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Diagonal hyperboli
 systems withlarge and monotone dataPart I: Global 
ontinuous solutionsA. El Hajj1, R. Monneau2April 11, 2009Abstra
tIn this paper, we study diagonal hyperboli
 systems in one spa
e dimension. Based on a newgradient entropy estimate, we prove the global existen
e of a 
ontinuous solution, for large andnon-de
reasing initial data. We remark that these results 
over the 
ase of systems whi
h arehyperboli
 but not stri
tly hyperboli
. Physi
ally, this kind of diagonal hyperboli
 systemsappears naturally in the modelling of the dynami
s of dislo
ation densities.AMS Classi�
ation: 35L45, 35Q35, 35Q72, 74H25.Key words: Global existen
e, system of Burgers equations, system of non-linear transportequations, non-linear hyperboli
 system, dynami
s of dislo
ation densities.
1 Introdu
tion and main result1.1 Setting of the problemIn this paper we are interested in 
ontinuous solutions to hyperboli
 systems in dimensionone. Our work will fo
us on solutions u(t, x) = (ui(t, x))i=1,...,d, where d is an integer, ofhyperboli
 systems whi
h are diagonal, i.e.

∂tu
i + λi(u)∂xu

i = 0 on (0, +∞) × R, for i = 1, . . . , d, (1.1)with the initial data:
ui(0, x) = ui

0(x), x ∈ R, for i = 1, . . . , d. (1.2)1Université d'Orléans, Laboratoire MAPMO, Route de Chartres, 45000 Orléans 
edex 2, Fran
e2É
ole Nationale des Ponts et Chaussées, CERMICS, 6 et 8 avenue Blaise Pas
al, Cité Des
artesChamps-sur-Marne, 77455 Marne-la-Vallée Cedex 2, Fran
e1



Here ∂t =
∂

∂t
and ∂x =

∂

∂x
. Su
h systems are (sometimes) 
alled (d × d) hyperboli
systems. Our study of system (1.1) is motivated by 
onsideration of models des
ribingthe dynami
s of dislo
ation densities (see the Appendix, Se
tion 5), whi
h is

∂tu
i +

(
∑

j=1,...,d

Aiju
j

)

∂xu
i = 0 for i = 1, . . . , d,where (Aij)i,j=1,...,d is a non-negative symmetri
 matrix. This model 
an be seen as aspe
ial 
ase of system (1.1).For real numbers αi ≤ βi, let us 
onsider the box

U = Πd
i=1[α

i, βi]. (1.3)We 
onsider a given fun
tion λ = (λi)i=1,...,d : U → R
d, whi
h satis�es the followingregularity assumption:

(H1)







the fun
tion λ ∈ C∞(U),there exists M0 > 0 su
h that for i = 1, ..., d,
|λi(u)| ≤ M0 for all u ∈ U,there exists M1 > 0 su
h that for i = 1, ..., d,
|λi(v) − λi(u)| ≤ M1|v − u| for all v, u ∈ U,where |w| =

∑

i=1,...,d

|wi|, for w = (w1, . . . , wd). Given any Bana
h spa
e (E, ‖ · ‖E), in therest of the paper we 
onsider the norm on Ed:
‖w‖Ed =

∑

i=1,...,d

‖wi‖E, for w = (w1, . . . , wd) ∈ Ed.We assume, for all u ∈ R
d, that the matrix
(λi

,j(u))i,j=1,...,d, where λi
,j =

∂λi

∂uj
,is non-negative in the positive 
one, namely

(H2)

∣
∣
∣
∣
∣
∣
∣
∣

for all u ∈ U, we have
∑

i,j=1,...,d

ξiξjλ
i
,j(u) ≥ 0 for every ξ = (ξ1, ..., ξd) ∈ [0, +∞)d.In (1.2), ea
h 
omponent ui

0 of the initial data u0 = (u1
0, . . . , u

d
0) is assumed satisfy thefollowing property: 2



(H3)







αi ≤ ui
0 ≤ βi,

ui
0 is non-de
reasing,

∂xu
i
0 ∈ L log L(R),

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

for i = 1, . . . , d,where L log L(R) is the following Zygmund spa
e:
L log L(R) =

{

f ∈ L1(R) su
h that ∫
R

|f | ln (e + |f |) < +∞
}

.This spa
e is equipped by the following norm:
‖f‖L log L(R) = inf

{

µ > 0 :

