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Diagonal hyperbolic systems with
large and monotone data
Part I: Global continuous solutions

A. EL HAa1i', R. MONNEAU?

April 11, 2009

Abstract
In this paper, we study diagonal hyperbolic systems in one space dimension. Based on a new
gradient entropy estimate, we prove the global existence of a continuous solution, for large and
non-decreasing initial data. We remark that these results cover the case of systems which are
hyperbolic but not strictly hyperbolic. Physically, this kind of diagonal hyperbolic systems
appears naturally in the modelling of the dynamics of dislocation densities.

AMS Classification: 35L45, 35Q35, 35Q72, 74H25.
Key words: Global existence, system of Burgers equations, system of non-linear transport
equations, non-linear hyperbolic system, dynamics of dislocation densities.

1 Introduction and main result

1.1 Setting of the problem

In this paper we are interested in continuous solutions to hyperbolic systems in dimension
one. Our work will focus on solutions u(t, z) = (u'(t,x))i=1,.. 4, where d is an integer, of
hyperbolic systems which are diagonal, i.e.

o' + N(uw)0,u' =0 on (0,400) xR, for i=1,...,d, (1.1)
with the initial data:
u'(0,7) = uh(x), reR, for i=1,...,d. (1.2)
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0 0
Here 0; = % and 0, = . Such systems are (sometimes) called (d x d) hyperbolic

x
systems. Our study of system (1.1) is motivated by consideration of models describing
the dynamics of dislocation densities (see the Appendix, Section 5), which is

8tu“r< Z Az’juj>8xui=0 for 1=1,....4d,

j=1,...d

where (A;;)ij=1..4 is a non-negative symmetric matrix. This model can be seen as a
special case of system (1.1).

For real numbers o < 3!, let us consider the box
U =1L, [, 5] (1.3)

We consider a given function A = ()\")izlw..’d : U — R? which satisfies the following
regularity assumption:

( the function \ € C*°(U),

there exists My > 0 such that for +=1,...,d,
(H1) IAi(u)] < My forall ueU,

there exists M; > 0 such that for +=1,...,d,
L[N (v) = Ni(u)| < Mijv—u| forall v,u€U,

where |w| = Z lw'], for w = (w', ..., w?). Given any Banach space (E, |- |z), in the
i=1,..d
rest of the paper we consider the norm on E%:

lolge = 3 fwills, for w=(w!,...,w" e E"
i=1,....d

We assume, for all v € R, that the matrix

. ' \i
(A?j(u))i,jzl,...,d, where )\Z,—a

Jo o’

is non-negative in the positive cone, namely

forall we U, we have

(H2) | )
Z fifj)\fj(u) >0 forevery &= (&,...,&) € [0,400)"
ij=1,....d
In (1.2), each component u of the initial data uy = (ug, ..., ud) is assumed satisfy the

following property:



of <ul < B

(H3) uf, is non-decreasing, | fori=1,...,d,

dyupy € Llog L(R),
where Llog L(R) is the following Zygmund space:

Llog L(R) = {f € L'(R) such that /R|f|ln(e—|— |f]) < +oo}.

This space is equipped by the following norm:

Il z1og L(r) = inf {u >0: /mln <e+ m) < 1},
R M H

This norm is due to Luxemburg (see Adams |1, (13), Page 234]).

Our purpose is to show the existence of a continuous solution u = (u!, ..., u?) such that,
for i =1,...,d, the function u(¢,-) satisfies (H3) for all time.

1.2 Main result
2

It is well-known that for the classical scalar Burgers equation 0,u + 0, (%) = 0, the so-

lution stays continuous when the initial data is Lipschitz-continuous and non-decreasing.
We want somehow to generalize this result to the case of diagonal hyperbolic systems. In
particular, we say that a function ug = (u, ..., ud) is non-decreasing if each component

u, is non-decreasing for i = 1,...,d.

Theorem 1.1 (Global existence of a non-decreasing solution)
Assume (H1), (H2) and (H3). Then, there exists a function u which satisfies for all
T >0:

i) Existence of a weak solution:
The function w is solution of (1.1)-(1.2), where

u € [L>®((0,4+00) x R)]*N[C(]0, +00); Llog L(R))]* and d,u € [L>=((0,T); Llog L(R))]%,

such that for a.e. t € [0,T) the function u(t,-) is non-decreasing in x and satisfies the
following L™ estimate:

Hu’(t,)HLoo(R) S ||uf)||Loo(R), fOT‘ Z = 1,...,d, (14)



and the gradient entropy estimate:

/R‘de(amu"(t,x))dij/ot/R‘ Z

i=1,..., i,j=1,...,

N (u)0,u' (s, 2)0,0 (s, 2) da ds < C, (1.5)
d

where Inz) . ; S 1
rin(x)+ = iy x> 1/e,
ng(@:{ 0 i 0<z<1/e (1.6)

and Cy (T, d, My, ||uo|| (zoe @y |02 uoll (£ 10g Ly 2) -

ii) Continuity of the solution:
The solution u constructed in (i) belongs to [C([0,+00) x R)]* and there exists a modulus
of continuity w(d, h), such that for all 6,h > 0 and all (t,x) € (0,7 —§) X R, we have:

1 1
In(3 +1) * In(+ + 1)’

lu(t+0,x 4+ h) —u(t,z)| < Cyw(d,h) with w(d,h) = (1.7)

where Cy (T, d, Mo, My, ||uol|zo®)a, [|0ztio | (110g (R)4 ) -

The key point to establish Theorem 1.1 is the gradient entropy estimate (1.5). We first
consider the parabolic regularization of the system (1.1) and we show that the smooth
solution admits the L bound (1.4) and the fundamental gradient entropy inequality
(1.5). Then, these a priori estimates will allow us to pass to the limit when the regu-
larization vanishes, which will provide the existence of a solution. Let us mention that
a similar gradient entropy inequality was introduced in Cannone et al. [5] to prove the
existence of a solution of a two-dimensional system of two coupled transport equations.

