The Disagreement Power of an Adversary

Abstract : At the heart of distributed computing lies the fundamental result that the level of agreement that can be obtained in an asynchronous shared memory model where $t$ processes can crash is exactly $t+1$. In other words, an adversary that can crash any subset of size at most $t$ can prevent the processes from agreeing on $t$ values. But what about the rest ($2^{2^n} -n$) adversaries that might crash certain combination of processes and not others? Given any adversary, what is its disagreement power? i.e., the biggest $k$ for which it can prevent processes from agreeing on $k$ values. This paper answers this question. We present a general characterization of adversaries that enables to directly derive their disagreement power. We use our characterization to also close the question of the weakest failure detector for $k$-set agreement. So far, the result has been obtained for two extreme cases: consensus and $n-1$-set agreement. We answer this question for any $k$ and any adversary.
Type de document :
Pré-publication, Document de travail
2009
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00376981
Contributeur : Andreas Tielmann <>
Soumis le : lundi 20 avril 2009 - 16:17:18
Dernière modification le : jeudi 11 janvier 2018 - 06:17:41
Document(s) archivé(s) le : vendredi 12 octobre 2012 - 16:55:57

Fichier

disagreement_power.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00376981, version 1

Collections

Citation

Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Andreas Tielmann. The Disagreement Power of an Adversary. 2009. 〈hal-00376981〉

Partager

Métriques

Consultations de la notice

139

Téléchargements de fichiers

82