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Abstract: In this paper we address the image restoration problem in the variational framework. The focus is set on

denoising applications. Natural image statistics are consistent with a Markov random field (MRF) model

for the image structure. Thus in a restoration process attention must be paid to the spatial correlation between

adjacent pixels.The proposed approach minimizes the conditional entropy of a pixel knowing its neighborhood.

The estimation procedure of statistical properties of the image is carried out in a new adaptive weighted

k-th nearest neighbor (AWkNN) framework. Experimental results show the interest of such an approach.

Restoration quality is evaluated by means of the RMSE measure and the SSIM index, more adapted to the

human visual system.

1 INTRODUCTION

The goal of image restoration is to recover an im-

age that has been degraded by some stochastic pro-

cess. Research focus was set on removing additive,

independent, random noise. However, more general

degradation phenomenons can be modeled, such as

blurring, non-independent noise, and so on. When

the only degradation present in an image is noise, the

model is described by the equation

X̃ = X +N (1)

where X̃ is the degraded image, X is the ideal image

and N is the additive noise term.

The literature in image restoration is vast and several

techniques have been proposed in different frame-

works such as linear and nonlinear filtering in either

the spatial or a transform domain. Nonlinear filtering

approaches are typically based on variational meth-

ods, leading to algorithm based on partial differential

equations. Indeed, these methods define an energy

functional based on geometric or statistical properties

of images. The minimization of this functional leads

to the correspondent partial differential equations or

evolution equation. A great deal of image process-

ing work developments are based on a stochastic

model of image structure given by Markov random

fields (MRFs) (Geman and Geman, 1990). Recent

researches (Huang and Mumford, 1999; Lee et al.,

2003; Carlsson et al., 2007) confirm that the statistics

of natural images are consistent with the MRF model

for the image structure, showing that a spatial corre-

lation between adjacent pixel exists. This correlation

must be take into account in the restoration process

to preserve the image structures. The idea is to con-

sider the intensity of a pixel jointly with the intensities

of its neighborhood. In particular the conditional en-

tropy of the pixel intensity knowing its neighborhood

is minimized (Awate and Whitaker, 2006). We use en-

tropy because it provides a measure of dispersion of

the random variable (Cover and Thomas, 1991) and

it is robust to the presence of outliers in the samples.

The underlying PDF can be estimated directly from

the data using a common nonparametric Parzen win-

dowing method. However Parzen methods presents

some drawbacks that can be avoided using the k-th

nearest neighbor (kNN) methods, as shown in sec-

tion 5. The experimental results show the slightly

better performance of the latter method with respect

to Parzen methods. The quality of restored images is

evaluated by the largely used RMSE measure and also

by means of the Structure Similarity (SSIM) measure



(Wang et al., 2004), more adapted to the human visual

system (HVS).

This paper is organized as follows. In section 2 the

energy and its derivative are presented and the adap-

tive weighted kNN framework is introduced. In sec-

tion 3 a high level overview of the algorithm is given

and in section 4 some experimental results are shown.

Finally, discussion and future works are proposed in

the last section.

2 KNN RESTORATION

2.1 Image Model

Let us model the images as random field. A random

field is a family of random variables X(Ω;T ) for some

index set T , where, for each fixed T = t, the random

variable is defined on the sample space Ω. If we fix

Ω = ω and let T be a set of points defined on a dis-

crete Cartesian grid, we have a realization of the ran-

dom field called the digital image, X(ω,T ). In this

case, {t}t∈T is the set of pixels in the image. For two-

dimensional images, t is a two-vector. If we fix T = t,

and let ω vary, then X(t) is a random variable on the

sample space. We denote a specific realization X(ω; t)
(the intensity at pixel t) a deterministic function x(t).
If we associate with T a family of pixel neighbor-

hoods N = {Nt}t∈T such that Nt ⊂ T , t /∈ Nt , and

u ∈ Nt if and only if t ∈ Nu, then N is called a neigh-

borhood system for the set T . Points in Nt are called

neighbors of t. We define a random vector Y (t) =
{X(t)}t∈Nt , corresponding to the set of intensities at

the neighbors of pixel t. We also define a random vec-

tor Z(t) = (X(t),Y (t)) to denote image regions, i.e.,

pixels combined with their neighborhoods.