Remark 1.2 Remark that assumption (H2) implies that the second term on the left
hand side of (1.5) is non-negative. This will imply the Llog L bound on the gradient of
the solutions.

Up to our knowledge, the result stated in Theorem 1.1 seems new. In relation with our
result, we can cite the paper of Poupaud [24], where a result of existence and uniqueness
of Lipschitz solutions is proven for a particular quasi-linear hyperbolic system.

Hyperbolic systems (1.1) in the case d = 2 are called strictly hyperbolic if and only if
we have:

Mut,u?) < N (u', u?). (1.8)
In this case, a result of Lax [19] implies the existence of Lipschitz monotone solutions of
(1.1)-(1.2). This result was also extended by Serre |25, Vol II] in the case of (d x d) rich
hyperbolic systems (see also Subsection 1.4 for more related references). Their results
are limited to the case of strictly hyperbolic systems. On the contrary, in Theorem 1.1,
we do not assume that the hyperbolic system is strictly hyperbolic. See the following
remark for a quite detailed example.



Remark 1.3 (Crossing eigenvalues)

Condition (1.8) on the eigenvalues is not required in our framework (Theorem 1.1). Here
is a simple example of a (2% 2) hyperbolic but not strictly hyperbolic system. We consider
solution u = (u',u?) of

Oyut + cos(u?)d,ut = 0,

Ohu? + usin(u?)0,u? = 0,

Assume:
i) u'(—o0) = 1, ul(+00) = 2 and du' >0,
i) u*(—o0) = =%, u?(+00) = § and d,u* > 0.

Here the eigenvalues N (u', u?) = cos(u?) and N\?(u', u?) = u'sin(u?®) cross each other at
the initial time (and indeed for any time). Nevertheless, we can compute

500~ (i i) )

which satisfies (H2) (under assumptions (i) and (ii)). Therefore Theorem 1.1 gives the
existence of a solution to (1.9) with in particular (i) and (ii).

Remark 1.4 (A generalization of Theorem 1.1)
In Theorem 1.1 we have considered a particular system in order to simplify the presen-
tation. Our approach can be easily extended to the following generalized system:

o' + N(u, 2, t)0,u’ = h'(u,2,t) on (0,+00) xR, for i=1,..,4d, (1.10)
with the following conditions:
- A e Whe(U x R x [0,+00)) and the matriz ()\fj(u,x,t))m:l,m,d is positive in the
positive cone for all (u,z,t) € U x R x [0,400) (i.e. a condition analogous to (H2)).
-h e Whe(U x R x [0, +00)), d:h* > 0 and h'; >0 for all j # 1.

Let us remark that our system (1.1)-(1.2) does not create shocks because the solution
(given in Theorem 1.1) is continuous. In this situation, it seems very natural to expect
the uniqueness of the solution. Indeed the notion of entropy solution (in particular de-
signed to deal with the discontinuities of weak solutions) does not seem so helpful in
this context. Even for such a simple system, we then ask the following:

Open question: Is there uniqueness of the continuous solution given in
Theorem 1.1 7



In a companion paper (El Hajj, Monneau [11]), we will provide some partial answers to
this question.

1.3 Application to diagonalizable systems

Let us first consider a smooth function u = (u!, ..., u?), solution of the following non-

conservative hyperbolic system:

Owu(t,x) + F(u)d,u(t,z) =0, uelU, zeR, te(0,+00),
(1.11)
u(z,0) = ug(x) r € R,

where the space of states U is now an open subset of RY, and for each u, F'(u) is a (d x d)-
matrix and the map F is of class C'(U). The system (1.11) is said (d x d) hyperbolic, if
F(u) has d real eigenvalues and is diagonalizable for any given u on the domain under
consideration. By definition, such a system is said to be diagonalizable, if there exists a
smooth transformation w = (w!(u),..., w%(u)) with non-vanishing Jacobian such that
(1.11) can be equivalently rewritten (for smooth solutions) as the following system

o' + N (w)o,w' =0 for i=1,....d,

where A\’ are smooth functions of w. Such functions w® are called strict i-Riemann
invariant.

Our approach can give continuous solutions to the diagonalized system, which provided
continuous solution to the original system (1.11).

1.4 A brief review of some related literature

For a scalar conservation law, which corresponds to system (1.11) in the case d = 1
where F'(u) = h'(u) is the derivative of some flux function h, the global existence and
uniqueness of BV solutions has been established by Oleinik [23] in one space dimension.
The famous paper of Kruzhkov [18] covers the more general class of L* solutions, in
several space dimensions. For an alternative approach based on the notion of entropy
process solutions, see for instance Eymard et al. [12]. For a different approach based on
a kinetic formulation, see also Lions et al. [22].

We now recall some well-known results for a class of (2 x 2) strictly hyperbolic sys-
tems in one space dimension. This means that F'(u) has two real, distinct eigenvalues
satisfying (1.8). As mentioned above, Lax [19] proved the existence and uniqueness of
non-decreasing and smooth solutions for diagonalized (2 x 2) strictly hyperbolic systems.
In the case of some (2 x 2) strictly hyperbolic systems, DiPerna |6, 7| showed the global
existence of a L solution. The proof of DiPerna relies on a compensated compactness
argument, based on the representation of the weak limit in terms of Young measures,
which must reduce to a Dirac mass due to the presence of a large family of entropies.



This result is based on an the idea of Tartar [27].

For general (d x d) strictly hyperbolic systems; i.e. where F'(u) has d real, distinct
eigenvalues

Mu) < - < M(u), (1.12)

Bianchini and Bressan proved in a very complete paper |3|, a striking global existence
and uniqueness result of solutions to system (1.11), assuming that the initial data has
small total variation. This approach is mainly based on a careful analysis of the vanish-
ing viscosity approximation. An existence result has first been proved by Glimm [15] in
the special case of conservative equations, i.e. F'(u) = Dh(u) is the Jacobian of some flux
function A. Let us mention that an existence result has been also obtained by LeFloch
and Liu [20, 21| in the non-conservative case.