∫

R

|f |
µ

ln

(

e +
|f |
µ

)

≤ 1

}

,This norm is due to Luxemburg (see Adams [1, (13), Page 234℄).Our purpose is to show the existen
e of a 
ontinuous solution u = (u1, . . . , ud) su
h that,for i = 1, . . . , d, the fun
tion ui(t, ·) satis�es (H3) for all time.1.2 Main resultIt is well-known that for the 
lassi
al s
alar Burgers equation ∂tu + ∂x

(
u2

2

)

= 0, the so-lution stays 
ontinuous when the initial data is Lips
hitz-
ontinuous and non-de
reasing.We want somehow to generalize this result to the 
ase of diagonal hyperboli
 systems. Inparti
ular, we say that a fun
tion u0 = (u1
0, . . . , u

d
0) is non-de
reasing if ea
h 
omponent

ui
0 is non-de
reasing for i = 1, . . . , d.Theorem 1.1 (Global existen
e of a non-de
reasing solution)Assume (H1), (H2) and (H3). Then, there exists a fun
tion u whi
h satis�es for all

T > 0:i) Existen
e of a weak solution:The fun
tion u is solution of (1.1)-(1.2), where
u ∈ [L∞((0, +∞) × R)]d ∩ [C([0, +∞); L logL(R))]d and ∂xu ∈ [L∞((0, T ); L logL(R))]d,su
h that for a.e. t ∈ [0, T ) the fun
tion u(t, ·) is non-de
reasing in x and satis�es thefollowing L∞ estimate:

‖ui(t, ·)‖L∞(R) ≤ ‖ui
0‖L∞(R), for i = 1, . . . , d, (1.4)

3



and the gradient entropy estimate:
∫

R

∑

i=1,...,d

f
(
∂xu

i(t, x)
)
dx +

∫ t

0

∫

R

∑

i,j=1,...,d

λi
,j(u)∂xu

i(s, x)∂xu
j(s, x) dx ds ≤ C1, (1.5)where

0 ≤ f(x) =

{
x ln(x) + 1

e
if x ≥ 1/e,

0 if 0 ≤ x ≤ 1/e,
(1.6)and C1

(
T, d, M1, ‖u0‖[L∞(R)]d , ‖∂xu0‖[L log L(R)]d

).ii) Continuity of the solution:The solution u 
onstru
ted in (i) belongs to [C([0, +∞) × R)]d and there exists a modulusof 
ontinuity ω(δ, h), su
h that for all δ, h ≥ 0 and all (t, x) ∈ (0, T − δ) × R, we have:
|u(t + δ, x + h) − u(t, x)| ≤ C2 ω(δ, h) with ω(δ, h) =

1

ln(1
δ

+ 1)
+

1

ln( 1
h

+ 1)
, (1.7)where C2

(
T, d, M0, M1, ‖u0‖[L∞(R)]d , ‖∂xu0‖[L log L(R)]d

).The key point to establish Theorem 1.1 is the gradient entropy estimate (1.5). We �rst
onsider the paraboli
 regularization of the system (1.1) and we show that the smoothsolution admits the L∞ bound (1.4) and the fundamental gradient entropy inequality(1.5). Then, these a priori estimates will allow us to pass to the limit when the regu-larization vanishes, whi
h will provide the existen
e of a solution. Let us mention thata similar gradient entropy inequality was introdu
ed in Cannone et al. [5℄ to prove theexisten
e of a solution of a two-dimensional system of two 
oupled transport equations.Remark 1.2 Remark that assumption (H2) implies that the se
ond term on the lefthand side of (1.5) is non-negative. This will imply the L log L bound on the gradient ofthe solutions.Up to our knowledge, the result stated in Theorem 1.1 seems new. In relation with ourresult, we 
an 
ite the paper of Poupaud [24℄, where a result of existen
e and uniquenessof Lips
hitz solutions is proven for a parti
ular quasi-linear hyperboli
 system.Hyperboli
 systems (1.1) in the 
ase d = 2 are 
alled stri
tly hyperboli
 if and only ifwe have:
λ1(u1, u2) < λ2(u1, u2). (1.8)In this 
ase, a result of Lax [19℄ implies the existen
e of Lips
hitz monotone solutions of(1.1)-(1.2). This result was also extended by Serre [25, Vol II℄ in the 
ase of (d× d) ri
hhyperboli
 systems (see also Subse
tion 1.4 for more related referen
es). Their resultsare limited to the 
ase of stri
tly hyperboli
 systems. On the 
ontrary, in Theorem 1.1,we do not assume that the hyperboli
 system is stri
tly hyperboli
. See the followingremark for a quite detailed example. 4