2.2 Energy and Derivative

Image restoration is an inverse problem, that can be

formulated as a functional minimization problem. We

consider the conditional entropy functional, i.e., the

uncertainty of the random pixel X when its neighbor-

hood is given, as suitable measure for denoising ap-

plications (Awate and Whitaker, 2006). Thus the re-

covered image satisfies

X∗ = argmin
X

h(X̃|Ỹ = yi) (2)

Entropy functional can be approximated by the fol-

lowing estimator (Ahmad and Lin, 1976)

h(X |Y = yi) ≈−
1

|T | ∑
t j∈T

log p(x j|yi), (3)

where

p(s|yi) =
1

|Tyi
| ∑

tm∈Tyi

Kh(s− xm), (4)

is the Parzen kernel estimate of the PDF. Tyi
is the set

of index pixels which have the same neighborhood yi.

In order to solve the optimization problem (2) a steep-

est descent algorithm is used. The energy derivative

of (3) is (see Appendix for the demonstration)

∂h(X |Y = yi)

∂xi

= −
1

|T |

∇p(zi)

p(zi)

∂zi

∂xi

+χ(xi), (5)

with

χ(xi) =
1

|T |

1

|Tyi
| ∑

t j∈T

∇Kh(x j − xi)

p(x j|yi)
. (6)

The term χ(·) in (6) is difficult to estimate. However

if the Parzen kernel Kh(·) has a narrow window size,

only samples very close to the actual estimation point

will contribute to the pdf. Under this assumption the

conditional pdf is p(s|yi) ≈ Ns/|Tyi
|, where Ns is the

number of pixels equal to s. Thus by substituting and

observing that ∇Kh(·) is an odd function, we observe

that χ(xi) is negligible for almost every value assumed

by xi. In the following we will not consider this term.

Thus the energy derivative is a mean-shift (Comaniciu

and Meer, 2002) term on the high dimensional joint

pdf multiplied by a projection term. The mean-shift

is a simple estimate (Fukunaga and Hostetler, 1975)

of ∇log p(zi).

∇p(zi)

p(zi)
=

d +2

h2

1

k(zi,h) ∑
z j∈Sh(zi)

Kh(z j − zi), (7)

where d is the dimension of Z, Sh(zi) is the support of

the Parzen kernel centered at point zi and of size h, k

being the number of observation falling into Sh(X).

2.3 Limitations of Parzen Windowing

The Parzen method makes no assumption about the

actual PDF and is therefore qualified as nonparamet-

ric. The choice of the kernel window size h is criti-

cal (Scott, 1992). If h is too large, the estimate will

suffer from too little resolution, otherwise if h is too

small, the estimate will suffer from too much statisti-

cal variability.

As the dimension of the data space increases, the

space sampling gets sparser (problem known as the

curse of dimensionality). Therefore, less samples

fall into the Parzen window centered on each sample,

making the PDF estimation less reliable. Dilating the

Parzen window does not solve this problem since it



leads to over-smoothing the PDF. In a way, the limita-

tions of the Parzen Method come from the fixed win-

dow size: the method cannot adapt to the local sample

density. The k-th nearest neighbor (kNN) framework

provides an advantageous alternative.

2.4 K-th Nearest Neighbor Method

In the Parzen-window approach, the PDF at sample

s is related to the number of samples falling into a

window of fixed size centered on the sample. The

kNN method is the dual approach: the density is

related to the size of the window necessary to in-

clude the k nearest neighbors of the sample. The

choice of k appears to be much less critical than the

choice of h in the Parzen method. In the kNN frame-

work, the mean-shift vector is given by (Fukunaga

and Hostetler, 1975)

∇p(zi)

p(zi)
=

d +2

ρ2
k









1

k
∑

z j∈Sρk

z j



− zi



 , (8)

where ρk is the distance to the k-th nearest neighbor.

2.5 Adaptive Weighted kNN Approach

The kNN method provides several advantages with

respect to the Parzen Window method such as the

number of samples falling in the window is fixed and

known. Thus even if the space sampling gets sparser,

we cannot have windows with zero samples falling

into them. Moreover, the window size is locally adap-

tive. However, near the distribution modes there is a

high density of samples. The window size associated

to the k-th nearest neighbor could be too small. In

this case the estimate will be sensible to the statistical

variation in the distribution. To avoid this problem

we would increase the number of nearest neighbors,

to have an appropriate window size near the modes.

However this choice would produce in the tails of the

distribution a window too large. Thus very far sam-

ples would contribute to the estimation.