We can also mention that, our system (1.1) is related to other similar models in dimension
N > 1, such as scalar transport equations based on vector fields with low regularity. Such
equations were for instance studied by Diperna and Lions in [8]. They have proved the ex-
istence (and uniqueness) of a solution (in the renormalized sense), for given vector fields
in L*((0, 4-00); WL (RY)) whose divergence is in L'((0, +00); L=(RY)). This study was
generalized by Ambrosio |2], who considered vector fields in L'((0,4+00); BVj,.(RY))
with bounded divergence. In the present paper, we work in dimension N = 1 and prove
the existence (and some uniqueness results) of solutions of the system (1.1)-(1.2) with
a velocity vector field A'(u), i = 1,...,d. Here, in Theorem 1.1, the divergence of our
vector field is only in L*°((0,+00), Llog L(R)). In this case we proved the existence
result thanks to the gradient entropy estimate (1.5), which gives a better estimate on
the solution.

Let us also mention that for hyperbolic and symmetric systems in dimension N > 1,
Garding has proved in [13] a local existence and uniqueness result in C'([0,7); H*(RY))N
CH([0,T); H*Y(RY)), with s > & + 1 (see also Serre |25, Vol I, Th 3.6.1]), this result
being only local in time, even in dimension N = 1.

1.5 Organization of the paper

This paper is organized as follows: in Section 2, we approximate the system (1.1), by
adding the viscosity term (£0,,u’). Then we show a global in time existence for this
approximated system. Moreover, we show that these solutions are regular and non-
decreasing in x for all ¢ > 0. In Section 3, we prove the gradient entropy inequality
and some other e-uniform a priori estimates. In Section 4, we prove the main result
(Theorem 1.1) passing to the limit as £ goes to 0. Finally, in the appendix (Section 5),
we derive a model for the dynamics of dislocation densities.



2 Local existence of an approximated system
The system (1.1) can be written as:
Oru 4+ A(u) 0 O,u =0, (2.13)

where u = (u');_ 4, Mu) = (N (u))1, .

product” of the two vectors u = (u,...,ud), v = (v!,...,v?) € R% This is the vector
in R? whose coordinates are given by (u ¢ v)’ := u'v®. We now consider the following
parabolic regularization of system (2.13), for all 0 < e < 1:

Oyuf 4+ Nuf) 0 0pu® = €0y us
(2.14)
uf(z,0) = uf(x), with wuf(x) :=ug*n.(x),
2

da?

non-negative function satisfying [ 7 = 1.

where 0, = and 7. is a mollifier verify, 7.(-) = 1n(), such that n € C°(R) is a

Remark 2.1 By classical properties of the mollifier (n.). and the fact that uf €
[L=(R)]4, then uy € [C°(R)]? N [W22(R)]%. Moreover using the non-negativity of 7.,
the second equation of (2.14) we get that

ug” || ooy < Nubllpowy, for i=1,....d,

and (H3) also implies that uf is non-decreasing.

The following theorem is a global existence result for the regularized system (2.14).

Theorem 2.2 (Global existence of non-decreasing smooth solutions)
Assume (H1) and that the initial data ug is non-decreasing and satisfies ug, € [C>(R)]
[(W2=(R)|4. Then the system (2.14), admits a solution u® € [C°°([0,+00) x R)]?
[(W2((0, +00) x R)|? such that the function u®(t,-) is non-decreasing for all t >
Moreover, for allt > 0, we have the a priori bounds:

N
N
0.

[, M@ < luglem, for i=1,....d, (2.15)

Haxua’iHLoo([o,Jroo);Ll(R)) < 20|uglle@), for di=1,....d (2.16)

The lines of the proof of this theorem are very standard (see for instance Cannone et
al. |5] for a similar problem). For this reason, we skip the details of the proof. First of
all we remark that the estimate (2.15) is a direct application of the Maximum Principle
Theorem for parabolic equations (see Gilbarg-Trudinger 14, Th.3.1]). The regularity
of the solution follows from a bootstrap argument. The monotonicity of the solution
is a consequence of the maximum principle for scalar parabolic equations applied to
w® = J,u’ satisfying



Ow® + A(u®) © Oyw® + 0 (AN(uf)) o w® = €0, w°.
Since d,u® > 0 this implies easily the second estimate (2.16).

3 e-uniform a prior: estimates

In this section, we show some e-uniform estimates on the solutions of system (2.14).

Before going into the proof of the gradient entropy inequality defined in (1.5), we an-
nounce the main idea to establish this estimate. Now, let us set for w > 0 the entropy
function

fw) = wlnw.

For any non-negative test function ¢ € C!([0,+00) x R), let us define the following
“gradient entropy” with w' := O,u’:

5(t) = / ot ) ( f(wi(t,-») d.

It is very natural to introduce such quantity S(¢) which in the case ¢ = 1, appears
to be nothing else than the total entropy of the system of d type of particles of non-
negative densities w® > 0. Then after two integration by parts, it is formally possible
to deduce from (1.1) the equality in the following gradient entropy inequality for all t > 0

—dfifﬁt) —|—/Rg0< Z )\fjwiwj> der < R(t), for t>0, (3.17)
d

’i7j:1,...7
with the rest

R = [ {(@@ (Z f(w")> +(0:9) ( Aif(w%)} da.

where we do not show the dependence on t in the integrals. We remark in particular
that this rest is formally equal to zero if ¢ = 1.

To guarantee the existence of continuous solutions when ¢ = 0, we will assume later
(H2) which guarantees the non-negativity on the second term of the left hand side of
inequality (3.17).

Coming back to a rigorous statement, we will prove the following result.

Proposition 3.1 (Gradient entropy inequality)
Assume (H1) and consider a function uy € [L®(R)]? satisfying (H3). For any

9



0 < e < 1, we consider the solution u® of the system (2.14) given in Theorem
2.2 with nitial data uy = ug * n.. Then for any T > 0, there ezists a constant
C (T, d, My, uollizoe@yes 0xttoll iz 10g Limyje) such that

,..., =1,...,

where f is defined in (1.6) and w® = (w**);—

.....