Remark 1.3 (Crossing eigenvalues)Condition (1.8) on the eigenvalues is not required in our framework (Theorem 1.1). Hereis a simple example of a (2×2) hyperboli
 but not stri
tly hyperboli
 system. We 
onsidersolution u = (u1, u2) of






∂tu
1 + cos(u2)∂xu

1 = 0,

∂tu
2 + u1sin(u2)∂xu

2 = 0,

∣
∣
∣
∣
∣
∣

on (0, +∞) × R. (1.9)Assume:i) u1(−∞) = 1, u1(+∞) = 2 and ∂xu
1 ≥ 0,ii) u2(−∞) = −π

2
, u2(+∞) = π

2
and ∂xu

2 ≥ 0.Here the eigenvalues λ1(u1, u2) = cos(u2) and λ2(u1, u2) = u1sin(u2) 
ross ea
h other atthe initial time (and indeed for any time). Nevertheless, we 
an 
ompute
(λi

,j(u
1, u2))i,j=1,2 =

(
0 −sin(u2)

sin(u2) u1cos(u2)

)

,whi
h satis�es (H2) (under assumptions (i) and (ii)). Therefore Theorem 1.1 gives theexisten
e of a solution to (1.9) with in parti
ular (i) and (ii).Remark 1.4 (A generalization of Theorem 1.1)In Theorem 1.1 we have 
onsidered a parti
ular system in order to simplify the presen-tation. Our approa
h 
an be easily extended to the following generalized system:
∂tu

i + λi(u, x, t)∂xu
i = hi(u, x, t) on (0, +∞) × R, for i = 1, ..., d, (1.10)with the following 
onditions:- λi ∈ W 1,∞(U × R × [0, +∞)) and the matrix (λi

,j(u, x, t))i,j=1,...,d is positive in thepositive 
one for all (u, x, t) ∈ U × R × [0, +∞) (i.e. a 
ondition analogous to (H2)).- hi ∈ W 1,∞(U × R × [0, +∞)), ∂xh
i ≥ 0 and hi

,j ≥ 0 for all j 6= i.Let us remark that our system (1.1)-(1.2) does not 
reate sho
ks be
ause the solution(given in Theorem 1.1) is 
ontinuous. In this situation, it seems very natural to expe
tthe uniqueness of the solution. Indeed the notion of entropy solution (in parti
ular de-signed to deal with the dis
ontinuities of weak solutions) does not seem so helpful inthis 
ontext. Even for su
h a simple system, we then ask the following:Open question: Is there uniqueness of the 
ontinuous solution given inTheorem 1.1 ? 5



In a 
ompanion paper (El Hajj, Monneau [11℄), we will provide some partial answers tothis question.1.3 Appli
ation to diagonalizable systemsLet us �rst 
onsider a smooth fun
tion u = (u1, . . . , ud), solution of the following non-
onservative hyperboli
 system:






∂tu(t, x) + F (u)∂xu(t, x) = 0, u ∈ U, x ∈ R, t ∈ (0, +∞),

u(x, 0) = u0(x) x ∈ R,
(1.11)where the spa
e of states U is now an open subset of R

d, and for ea
h u, F (u) is a (d×d)-matrix and the map F is of 
lass C1(U). The system (1.11) is said (d× d) hyperboli
, if
F (u) has d real eigenvalues and is diagonalizable for any given u on the domain under
onsideration. By de�nition, su
h a system is said to be diagonalizable, if there exists asmooth transformation w = (w1(u), . . . , wd(u)) with non-vanishing Ja
obian su
h that(1.11) 
an be equivalently rewritten (for smooth solutions) as the following system

