A Minimum Entropy Image Denoising Algorithm - Minimizing Conditional Entropy in a New Adaptive Weighted K-th Nearest Neighbor Framework for Image Denoising

Abstract : In this paper we address the image restoration problem in the variational framework. The focus is set on denoising applications. Natural image statistics are consistent with a Markov random field (MRF) model for the image structure. Thus in a restoration process attention must be paid to the spatial correlation between adjacent pixels.The proposed approach minimizes the conditional entropy of a pixel knowing its neighborhood. The estimation procedure of statistical properties of the image is carried out in a new adaptive weighted k-th nearest neighbor (AWkNN) framework. Experimental results show the interest of such an approach. Restoration quality is evaluated by means of the RMSE measure and the SSIM index, more adapted to the human visual system.
Type de document :
Communication dans un congrès
International Conference on Computer Vision Theory and Applications, Jan 2008, Funchal, Madeira, Portugal. 2008
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00379326
Contributeur : Cesario Vincenzo Angelino <>
Soumis le : mardi 28 avril 2009 - 11:52:44
Dernière modification le : jeudi 14 mai 2009 - 11:17:51
Document(s) archivé(s) le : lundi 15 octobre 2012 - 09:35:17

Fichier

visapp08.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00379326, version 1

Collections

Citation

Cesario Vincenzo Angelino, Eric Debreuve, Michel Barlaud. A Minimum Entropy Image Denoising Algorithm - Minimizing Conditional Entropy in a New Adaptive Weighted K-th Nearest Neighbor Framework for Image Denoising. International Conference on Computer Vision Theory and Applications, Jan 2008, Funchal, Madeira, Portugal. 2008. <hal-00379326>

Partager

Métriques

Consultations de
la notice

184

Téléchargements du document

203