For the proof of Proposition 3.1, we need the following technical lemma:

Lemma 3.2 (Llog L estimate)
Let (n:)ec(0,1) be a non-negative mollifier satisfying fR n. = 1, let f be the function de-
fined in (1.6) and h € L'(R) be a non-negative function. Then

i) /f(h) < 400 if and only if h € Llog L(R). Moreover we have the following estimates:
R

/f(h) <1+ lhllogre + Al n (1 + 2] Log ) (3.19)
R

HhHLlogL(R) S 1 + / f(h) -+ 11’1(1 + 62)||h||L1(R)- (320)
R

ii) If h € Llog L(R), then for every € € (0, 1] the function h. = h xn. € Llog L(R) and
satisfies

el L10g Lry < Cllbll10g ey and |[h — he|lpiogr@y — 0 as € — 0,
where C is a universal constant.

Proof of Lemma 3.2:
The proof of (i) is trivial. To prove estimate (3.19), we first remark that, for all h > 0
and p € (0, 1], we have

(h In(h) + %) L1y < hln(h+e) < hln(e + ph) + [In(p)|h.

1

max(1, [|h]|L10g L(r))

/Rf(h> = %/R“hln(ejLﬂh)Jr [ ()l [l vy

We apply this inequality with p = and integrate, we get

1
< u + [ () || 2] 21 ),

10



where we have used the definition of ||h||10g Lr). This gives (3.19) using the fact that
1

Bz -
L+ [|Af L 1og L)
To prove (3.20), we remark that, for ~ > 1, we have e < e?h and

hin(e + h) < hln(h) + hln(1 +€?) < f(h) + hin(1 + €2).
However, for 0 < h < %, we have in particular
hin(e + h) < hin(1 + €?).

Therefore

/hln(e+h)g/f(h)+ln(1+62)]|h]|L1(R).
R R

From the definition of ||A||10g £(r), We deduce in particular (3.20). For the proof of (ii)
see Adams [1, Th 8.20].

O
Proof of Proposition 3.1:
First we want to check that S(t) is well defined. To this end, we remark that if w > 0,
then

1
Which gives that
1
[ £ < ol (4 o)+ | $1ss < lolloe (0 (14 o).

Now by Theorem 2.2, we have d,u = w® € [L((0, +00); L'(R))]” N [W2((0, +00) X
R)]¢. This implies that S € L>°(0,+00). We compute

i=1,...,d
J1 J2
:/ Z )\z’(ua)wa,z’f//(wa,i)axwa,i —E/ Z (axwa,i)2 f//(wa,i)‘
Ri1,.d Riz1,..d

11



Remark that these computations (and the integration by parts) are justified because on
the one hand w®, its derivatives and A\’ are bounded, and on the other hand w®' is
in L>=((0,+00); L'Y(R)). We know that J, < 0 because f is convex. To control J;, we
rewrite it under the following form

where

ZE—% if x>1/e,
0 if 0<z<1/e.

—— [ 3 Ny,
Rij=1,..d

_ _/ Z )\fj(ua)wa,]wa,z _/ Z )\?j(ua)wa,](g(wa,z) _wa,z).
R j=1,..d Rii=1,..d

We use the fact that |g(z) — x| < 1 for all z > 0 and (H1), to deduce that

1
|J12| < ngl ||7~U8||[Loo((o,+oo)7L1(R))]d

2
ngl HUOH[LOO(R)W = CO(HUOH[LOO(R)]d? d, Ml)

IA

where we have use

[Jw®! HLOO((O,—',-oo),Ll(R

which follows from Remark 2.1 and Theorem 2.2. Finally, we deduce that

- 2|upll ey, for i=1,....d, (3.21)

d
£S(t) < Jn+Jia+ Jy
S e]11 + C().

Integrating in time on (0,t), for 0 < ¢t < T, we get that, there exists a positive con-
stant C' (T, d, My, ||uol|froe ), ||8xuo||[LlogL(R)]d) which is independent of € by (3.19) and
Lemma 3.2 (ii) such that

t
S(t) +/ / Z Afj(us)we’jwe’i < CoT + S(0) < C.
0

12



|

Lemma 3.3 (W~"! estimate on the time derivative of the solutions)

Assume (H1) and that the function ug € [L(R)]* satisfies (H3). Then for any 0 < & <
1, the solution u® of the system (2.14) given in Theorem 2.2 with initial data uf = ug*1.,
satisfies the following e-uniform estimate for all T > 0:

||8tU6H[L2((0,T);W*1»1(R))}d S CHU0||[L°°(R)}‘1‘
where C' = C(T, My) > 0 and W~L1(R) is the dual of the space WH(R).

Proof of Lemma 3.3:
The idea to bound d;u® is simply to use the available bounds on the right hand side of
the equation (2.14). We will give a proof by duality. We multiply the equation (2.14)
by ¢ € [L2((0,T), W = (R))]" and integrate on (0,7) x R, which gives

I I

A A
la ~N ™~

/ ¢ - Ot = 6/ G- uf — / ¢+ (M) o 0put).
(0,T)xR (0,T)xR (0,T)xR
We integrate by parts the term 7, and obtain:

[ < / 000 - Oxu™| - < [|00Bllipa(o.m) e 10547 iz, 1 @y
(0.T)xR (3.22)
1
< 2T (|9l g2 0,7y, w1y 110l e ey
where we have used inequality (3.21). Similarly, for the term I5, we have:
(T2 < Moll @l iz 0,7y, p0e (102" 201y, 11 ey
(3.23)

1
< 277 Molluol e ey 1l 20,79, w120 -

Finally, collecting (3.22) and (3.23), we get that there exists a constant C' = C(T', M)
independent of 0 < ¢ <1 such that:

/ (b : &gue
(0,T)xR

which gives the announced result. O

< CHUOH[LOO(]R)]d||¢||[L2((0,T),W1’°°(R))]d

Corollary 3.4 (c-uniform estimates)

Assume (H1) and that the function ug € [L°(R)]* satisfies (H3). Then for any 0 < & <
1, the solution u® of the system (2.14) given in Theorem 2.2 with initial data uf = ug*1.,
satisfies the following e-uniform estimate for all T > 0:

10545 | 100 0,00y, L1 12 F 1147 lizoe 0,100y xmy + 10020y w1 pye < €5 (3:24)

13



This Corollary is a straightforward consequence of Remark 2.1, Theorem 2.2, estimate
(3.21) and Lemma 3.3.