∂tw
i + λi(w)∂xw

i = 0 for i = 1, . . . , d,where λi are smooth fun
tions of w. Su
h fun
tions wi are 
alled stri
t i-Riemanninvariant.Our approa
h 
an give 
ontinuous solutions to the diagonalized system, whi
h provided
ontinuous solution to the original system (1.11).1.4 A brief review of some related literatureFor a s
alar 
onservation law, whi
h 
orresponds to system (1.11) in the 
ase d = 1where F (u) = h′(u) is the derivative of some �ux fun
tion h, the global existen
e anduniqueness of BV solutions has been established by Oleinik [23℄ in one spa
e dimension.The famous paper of Kruzhkov [18℄ 
overs the more general 
lass of L∞ solutions, inseveral spa
e dimensions. For an alternative approa
h based on the notion of entropypro
ess solutions, see for instan
e Eymard et al. [12℄. For a di�erent approa
h based ona kineti
 formulation, see also Lions et al. [22℄.We now re
all some well-known results for a 
lass of (2 × 2) stri
tly hyperboli
 sys-tems in one spa
e dimension. This means that F (u) has two real, distin
t eigenvaluessatisfying (1.8). As mentioned above, Lax [19℄ proved the existen
e and uniqueness ofnon-de
reasing and smooth solutions for diagonalized (2×2) stri
tly hyperboli
 systems.In the 
ase of some (2× 2) stri
tly hyperboli
 systems, DiPerna [6, 7℄ showed the globalexisten
e of a L∞ solution. The proof of DiPerna relies on a 
ompensated 
ompa
tnessargument, based on the representation of the weak limit in terms of Young measures,whi
h must redu
e to a Dira
 mass due to the presen
e of a large family of entropies.6



This result is based on an the idea of Tartar [27℄.For general (d × d) stri
tly hyperboli
 systems; i.e. where F (u) has d real, distin
teigenvalues
λ1(u) < · · · < λd(u), (1.12)Bian
hini and Bressan proved in a very 
omplete paper [3℄, a striking global existen
eand uniqueness result of solutions to system (1.11), assuming that the initial data hassmall total variation. This approa
h is mainly based on a 
areful analysis of the vanish-ing vis
osity approximation. An existen
e result has �rst been proved by Glimm [15℄ inthe spe
ial 
ase of 
onservative equations, i.e. F (u) = Dh(u) is the Ja
obian of some �uxfun
tion h. Let us mention that an existen
e result has been also obtained by LeFlo
hand Liu [20, 21℄ in the non-
onservative 
ase.We 
an also mention that, our system (1.1) is related to other similar models in dimension

N ≥ 1, su
h as s
alar transport equations based on ve
tor �elds with low regularity. Su
hequations were for instan
e studied by Diperna and Lions in [8℄. They have proved the ex-isten
e (and uniqueness) of a solution (in the renormalized sense), for given ve
tor �eldsin L1((0, +∞); W 1,1
loc (RN )) whose divergen
e is in L1((0, +∞); L∞(RN)). This study wasgeneralized by Ambrosio [2℄, who 
onsidered ve
tor �elds in L1((0, +∞); BVloc(R

N ))with bounded divergen
e. In the present paper, we work in dimension N = 1 and provethe existen
e (and some uniqueness results) of solutions of the system (1.1)-(1.2) witha velo
ity ve
tor �eld λi(u), i = 1, . . . , d. Here, in Theorem 1.1, the divergen
e of ourve
tor �eld is only in L∞((0, +∞), L logL(R)). In this 
ase we proved the existen
eresult thanks to the gradient entropy estimate (1.5), whi
h gives a better estimate onthe solution.Let us also mention that for hyperboli
 and symmetri
 systems in dimension N ≥ 1,Ga◦rding has proved in [13℄ a lo
al existen
e and uniqueness result in C([0, T ); Hs(RN))∩
C1([0, T ); Hs−1(RN)), with s > N

2
+ 1 (see also Serre [25, Vol I, Th 3.6.1℄), this resultbeing only lo
al in time, even in dimension N = 1.1.5 Organization of the paperThis paper is organized as follows: in Se
tion 2, we approximate the system (1.1), byadding the vis
osity term (ε∂xxu

i). Then we show a global in time existen
e for thisapproximated system. Moreover, we show that these solutions are regular and non-de
reasing in x for all t > 0. In Se
tion 3, we prove the gradient entropy inequalityand some other ε-uniform a priori estimates. In Se
tion 4, we prove the main result(Theorem 1.1) passing to the limit as ε goes to 0. Finally, in the appendix (Se
tion 5),we derive a model for the dynami
s of dislo
ation densities.7