We propose, as an alternative solution, to weight the

contribution of the samples, i.e.,

1

k
∑

z j∈Sρk

z j →
1

∑k
j=1 w j

k

∑
j=1

z j∈Sρk

w jz j. (9)

Intuitively, the weights must be a function of distance

between the actual sample and the j-th nearest neigh-

bor, i.e., samples with smaller distance are weighted

more heavily than ones with larger distance. Several

weight functions (WFs) may be considered. For in-

stance, a simple function is

w j = 1−

(

ρ j

ρk

)p

with p ∈ [0,+∞[, (10)

where ρ j is the distance to the actual sample of the jth

nearest neighbor and ρk indicate the distance of the

farthest (k-th) neighbor. For p = 1, eq.(10) is equiv-

alent to the linear WF proposed by Dudani (Dudani,

1976) and for p = 2, we have a quadratic WF. Draw-

backs of this simple WF are the zero-value at bound-

aries and the function behavior fixed by the ρk value.

Let us consider now a gaussian WF

w j = exp−
(ρ j/ρk)

2

α
. (11)

In particular this WF is equivalent to apply a gaus-

sian mask of variance α/2 in the actual window of

size ρk. As max j ρ j/ρk = 1, the weights belong to

[exp−1/α,1]. Thus an appropriate value of α must

be chosen (see Fig.1). We would have a quite uniform

weighting process (large gaussian variance) when ρk

is not quite large (i.e., near the distribution modes),

and a smaller variance in the distribution tails (ρk

large) to reduce the effective window size. Thus a

single value for α is clearly inappropriate.

We propose an adaptive value for α to locally match

the distribution

α =
1

8

(

ρmax
k

ρk

)2

, (12)

and the corresponding WF is

w j = exp−
1

8

(

ρ j

ρmax
k

)2

. (13)

Thus the mean shift term in (8) is replaced by

∇p(zi)

p(zi)
=

d +2

ρ2
k

Mk(zi), (14)

where

Mk(zi) =









1

∑k
j=1 w j

∑
j=1

z j∈Sρk

w jz j









− zi (15)

and w j given by eq.(13).

3 ALGORITHM OVERVIEW

The method proposed minimizes the conditional en-

tropy (3) using a gradient descent. The derivative

(5) is estimated in the adaptive weighted kNN frame-

work, as explained in section 2.5. In this case the term
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Figure 1: Weight function behavior as function of α.

∇p/p is expressed by eq.(14). Thus the steepest de-

scent algorithm is performed with the following evo-

lution equation

x
(n+1)
i = x

(n)
i −ν

d +2

ρ2
k

Mk(zi)
∂zi

∂xi

, (16)

where ν is the step size.

At each iteration the mean-shift vector (15) in the high

dimensional space Z is calculated. The high dimen-

sional space is given by considering jointly the inten-

sity of the current pixel and that of its neighborhood,

as explained in section 2.1. The pixel value xi is then

updated by means of eq.(16).

The k nearest neighbors are provided by the Ap-

proximate Nearest Neighbor Searching (ANN) library

(Mount and Arya, ). Indeed computing exact nearest

neighbors in dimensions much higher than 8 seems to

be a very difficult task. Few methods seem to be sig-

nificantly better than a brute-force computation of all

distances. However, it has been shown that by com-

puting nearest neighbors approximately, it is possi-

ble to achieve significantly faster running times often

with a relatively small actual errors.

4 EXPERIMENTAL RESULTS

In this section, some results from the algorithm

proposed are shown. In order to measure the perfor-

mance of our algorithm we degraded the Lena image

(256x256 pixel) by adding a Gaussian noise with stan-

dard deviation σ = 10. We consider a 9 x 9 neigh-

borhoods, and we add spatial features to the original

radiometric data (Elgammal et al., 2003; Boltz et al.,

2007). Formally, the PDF of Z(t), t ∈ T , is replaced

with the PDF of {Z(t), t}, t ∈ T . These spatial fea-

tures allow us to reduce the effect of the non station-

arity of the signal in the estimation process, by pre-

ferring regions closer to the estimation point. The di-

mension of the data d is therefore equal to 83, and we

have to search the k nearest neighbors in such a high
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Figure 2: RMSE and SSIM in function of algorithm itera-
tions for different values of k.

a) b)

c) d)

Figure 3: Comparison of restored images. (a) Noisy image.
(b) UINTA restored. (c) kNN restored, k = 10. (d) kNN
restored, k = 40.

dimensional space. Let us remind that the search is

performed using the ANN library. The algorithm per-

forms a gradient descent as described in section 3.