4 Passage to the limit and proof of Theorem 1.1

In this section, we prove that the system (1.1)-(1.2) admits solutions u in the distribu-
tional sense. They are the limits of u® given by Theorem 2.2 when ¢ — 0. To do this, we
will justify the passage to the limit as € tends to 0 in the system (2.14) by using some
compactness tools that are presented in a first subsection.

4.1 Preliminary results

First, for all open interval I of R, we denote by

Llog L(I) = {f € L'(I) such that /\f|ln(e+ If]) < —l—oo} :
I
Lemma 4.1 (Simon’s Lemma)
Let X, B, Y be three Banach spaces, such that we have the following injections
X — B with compact embedding and B — Y with continuous embedding.

Let T > 0. If (u®). is a sequence such that,

[ oo 0,7y5) + 1060 || a0y < Cs

where ¢ > 1 and C is a constant independent of €, then (u®). is relatively compact in
LP((0,T); B) forall1 <p < q.

For the proof, see Simon |26, Corollary 4, Page 85].

In order to show the existence of a solution to system (1.1) in Subsection 4.2, we will ap-
ply this lemma to each scalar component of u° in the particular case where X = W1(I),
B=L'(I)and Y = W=b1(I) := (W (1))

We denote by K.,,(I) the class of all measurable function u, defined on I, for which,

/ (" — 1) < too.

I
The space EXP(I) = {pu: p>0 and u € K.p(I)} the linear hull of K.,,(1).
This space is supplemented with the following Luxemburg norm (see Adams [1, (13),

Page 234| ):
. lul
|ullexpery = inf {)x >0: / <e — ) < 1} )
I

Let us recall some useful properties of this space.
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Lemma 4.2 (Generalized Holder inequality, Adams [1, 8.11, Page 234])
Let h € EXP(I) and g € Llog L(I). Then hg € L*(I), with

|hgllry < 2[Rl expmllgllLiog L

Lemma 4.3 (Continuity)
Let T'> 0. Assume that u € L>((0,+00) x R) such that

||axu||L°o((0,T);LlogL(R)) + ||atu||L°°((0,T);L1ogL(]R)) < (y
Then that for all 6,h > 0 and all (t,x) € (0,7 —J) x R, we have:

1 1
—_ < :
[u(t +6,2 +h) — u(t, )| < 6C <1n(§+1) " 1n(%+1))

Proof of Lemma 4.3:
For all h > 0 and (¢,z) € (0,T) x R, we have:

x+h
/ Oy u(t, y)dy‘

< 2|l expatmllOxult; )| Liog Lixeth),

lu(t,x + h) —u(t,z)| <

X (4.25)
< 2—5——|0xu|| Lo ((0,7);L 10g L(R))
- ln(%—i—l) “ Rt ’
1

In(3 +1)

< 20%

where we have used in the second line the generalized Holder inequality (Lemma 4.2).
Now, we prove the continuity in time, for all 6 > 0 and (¢,z) € (0,7 — 0) x R, we have:

Su(t +6,x) — u(t, z)|

T+
:/ lu(t + 6, x) — u(t, x)|dy,

K Ky K3

- . .

7 N\ 7 N\ N

z+6 z+d T+8
S/ lu(t + 6, x) —U(t+5,y)|dy,+/ lu(t +0,y) —U(t,y)ldy,+/ lu(t,y) — u(t, z)|dy.

Similarly, as in the last estimate (4.25), we get that:
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z+48 x4+
Ko+ Ky saf \8mu<t+6,y>|dy,+6/ D,ult,y)|dy.

)
In(3 +1)°
Now, we use that d,u is bounded in L*((0,7); Llog L(R)), to obtain that:

z+0 t+0
K < / / (s, y)lds dy,
x t

<40,

4]

< 26|11 Ex P(a,o+8) 10l oo (0,1):L 108 L(R)) < 202@-
Collecting the estimates of K;, Ky and K3, we get that:

1 1
t+06 —u(t < - (K K Ksi) < -
lu(t +9,7) —u(t,x)| < (5( 1+ 8o+ 3)_6021n(%+1)

This last inequality joint to (4.25) implies the result.

4.2 Proof of Theorem 1.1

The authors would like to thank T. Gallouét for fruitful remarks that helped to simplify
of the proof of Theorem 1.1. Before to prove Theorem 1.1, we first prove the following

result.

Theorem 4.4 (Passage to the limit)

Assume that u® is a solution of system (2.14) given by Theorem 2.2, with initial data
ug = ug * 1. where ugy satisfies (H3). If we assume that for all T > 0, there exists a

constant C' > 0 independent on &, such that:

||a:t:u6 H [Lo°((0,T));L log L(R))]* =G,

then up to extract a subsequence, the function u® converges, as € goes to zero, to a
function u weakly-+ in [L((0,+00) x R)|*. Moreover, u is a solution of (1.1)-(1.2),

and satisfies
[[tl] 200 0,100y xmy? < N0l 700 )25
||a:cu||[Loo((o,T);LlogL(R))}d =C

[l (Lo ((0,T);Llog LR))® = MoC,

and u(t,-) is non-decreasing in x, for all t > 0 and satisfies
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||ui||Loo((0,+oo);L1(R)) S 2||'LL6||L00(]R) fOT' 'é = 1, ceey d (4.27)

Proof of Theorem 4.4:

Step 1 (u solution of (1.1)): First, we remark that by estimate (3.24) we know that
for any 7" > 0, the solutions u® of the system (2.14) obtained with the help of Theorem
2.2, are e-uniformly bounded in [L>((0, +00) x R)]%. Hence, as ¢ goes to zero, we can
extract a subsequence still denoted by u®, that converges weakly-x in [L>°((0, +00) x R)]d
to some limit . Then we want to show that u is a solution of system (1.1). Indeed, since
the passage to the limit in the linear terms is trivial in [D/((0, +00) x R)]%, it suffices to
pass to the limit in the non-linear term

A(uf) o O us.