2 Lo
al existen
e of an approximated systemThe system (1.1) 
an be written as:
∂tu + λ(u) ⋄ ∂xu = 0, (2.13)where u := (ui)1,...,d, λ(u) = (λi(u))1,...,d and u ⋄ v is the �
omponent by 
omponentprodu
t� of the two ve
tors u = (u1, . . . , ud), v = (v1, . . . , vd) ∈ R

d. This is the ve
torin R
d whose 
oordinates are given by (u ⋄ v)i := uivi. We now 
onsider the followingparaboli
 regularization of system (2.13), for all 0 < ε ≤ 1:







∂tu
ε + λ(uε) ⋄ ∂xu

ε = ε∂xxu
ε

uε(x, 0) = uε
0(x), with uε

0(x) := u0 ∗ ηε(x), (2.14)where ∂xx =
∂2

∂x2
and ηε is a molli�er verify, ηε(·) = 1

ε
η( ·

ε
), su
h that η ∈ C∞

c (R) is anon-negative fun
tion satisfying ∫
R

η = 1.Remark 2.1 By 
lassi
al properties of the molli�er (ηε)ε and the fa
t that uε
0 ∈

[L∞(R)]d, then u0 ∈ [C∞(R)]d ∩ [W 2,∞(R)]d. Moreover using the non-negativity of ηε,the se
ond equation of (2.14) we get that
‖uε,i

0 ‖L∞(R) ≤ ‖ui
0‖L∞(R), for i = 1, . . . , d,and (H3) also implies that uε

0 is non-de
reasing.The following theorem is a global existen
e result for the regularized system (2.14).Theorem 2.2 (Global existen
e of non-de
reasing smooth solutions)Assume (H1) and that the initial data uε
0 is non-de
reasing and satis�es uε

0 ∈ [C∞(R)]d∩
[W 2,∞(R)]d. Then the system (2.14), admits a solution uε ∈ [C∞([0, +∞) × R)]d ∩
[W 2,∞((0, +∞) × R)]d su
h that the fun
tion uε(t, ·) is non-de
reasing for all t > 0.Moreover, for all t > 0, we have the a priori bounds:

‖uε,i(t, ·)‖L∞(R) ≤ ‖uε,i
0 ‖L∞(R), for i = 1, . . . , d, (2.15)

∥
∥∂xu

ε,i
∥
∥

L∞([0,+∞);L1(R))
≤ 2‖uε,i

0 ‖L∞(R), for i = 1, . . . , d. (2.16)The lines of the proof of this theorem are very standard (see for instan
e Cannone etal. [5℄ for a similar problem). For this reason, we skip the details of the proof. First ofall we remark that the estimate (2.15) is a dire
t appli
ation of the Maximum Prin
ipleTheorem for paraboli
 equations (see Gilbarg-Trudinger [14, Th.3.1℄). The regularityof the solution follows from a bootstrap argument. The monotoni
ity of the solutionis a 
onsequen
e of the maximum prin
iple for s
alar paraboli
 equations applied to
wε = ∂xu

ε satisfying 8



∂tw
ε + λ(uε) ⋄ ∂xw

ε + ∂x(λ(uε)) ⋄ wε = ε∂xxw
ε.Sin
e ∂xu

ε ≥ 0 this implies easily the se
ond estimate (2.16).3 ε-uniform a priori estimatesIn this se
tion, we show some ε-uniform estimates on the solutions of system (2.14).Before going into the proof of the gradient entropy inequality de�ned in (1.5), we an-noun
e the main idea to establish this estimate. Now, let us set for w ≥ 0 the entropyfun
tion
f̄(w) = w ln w.For any non-negative test fun
tion ϕ ∈ C1

c ([0, +∞) × R), let us de�ne the following�gradient entropy� with wi := ∂xu
i:

S̄(t) =

∫

R

ϕ(t, ·)
(
∑

i=1,...,d

f̄(wi(t, ·))
)

dx.It is very natural to introdu
e su
h quantity S̄(t) whi
h in the 
ase ϕ ≡ 1, appearsto be nothing else than the total entropy of the system of d type of parti
les of non-negative densities wi ≥ 0. Then after two integration by parts, it is formally possibleto dedu
e from (1.1) the equality in the following gradient entropy inequality for all t ≥ 0

dS̄(t)

dt
+

∫

R

ϕ

(
∑

i,j=1,...,d

λi
,jw

iwj

)

dx ≤ R(t), for t ≥ 0, (3.17)with the rest
R(t) =

∫

R

{

(∂tϕ)

