approximate reasoning-I.
Information Systems, 199-249 (1975)

Lee, D.H., Kim, M.H.: Database summarization using yu&A hierarchies. |IEEE Trans. on
Systems, Man and Cybernetics-Part B: Cyberneic$8—78 (1997)



38

54.

55.

56.

57.

58.

59.

60.

61.
62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

Rabab Hayek and Guillaume Raschia and Patrick Valduné2\@ureddine Mouaddib

Lenzerini, M.: Data integration: a theoretical persipec In: PODS '02: Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Priptés of database systems,
pp. 233-246 (2002)

Li, Y., Lao, L., Cui, J.H.: Sdc: A distributed clusteripgotocol for peer-to-peer networks. In:
Networking, pp. 1234-1239 (2006)

L.Ramaswamy, B.Gedik, L.Liu: A distributed approachntle clustering in decentralized
peer-to-peer networks. IEEE Transactions on Parallel aisttiButed System46(9), 814—
829 (2005)

Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.:flerbased schema matching. In:
ICDE '05: Proceedings of the 21st International Conferemed®ata Engineering, pp. 57—-68
(2005)

M.Cai, M.Frank: Rdfpeers: a scalable distributed r@gbsstory based on a structured peer-to-
peer network. In: WWW, pp. 650-657 (2004)

M.Cai, M.Frank, J.Chen, P.Szekely: Maan: A multi-atite addressable network for grid
information services. In: GRID (2003)

M.Castro, M.Costa, A.Rowstron: Should we build gnatelh a structured overlay? SIG-
COMM Comput. Commun. Re@4(1), 131-136 (2004)

M.Espil, A.Vaisman: Aggregate queries in peer-to-p#ap. In: DOLAP (2004)

Ng, W., B.Ooi, K-L.Tan, A.Zhou: Peerdb: A p2p-based systor distributed data sharing.
In: ICDE, pp. 633644 (2003)

N.Harvey, M.Jones, S.Saroiu, M.Theimer, A.Wolman:p8ki: A scalable overlay network
with practical locality properties. In: USENIX Symposiunm énternet Technologies and
Systems (2003)

0.Sahin A.Gupta, D., A.El-Abbadi.: Query processingrgpeer-to-peer data sharing systems.
Tech. rep., University of California, Santa Barbara (2002)

Paik, H.Y., Mouaddib, N., Benatallah, B., Toumani, Fassian, M.: Building and querying
e-catalog networks using p2p and data summarisation tgebsi J. Intell. Inf. Sys26(1),
7-24 (2006)

P.Bernstein, F.Giunchiglia, A.Kementsietsidis, Jdppulos, L.Serafini, |.Zaihrayeu: Data
management for peer—to—peer computing: A vision. In: Pobthe 5th International Work-
shop on the Web and Databases (WebDB) (2002)

P.Kalnis, W.Ng, B.Ooi, D.Papadias, K.Tan: An adaptigergto-peer network for distributed
caching of olap results. In: SIGMOD (2002)

P.Kalnis, W.Ng, B.Ooi, K.Tan: Answering similarity qies in peer-to-peer networks. Inf.
Syst.31(1), 57-72 (2006)

P.Maymounkov, D.Mazieres: Kademlia: A peer-to-peérrimation system based on the xor
metric. In: Int. Workshop on Peer-to-Peer Systems (IPTP$)53—-65 (2002)

P.McBrien, A.Poulovassilis: Defining peer-to-peeradategration using both as view rules.
In: DBISP2P, pp. 91-107 (2003)

Prade, H., Testemale, C.: Generalizing databaseaeddtalgebra for the treatment of incom-
plete/uncertain information and vague queries. Inf. $4(2), 115-143 (1984)

P.Triantafillou, T.Pitoura: Towards a unifying frameldor complex query processing over
structured peer-to-peer data networks. In: DBISP2P, pp-183 (2003)

P.Wu, C.Zhang, Y.Feng, B.Zhao, D.Agrawal, A.EI-Abbdrallelizing skyline queries for
scalable distribution. In: EDBT, pp. 112—-130 (2006)

R.Akbarinia, E.Pacitti, P.Valduriez: Reducing netityaffic in unstructured p2p systems us-
ing top-k queries. Distrib. Parallel Databad€$2-3), 67—-86 (2006)

R.Akbarinia, E.Pacitti, P.Valduriez: Processing kogueries in distributed hash tables. In:
Euro-Par, pp. 489-502 (2007)

R.Akbarinia, V.Martins, E.Pacitti, P.Valduriez: Dgisiand implementation of appa. In: Global
Data Management (Eds. R. Baldoni, G. Cortese and F. DaviO&) press (2006)
R.Aringhieri, E.Damiani, S.Vimercati, S.Parabos¢hamarati: Fuzzy techniques for trust
and reputation management in anonymous peer-to-peemsystdournal of the American
Society for Information Science and Technoldgf(4) (2006)



Data Sharing in P2P Systems 39

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.
95.