According to estimate (3.24) we know that for all open and bounded interval I of R
there exists a constant C' independent on € such that:

1l iz o,y e + 196 iz o,y w21 ¢aype < €
From the compactness of W' (I) < L!(I), we can apply Simon’s Lemma (i.e. Lemma
4.1), with X = [W(1)])?, B = [L}(I)]* and Y = [W=11(1)]", which shows in particular
that
we is relatively compact in [L*((0,T) x I)]". (4.28)

Then, we can see that (up to extract a subsequence)
AMu®) — AMu) ae.

Moreover, from Lemma 4.2, similarly as in (4.25), we can get, for all ¢ € (0,7) the
following estimates:

1
ln(|—}| +1)’

/axua(t,y)dy’ <2C
I

where C'is given in (4.26). By the previous estimate and the fact that A\(u®) is uniformly
bounded in [L®((0, +00) x R)]? and converges a.e. to A(u), we can apply the Dunford-
Pettis Theorem (see Brezis [4, Th IV.29|) and prove that

AMu®) © 0pu® — A(u) © Oyu

weakly in [L'((0,T) x I)]d. Because this is true for any bounded open interval I, then
we can pass to the limit in (2.14) and get that,

Ou+ ANu)odu=0 1in D'((0,+00) x R).
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Step 2 (A priori bounds): By weakly-x convergence and from the fact that L>°((0,7T); L log L(R))

is the dual of L'((0,T); E..p(R)) (see Adams [1] for the definition of the Banach space
E..p(R)), we can check that u satisfies the following estimates:

1921/l e ((0,7y: 108 Ly < TN (00w [ oo (0.19: 105 LY < C

el 200 0,400y < HOUINE [0 [ Lo (0 1 o0 wmyt < 20| oo gy - (4.29)

Thanks to these two estimates, we obtain that
||8tu||[Lw((O,T);LlogL(R))}d < [[A(u) <>890“’“[LOO((O,T);LlogL(R))}d

< Moll9zullipoe (o,ry:1 108 1y < MoC

Moreover (4.27) follows from (4.29) and the fact that u(¢, ) is non-decreasing in x (as it
was the case for u).

Step 3 (Recovering the initial data): Now we prove that the initial conditions (1.2)
coincides with u(0,-). Indeed, by the e-uniformly estimate given in Corollary 3.4, we
can prove easily that, we have

1
||U€(t) - u8||[W—1,1(R)]d S Ctz

Then, we get
Ju(t) = vollyy-11@pe < = vollpoo o011 @y

. R R 1
< T inflfu® = 5|z o pw—rr e < €12

where we have used the weakly-x convergence in L>((0,¢); W~11(R)) in the second line.
This proves that (0, ) = ug in [D'(R)]".

O
Proof of Theorem 1.1:
Step 1 (Existence): Remark that by assumption (H2) and estimate (3.18), we deduce
from (3.20) joint to (3.21) that, the solution u® given by Corollary 3.4 satisfies the
following estimate:

1020 || oo ((0.7):2.10g LY < C (4.30)

where C' = C (T, d, Ml, ||u0||[Loo(R)}d, ||8xu0||[LlogL(]R)]d>- NOW, we apply Theorem 4.4 to
prove that, up to extract a subsequence, the function u® converges, as € goes to zero, to
a function u weakly-+ in [L°((0, 4+00) x R)]?, with u is beeing solution to (1.1)-(1.2).
Moreover, from Lemma 4.3, we deduce that the function u satisfies the continuity esti-
mate (1.7).
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Step 2 (Justification of (1.5)): Let

Ly (uf) = 5 (N(u) + X(wd)), for d,j=1,....d,

we = 0 uc.

For a general matrix I', where ‘' = I" > 0, let us introduce the square root B = /T of
I', uniquely defined by

‘B=B>0 and B?*=T.

Remark that for non-negative symmetric matrices, the map I' — /T is continuous.
Then we can rewrite

[, s [ v

Rij=1,..d

2
<,

where C' is given in (3.18). Therefore
VT () w® — q  weakly in [L2((0,1) x R)]%.

Applying the same argument as in Step 1, of the proof of Theorem 4.4, for the conver-
gence of A\(u®) ¢ 0,us, we see that

VT Ww)d,ut — /T(w)du=q weakly in [L*((0,¢) x R)]%.

Therefore, using the weakly convergence in L2((0,t) x R), we get

t t t
/ / SN ()il = / / ¢* < liminf / / V)0,
0 JR, .57 4 0o JR 0o JR

.....

2
<C. (4.31)

Remark also that for w* = 0,u’, we have

su w' §1—|—wioo Lo + w700 ) In (1 + [[w'||;e Lo
ogth/Rf( ) [[w*]] oo (0,79 L 10g LR)) + 10" | Loo (0,722 )y I (1 4 [[w° | Lo (0,7); L 10g L(RY))

<1+ |w' || oo (0,2 108 L(R)) + 2]l zoo @) In (1 + [[w' || oo (0,7):2. 108 L(R))) = 9[w']

< lim inf g[w®"]

e—0
<14 C + 2f|uf|l L@ In(1 4+ C) := C',

where in the first line we have used (3.19), in the second line we have used (4.27),
in the third line we have used the weakly-x convergence of w®® towards w' in
L>((0,T); Llog L(R)) and in the fourth line, we have used (4.30). Putting this result
together with (4.31), we get (1.5) with C, = C + C".