Figure3 shows a comparison of the restored images.

Fig.2 shows the RMSE and SSIM curves as a func-

tion of the algorithm iterations, for the UINTA (Awate



and Whitaker, 2006) algorithm, and our kNN based

restoration method with different values of k. In

Table1, the optimal values of the RMSE and SSIM

are shown. Our algorithm provides results compara-

ble with UINTA and slightly better when k ∈ [10;50].
However a small value of k produces some artifacts

in the restored images, as shown in Fig.4. A larger

value of k results in an increasing processing time.

Moreover the restored images seem to lost some de-

tails, for instance, on the hat. An intermediate value of

k = 40 is a good compromise between the quality of

the restored image and the processing time. In terms

of speed, our algorithm is much faster than UINTA,

due to the adaptive weighted kNN framework. In-

deed, UINTA have to update the Parzen window size

at each iteration. To do this a cross validation opti-

mization is performed. On the contrary our method

simply adapts the PDF changes during the minimiza-

tion process. For instance, cpu time in the Matlab

environment for standard UINTA algorithm is almost

4500 sec. Our algorithm, with k = 10, only requires

around 600 sec.

k RMSE SSIM

3 5.511 0.918

5 4.219 0.917

10 4.012 0.910

15 4.061 0.907

20 4.142 0.905

30 4.347 0.895

40 4.498 0.889

50 4.642 0.882

80 4.960 0.867

100 5.117 0.832

200 5.541 0.805

UINTA 4.651 0.890

Table 1: RMSE and SSIM values for different values of k,
and for UINTA.

5 CONCLUSION

This paper presents a restoration method in the vari-

ational framework based on the minimization of the

conditional entropy using the kNN framework. In par-

ticular a new adapted weighted kNN (AWkNN) ap-

proach has been proposed. The simulations indicated

slightly better results in RMSE and SSIM measures

w.r.t. the UINTA algorithm and a marked gain in cpu

speed. This gain is due to the property of AWkNN

that simply adapts the PDF changes during the min-

imization process. Results are even more promising

considering that no regularization is applied.

As future works, a regularization method will be

taken into account. Moreover, the feature space di-

mension can be boosted by taking into account other

image related features. For instance, the image gradi-

ent components can be used as additional features.
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APPENDIX

In this section the calculus of the derivative of the con-

ditional entropy of eq.(3) is performed. Let us remind

that

h(X |Y = yi) ≈−
1

|T | ∑
t j∈T

log p(x j|yi) (17)

and

p(s|yi) =
1

|Tyi
| ∑

tm∈Tyi

K(s− xm), (18)

where Tyi
is the set of index pixels which have the

same neighborhood yi. Thus we have

h(X |Y = yi) =−
1

|T | ∑
t j∈T

log

[

1

|Tyi
| ∑

tm∈Tyi

K(x j − xm)

]

.

(19)

and, by taking the derivative of (19),

∂h(X |Y = yi)

∂xi

=−
1

T
∑

t j∈T

1

p(x j|yi)

1

Tyi

∑
tm∈Tyi

∂K(x j − xm)

∂xi

.

(20)

The last term in (20) is equal to

∂K(x j − xm)

∂xi

=

{

−∇K(x j − xm)δm−i j 6= i

(1−δm−i)∇K(x j − xm) j = i

(21)

Thus by substituting

∂h(X |Y = yi)

∂xi

= −
1

|T |

∇p(xi|yi)

p(xi|yi)

+
1

|T |

1

|Tyi
| ∑

t j∈T

∇K(x j − xi)

p(x j|yi)
.

(22)

By multiplying the numerator and denominator of the

first term in (22) with p(yi)

∇p(xi|yi)

p(xi|yi)
·

p(yi)

p(yi)
=

∇p(zi)

p(zi)
·

∂zi

∂xi

, (23)

where the projection operator ∂zi/∂xi is because we

change from xi to zi. Finally, the derivative of (3) is

∂h(X |Y = yi)

∂xi

= −
1

|T |

∇p(zi)

p(zi)

∂zi

∂xi

+
1

|T |

1

|Tyi
| ∑

t j∈T

∇K(x j − xi)

p(x j|yi)
.

(24)

The second additional term can be neglected under

certain hypothesis. Thus the energy derivative is a

mean-shift (Comaniciu and Meer, 2002) term on the

high dimensional joint pdf multiplied by a projection

term.