(
∑

i=1,...,d

f̄(wi)

)

+ (∂xϕ)

(
∑

i=1,...,d

λif̄(wi)

)}

dx,where we do not show the dependen
e on t in the integrals. We remark in parti
ularthat this rest is formally equal to zero if ϕ ≡ 1.To guarantee the existen
e of 
ontinuous solutions when ε = 0, we will assume later
(H2) whi
h guarantees the non-negativity on the se
ond term of the left hand side ofinequality (3.17).Coming ba
k to a rigorous statement, we will prove the following result.Proposition 3.1 (Gradient entropy inequality)Assume (H1) and 
onsider a fun
tion u0 ∈ [L∞(R)]d satisfying (H3). For any9



0 < ε ≤ 1, we 
onsider the solution uε of the system (2.14) given in Theorem2.2 with initial data uε
0 = u0 ∗ ηε. Then for any T > 0, there exists a 
onstant

C
(
T, d, M1, ‖u0‖[L∞(R)]d , ‖∂xu0‖[L log L(R)]d

) su
h that
S(t) +

∫ t

0

∫

R

∑

i,j=1,...,d

λi
,j(u

ε)wε,iwε,j ≤ C, with S(t) =

∫

R

∑

i=1,...,d

f(wε,i(t, ·))dx. (3.18)where f is de�ned in (1.6) and wε = (wε,i)i=1,...,d = ∂xu
ε.For the proof of Proposition 3.1, we need the following te
hni
al lemma:Lemma 3.2 (L log L estimate)Let (ηε)ε∈(0,1] be a non-negative molli�er satisfying ∫

R
ηε = 1, let f be the fun
tion de-�ned in (1.6) and h ∈ L1(R) be a non-negative fun
tion. Theni) ∫

R

f(h) < +∞ if and only if h ∈ L log L(R). Moreover we have the following estimates:
∫

R

f(h) ≤ 1 + ‖h‖L log L(R) + ‖h‖L1(R) ln
(
1 + ‖h‖L log L(R)

)
, (3.19)

‖h‖L log L(R) ≤ 1 +

∫

R

f(h) + ln(1 + e2)‖h‖L1(R). (3.20)ii) If h ∈ L log L(R), then for every ε ∈ (0, 1] the fun
tion hε = h ∗ ηε ∈ L log L(R) andsatis�es
‖hε‖L log L(R) ≤ C‖h‖L log L(R) and ‖h − hε‖L log L(R) → 0 as ε → 0,where C is a universal 
onstant.Proof of Lemma 3.2:The proof of (i) is trivial. To prove estimate (3.19), we �rst remark that, for all h ≥ 0and µ ∈ (0, 1], we have

(

h ln(h) +
1

e

)

11{h≥ 1

e
} ≤ h ln(h + e) ≤ h ln(e + µh) + | ln(µ)|h.We apply this inequality with µ =

1

max(1, ‖h‖L log L(R))
and integrate, we get

∫

R

f(h) ≤ 1

µ

∫

R

µh ln(e + µh) + | ln(µ)|‖h‖L1(R)

≤ 1

µ
+ | ln(µ)|‖h‖L1(R),10



where we have used the de�nition of ‖h‖L log L(R). This gives (3.19) using the fa
t that
µ ≥ 1

1 + ‖h‖L log L(R)

.To prove (3.20), we remark that, for h ≥ 1
e
, we have e ≤ e2h and

h ln(e + h) ≤ h ln(h) + h ln(1 + e2) ≤ f(h) + h ln(1 + e2).However, for 0 ≤ h ≤ 1
e
, we have in parti
ular

h ln(e + h) ≤ h ln(1 + e2).Therefore
∫

R

h ln(e + h) ≤
∫

R

f(h) + ln(1 + e2)‖h‖L1(R).From the de�nition of ‖h‖L log L(R), we dedu
e in parti
ular (3.20). For the proof of (ii)see Adams [1, Th 8.20℄.
2Proof of Proposition 3.1:First we want to 
he
k that S(t) is well de�ned. To this end, we remark that if w ≥ 0,then

0 ≤ f(w) ≤ 1

e
11{w≥ 1

e
} + w ln(1 + w).Whi
h gives that

∫

R

f(w) ≤ ‖w‖L1(R) ln
(
1 + ‖w‖L∞(R)

)
+

∫

R

1

e
11{w≥ 1

e
} ≤ ‖w‖L1(R)