O
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5 Appendix: Example of the dynamics of dislocation
densities

In this section, we present a model describing the dynamics of dislocation densities. We
refer to Hirth et al. [17] for a physical presentation of dislocations which are (moving)
defects in crystals. Even if the problem is naturally a three-dimensional problem, we
will first assume that the geometry of the problem is invariant by translations in the
x3-direction. This reduces the problem to the study of dislocations densities defined
on the plane (z1,25) and moving in a given direction b belonging to the plane (z1, xs)
(which is called the “Burger’s vector”).

In Subsection 5.1, we present the 2D-model with multi-slip directions. In the particular
geometry where the dislocations densities only depend on the variable z = x7 + 2o,
this two-dimensional model reduces to a one-dimensional model which is presented in
Subsection 5.2. Finally in Subsection 5.3, we explain how to recover equation (1.1) as a
model for dislocation dynamics with

)\Z(U>: Z Aijuj
d

j:17...7

for some particular non-negative and symmetric matrix A.

5.1 The 2D-model

We now present in details the two-dimensional model. We denote by X the vector
X = (z1,72) € R%. We consider a crystal filling the whole space R? and its displacement
v = (vi,v2) : R* — R? where we have not yet introduced the time dependence.

We introduce the total strain e(v) = (£;;(v)); j=1,2 which is a symmetric matrix defined

by
1 0v; v
£ii(v) = 2 <8xj * 8@-) ’

The total strain can be spitted in two parts:

: 0.k, k
eij(v) = €f; + i with e = E et
k=1,...d

where €f; is the elastic strain and &7} is the plastic strain. The scalar function uk is the
plastic displacement associated to the k-th slip system whose matrix egjk is defined by

5?;’“ = % (bfnf + nfbf) ,
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where (b, n¥) is a family of vectors in R?, such that n* is a unit vector orthogonal to
the Burger’s vector b (see Hirth et al. [17] for the definition of the Burger’s vector of a
dislocation)

To simplify the presentation, we assume the simplest possible periodicity property of
the unknowns.

Assumption (H):

i) The function v is Z*-periodic with / vdX =0.
(0,1)

ii) For each k = 1,...,d, there exists L* € R? such that u*(X) — L*- X is a Z*-periodic.

iii) The integer d is even with d = 2N and we have for k=1,..., N:

DN — [F RN ok RN gk OREN Ok

iv) We denote by 7% € R? a unit vector parallel to V* such that 7"~ = 7%, We require
that L* is chosen such 7% - L* > 0.

Remark in particular that the plastic strain Efj is Z2-periodic as a consequence of As-
sumption (H). The stress matrix is then given by

e ..
Uij = E Aijklekl fOI' 1,] = ]_,2,
k,l=1,2

where A = (Aijkl)ij r1—12> are the constant elastic coefficients of the material, satisfying
for some constant m > 0:

Z Nijrigijen = m Z s (5.32)

o l=1,2 ij=1,2
for all symmetric matrices € = (&), i.e. such that g;; = &;.

Then the stress is assumed to satisfy the equation of elasticity

Z%:O for i=1,2.

j=1.2 8xj

On the other hand the plastic displacement u* is assumed to satisfy the following trans-
port equation

. 0,k
ok = FrF VuF  with & = E OijE} -
ij=1,2

This equation can be interpreted, saying that
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0F = 7.Vt >0, (5.33)

is the density of edge dislocations associated to the Burger’s vector v* moving in the
direction 7" at the velocity ¢*. Here c* is also called the resolved Peach-Koehler force in
the physical literature. In particular, we see that the dislocation density 6% satisfies the
following conservation law

0,0% = div(c"r*o").

Finally, for k = 1,...,d, the functions u* and v are then assumed to depend on (¢, X) €
(0, +00) x R? and to be solutions of the coupled system (see Yefimov [28, ch. 5.] and
Yefimov, Van der Giessen [29]):

( a i
Yy Tioyg on (0, +00) x R2,  fori=1,2,
: al'j
7j=1,2
oy = Z Aijn <5kl(v) — Z 5%’-’%'“) on (0,400) x R?
kl=1,2 k=1,....d fori,7=1,2
1/ 0v;  Ov,
() = = 0, R?,
gij(v) 5 (&L’j + 8@-) on (0,4+00) X
ok = Z Uij&??]’-k ™ Vu*  on (0, +00) x R?, fork=1,...,d,
\ ije{1,2}
(5.34)

0,k
where Ajjx, €,

;i are fixed parameters previously introduced, and the unknowns of the

.....

equations are compatible with our periodicity assumptions (H), (¢)-(i7).

For a detailed physical presentation of a model with multi-slip directions, we refer to
Yefimov, Van der Giessen [29| and Yefimov |28, ch. 5. and to Groma, Balogh [16]
for the case of a model with a single slip direction. See also Cannone et al. [5] for a
mathematical analysis of the Groma, Balogh model.

5.2 Derivation of the 1D-model

In this subsection we are interested in a particular geometry where the dislocation den-
sities depend only on the variable x = x; + x5. This will lead to a 1D-model. More
precisely, we make the following:

Assumption (H'):
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i) The functions v(t, X) and u*(t, X) — L*¥ - X depend only on the variable v = x| + 5.

i) For k =1,...,d, the vector % = (7}, 7§) satisfies 7F + ¥ > 0 with p* = P
1T T2

iii) For k=1,....d, the vector L* = (L¥ L%) satisfies Lk = L5 = [*.

For this particular one-dimensional geometry, we denote by an abuse of notation the
function v = v(t,x) which is 1-periodic in z. By assumption (H’), (iii), we can see
(again by an abuse of notation) that u = (u*(t,2))s=1,_q is such that for k = 1,...,d,
uk(t,x) — I¥ - 2 is 1-periodic in z.