96.

97.

98.

99.

Rasmussen, D., Yager, R.R.: SummarySQL - a fuzzy toalld® mining. Intelligent Data
Analysis1, 49-58 (1997)

R.Dingledine, M.Freedman, D.Molnar: The free havepgatodistributed anonymous storage
service. In: International workshop on Designing privaoj&ncing technologies, pp. 67-95.
Springer-Verlag New York, Inc., New York, NY, USA (2001)

R.Huebsch, J.Hellerstein, N.Lanham, B.Thau, L.Shehl&oica: Querying the internet with
pier. In: VLDB (2003)

S.Ratnasamy, M.Handley, R.Karp, S.Shenker: Topaddigiaware overlay construction and
server selection. In: Proceedings of IEEE INFOCOM’'02 (2002

S.Ratnasamy, P.Francis, M.Handley, R.M.Karp, S.Sérerk scalable content-addressable
network. In: SIGCOMM (2001)

Sripanidkulchai, K., Maggs, B.M., Zhang, H.: Efficiemntent location using interest-based
locality in peer-to-peer systems. In: INFOCOM (2003)

S.Wang, B.Ooi, A.Tung, L.Xu: Efficient skyline query pessing on peer-to-peer networks.
In: ICDE (2007) 3

T.Luu, G.Skobeltsyn, F.Klemm, M.Pubharko, I.P., M.Rajman, K.Aberer: Alvisp2p: Scalable
peer-to-peer text retrieval in a structured p2p networkPhoc VLDB (2008)

Tsoumakos, D., Roussopoulos, N.: A comparison of pepeer search methods. In:
Int.Workshop on the Web and Databases (WebDB), pp. 61-6E3}20

U.Guntzer, W.Balke, W.Kj&ling: Optimizing multi-feature queries for image datatsmskn:
VLDB (2000)

Ullman, J.D.: Information integration using logicaéwis. In: ICDT '97: Proceedings of the
6th International Conference on Database Theory, pp. 16:99)7)

V.Kalogeraki, D.Gunopulos, D.Yazti: A local search ima&aism for peer-to-peer networks.
In: Proc CIKM. USA (2002)

Voglozin, A., Raschia, G., Ughetto, L., Mouaddib, N.ntdaook of Research on Fuzzy Infor-
mation Processing in Databases, vol. 1, chap. From UseriiRegents to Evaluation Strate-
gies of Flexible Queries in Databases, pp. 115-142 (2008)

W.A.Voglozin, G.Raschia, L.Ughetto, N.Mouaddib: Queg the S\INTETIQ summaries—a
first attempt. In: Int.Conf.On Flexible Query Answering 8&ms (FQAS) (2004)

W.Balke, W.Nejdl, W.Siberski, U.Thaden: Progressigributed top-k retrieval in peer-to-
peer networks. In: ICDE (2005)

W.Nejdl, W.Siberski: Design issues and challenges dbr and schema-based peer-to-peer
systems. SIGMOD RecoréR, 2003 (2003)

W.Ng, B.Ooi, K.Tan: Bestpeer: A self-configurable peepeer system. In: ICDE (2002)
X.Li, Y.J.Kim, R.Govindan, W.Hong: Multidimensionamge queries in sensor networks. In:
SENSYS (2003)

Yager, R.R.: On linguistic summaries of data. In: Knalgle Discovery in Databases, pp.
347-366. MIT Press (1991)

Yang, B., Vinograd, P., Garcia-Molina, H.: Evaluatingegs and non-forwarding peer-to-peer
search. In: ICDCS '04: Proceedings of the 24th Internati@uanference on Distributed Com-
puting Systems (ICDCS’04), pp. 209—-218 (2004)

Y.Chawathe, S.Ratnasamy, L.Breslau, N.Lanham, Skehelaking gnutella-like p2p sys-
tems scalable. In: In Proc. ACM SIGCOMM (2003)

Y.Halevy, G.Ives, D.Suciu, |.Tatarinov: Schema mediafor large-scale semantic data shar-
ing. The VLDB Journall4(1), 68—-83 (2005)