Now, we can integrate the equations of elasticity, i.e. the first equation of (5.34). Using

the Z2-periodicity of the unknowns (see assumption (H), (i)-(i7)), and the fact that
gOFHN = g0k (see assumption (H), (44)), we can easily conclude that the strain

1
g® is a linear function of (u/ —w/*™),_; nx and of (/ (u! — ™) d:)ﬁ)
0 J

N
(5.35)
This leads to the following Lemma
Lemma 5.1 (Stress for the 1D-model)
Under assumptions (H), (i)-(i1)-(iii) and (H'), (i)-(éit) and (5.32), we have
1
—0 % = Z Agju? + Z Qij/ W de, fori=1,...,N, (5.36)
j=1,...d j=1,...d 0
where fori,7=1,..., N
Aij=A;; and Aiynj=—Aij=Aijin = —AirnN N,
(5.37)

Qij=Qji and Qiyng=—Qij = Qijtn = —Qitnj+n-
Moreover the matriz A is non-negative.
The proof of Lemma 5.1 will be given at the end of this subsection.
Finally using Lemma 5.1, we can eliminate the stress and reduce the problem to a

one-dimensional system of d transport equations only depending on the function u?, for
i=1,...,d. Naturally, from (5.36) and (H’), (i) this 1D-model has the following form

23



The 1D-model of the dynamics of dislocation densities:

1
MiatuiﬂL( Z Aju? + Z Qij/ u? d:v) Opu’ =0, on (0,4+00) xR, fori=1,...
d j=1,...d 0

]:1 7777 1 7777

(5.38)
with from (5.33)
Opu' >0 fori=1,...,d. (5.39)
Now, we give the proof of Lemma 5.1.
Proof of Lemma 5.1:

For the 2D-model, let us consider the elastic energy on the periodic cell (using the fact
that e is Z2-periodic)

1 e e : € 0,k
B, v) = 2 /(0,1)2 Z Agjrigijery dX with &5 = ei;(v) — Z Sij u

0,4k 1=1,2 k=1,....d
By definition of 0;; and €f;, we have for k =1,...,d
> (0ue") = —Eiu(u,v). (5.40)
i,j=1,2

On the other hand using (H'), (i)-(¢ii), (with = x1 4+ 23) we can check that we can
rewrite the elastic energy as

1 1
_ e e
E = 3 E Aijjrigi e dr.
0 jkil=12

Replacing f; by its expression (5.35), we get:

L[ j +NY (i i+ N
o 5/0 D I
i,j=1,...N
1 Z Lt N Lo N
+= Qij </ (v — ™t )da:) (/ (u' —u'* )d:v),
2i,j:1 ..... N 0 0

for some symmetric matrices A;; = Aj;, Q;; = ;- In particular, joint to (5.40) this
gives exactly (5.36) with (5.37).

Let us now consider the functions w® = u* — vt such that
1 .
/ w'der =0 fori=1,...,N. (5.41)
0
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From (5.32), we deduce that

¥

—w on [5,1],

oo {0

which satisfies (5.41). Finally, we obtain that

I o
0§E:§/0 > Ayow de.

ij=1,.,N

Because this is true for every w = (w!,...,@") € RY, we deduce that A a non-negative

matrix.

O
We refer the reader to El Hajj |9] and El Hajj, Forcadel [10] for a study in the special
case of a single slip direction, i.e. in the case N = 1.

5.3 Heuristic derivation of the non-periodic model

Starting from the model (5.38)-(5.39) where for i = 1,. .., d, the function u'(¢, z) —I*-x is
1-periodic in z, we now want to rescale the unknowns to make the periodicity disappear.
More precisely, we have the following Lemma:

Lemma 5.2 (Non-periodic model)
Let u be a solution of (5.58)-(5.39) assuming Lemma 5.1 and u'(t,z) — -z is 1-periodic
in x. Let

ué(t,z) =/ (6t,6x), for a smalld >0 and forj=1,...,d,
such that, for all j=1,...,d

wl(0,-) — @(0,), as 6—0, and @(0,400) =@+ N(0,=+o0). (5.42)

Then @ = (@) =14 is formally a solution of

.....

o + ( > A,.juj> 8, =0,  on (0,4+00) x R, (5.43)
j=1,.0d
where the symmetric matriz A is non-negative and 0,u' >0 fori=1,...,d.
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We remark that the limit problem (5.43) is of type (1.1) when x* = 1. In particular, there
are no reasons to assume that this system is strictly hyperbolic in general. Neverthe-
less, the general case u’ > 0 can be treated with our approach developed in Theorem 1.1

considering the entropy / Z ' f (0,4 (t, x)) d instead of/ Z [ (0,4 (t, x)) du.
Riz1,.d Riz1,...d
Formal proof of Lemma 5.2:

. . 1
Here, we know that uj — I’ - © is —-periodic in z, and satisfies for . =1,...,d

J

L Opuls + ( Z Agul + 6 Z Qij /6 ) dx) Oy = 0, on (0,+00) x R. (5.44)
d j=1,...d 0

j=1,..., 1.,

To simplify, assume that the initial data us(0, -) converge to a function (0, -) such that

—1
the function 0,us(0, -) inside the interval (%’ %) has a support in (—R, R), uniformly

in 0, where R a positive constant. Because of the antisymmetry property of the matrix
() (see assumption (5.37)), and because of assumption (5.42), we expect heuristically
that the velocity in (5.44) remains uniformly bounded as 6 — 0.

Therefore, using the finite propagation speed, we see that, there exists a constant C'

-1 1
independent in §, such that 0,us(t, ) has a support on (—R — Ct, R+ Ct) C (5, %) )
Moreover, from (5.42) and the fact that

we deduce that

remains bounded uniformly in §. Then formally the non-local term vanishes and we get
fori=1,...,d

1
Z Aijuf; +0 Z Qij /6 UZS dx — Z Aijﬂj’ as 0 — 0,
. . 0 j=

1d
which proves that @ is solution of (5.43), with the non-negative symmetric matrix A. O
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