(
1 + ln

(
1 + ‖w‖L∞(R)

))
.Now by Theorem 2.2, we have ∂xu

ε = wε ∈ [L∞((0, +∞); L1(R))]
d ∩ [W 2,∞((0, +∞) ×

R)]d. This implies that S ∈ L∞(0, +∞). We 
ompute
d

dt
S(t) =

∫

R

∑

i=1,...,d

f ′(wε,i)(∂tw
ε,i),

=

∫

R

∑

i=1,...,d

f ′(wε,i)∂x

(
−λi(uε)wε,i + ε∂xw

ε,i
)
,

=

J1

︷ ︸︸ ︷∫

R

∑

i=1,...,d

λi(uε)wε,if ′′(wε,i)∂xw
ε,i

J2

︷ ︸︸ ︷

− ε

∫

R

∑

i=1,...,d

(
∂xw

ε,i
)2

f ′′(wε,i) .11



Remark that these 
omputations (and the integration by parts) are justi�ed be
ause onthe one hand wε,i, its derivatives and λi are bounded, and on the other hand wε,i isin L∞((0, +∞); L1(R)). We know that J2 ≤ 0 be
ause f is 
onvex. To 
ontrol J1, werewrite it under the following form
J1 =

∫

R

∑

i=1,...,d

λi(uε)g′(wε,i)∂xw
ε,i,where

g(x) =

{
x − 1

e
if x ≥ 1/e,

0 if 0 ≤ x ≤ 1/e.Then, we dedu
e that
J1 =

∫

R

∑

i=1,...,d

λi(uε)∂x(g(wε,i))

= −
∫

R

∑

i,j=1,...,d

λi
,j(u

ε)wε,jg(wε,i),

=

J11

︷ ︸︸ ︷

−
∫

R

∑

i,j=1,...,d

λi
,j(u

ε)wε,jwε,i

J12

︷ ︸︸ ︷

−
∫

R

∑

i,j=1,...,d

λi
,j(u

ε)wε,j(g(wε,i) − wε,i) .We use the fa
t that |g(x) − x| ≤ 1
e
for all x ≥ 0 and (H1), to dedu
e that

|J12| ≤ 1

e
dM1 ‖wε‖[L∞((0,+∞),L1(R))]d

≤ 2

e
dM1‖u0‖[L∞(R)]d := C0(‖u0‖[L∞(R)]d , d, M1)where we have use

∥
∥wε,i

∥
∥

L∞((0,+∞),L1(R))
≤ 2‖ui

0‖L∞(R), for i = 1, . . . , d, (3.21)whi
h follows from Remark 2.1 and Theorem 2.2. Finally, we dedu
e that
d

dt
S(t) ≤ J11 + J12 + J2

≤ J11 + C0.Integrating in time on (0, t), for 0 < t < T , we get that, there exists a positive 
on-stant C
(
T, d, M1, ‖u0‖[L∞(R)]d , ‖∂xu0‖[L log L(R)]d

) whi
h is independent of ε by (3.19) andLemma 3.2 (ii) su
h that
S(t) +

∫ t

0

∫

R

∑

i,j=1,...,d

λi
,j(u

ε)wε,jwε,i ≤ C0T + S(0) ≤ C.12



2Lemma 3.3 (W−1,1 estimate on the time derivative of the solutions)Assume (H1) and that the fun
tion u0 ∈ [L∞(R)]d satis�es (H3). Then for any 0 < ε ≤
1, the solution uε of the system (2.14) given in Theorem 2.2 with initial data uε

0 = u0∗ηε,satis�es the following ε-uniform estimate for all T > 0:
‖∂tu

ε‖[L2((0,T );W−1,1(R))]d ≤ C‖u0‖[L∞(R)]d .where C = C(T, M0) > 0 and W−1,1(R) is the dual of the spa
e W 1,∞(R).Proof of Lemma 3.3:The idea to bound ∂tu
ε is simply to use the available bounds on the right hand side ofthe equation (2.14). We will give a proof by duality. We multiply the equation (2.14)by φ ∈ [L2((0, T ), W 1,∞(R))]

d and integrate on (0, T ) × R, whi
h gives
∫

(0,T )×R

φ · ∂tu
ε =

I1
︷ ︸︸ ︷

ε

∫

(0,T )×R

φ · ∂2
xxu

ε

I2
︷ ︸︸ ︷

−
∫

(0,T )×R

φ · (λ(uε) ⋄ ∂xu
ε).We integrate by parts the term I1, and obtain:

|I1| ≤
∣
∣
∣
∣

∫

(0,T )×R

∂xφ · ∂xu
ε

∣
∣
∣
∣

≤ ‖∂xφ‖[L2((0,T ),L∞(R))]d‖∂xu
ε‖[L2((0,T ),L1(R))]d,

≤ 2T
1

2‖φ‖[L2((0,T ),W 1,∞(R))]d‖u0‖[L∞(R)]d ,

(3.22)where we have used inequality (3.21). Similarly, for the term I2, we have:
|I2| ≤ M0‖φ‖[L2((0,T ),L∞(R))]d‖∂xu

ε‖[L2((0,T ),L1(R))]d,

≤ 2T
1

2 M0‖u0‖[L∞(R)]d‖φ‖[L2((0,T ),W 1,∞(R))]d.

(3.23)Finally, 
olle
ting (3.22) and (3.23), we get that there exists a 
onstant C = C(T, M0)independent of 0 < ε ≤ 1 su
h that:
∣
∣
∣
∣

∫

(0,T )×R

φ · ∂tu
ε

∣
∣
∣
∣
≤ C‖u0‖[L∞(R)]d‖φ‖[L2((0,T ),W 1,∞(R))]dwhi
h gives the announ
ed result. 2Corollary 3.4 (ε-uniform estimates)Assume (H1) and that the fun
tion u0 ∈ [L∞(R)]d satis�es (H3). Then for any 0 < ε ≤

1, the solution uε of the system (2.14) given in Theorem 2.2 with initial data uε
0 = u0∗ηε,satis�es the following ε-uniform estimate for all T > 0:

‖∂xu
ε‖[L∞((0,+∞),L1(R))]d + ‖uε‖[L∞((0,+∞)×R)]d + ‖∂tu

ε‖[L2((0,T );W−1,1(R))]d ≤ C, (3.24)where C = C(T, M0, ‖u0‖[L∞(R)]d). 13



This Corollary is a straightforward 
onsequen
e of Remark 2.1, Theorem 2.2, estimate(3.21) and Lemma 3.3.4 Passage to the limit and proof of Theorem 1.1In this se
tion, we prove that the system (1.1)-(1.2) admits solutions u in the distribu-tional sense. They are the limits of uε given by Theorem 2.2 when ε → 0. To do this, wewill justify the passage to the limit as ε tends to 0 in the system (2.14) by using some
ompa
tness tools that are presented in a �rst subse
tion.4.1 Preliminary resultsFirst, for all open interval I of R, we denote by
L log L(I) =

{

f ∈ L1(I) su
h that ∫
I

|f | ln (e + |f |) < +∞
}

.Lemma 4.1 (Simon's Lemma)Let X, B, Y be three Bana
h spa
es, su
h that we have the following inje
tions
X →֒ B with 
ompa
t embedding and B →֒ Y with 
ontinuous embedding.Let T > 0. If (uε)ε is a sequen
e su
h that,

‖uε‖L∞((0,T );X) + ‖∂tu
ε‖Lq((0,T );Y ) ≤ C,where q > 1 and C is a 
onstant independent of ε, then (uε)ε is relatively 
ompa
t in

Lp((0, T ); B) for all 1 ≤ p < q.For the proof, see Simon [26, Corollary 4, Page 85℄.In order to show the existen
e of a solution to system (1.1) in Subse
tion 4.2, we will ap-ply this lemma to ea
h s
alar 
omponent of uε in the parti
ular 
ase where X = W 1,1(I),
B = L1(I) and Y = W−1,1(I) := (W 1,∞

0 (I))′.We denote by Kexp(I) the 
lass of all measurable fun
tion u, de�ned on I, for whi
h,
∫

I

(
e|u| − 1

)
< +∞.The spa
e EXP (I) = {µu : µ ≥ 0 and u ∈ Kexp(I)} the linear hull of Kexp(I).This spa
e is supplemented with the following Luxemburg norm (see Adams [1, (13),Page 234℄ ):

‖u‖EXP (I) = inf

{

λ > 0 :

∫

I

(

e
|u|
λ − 1

)

≤ 1

}

.Let us re
all some useful properties of this spa
e.14



Lemma 4.2 (Generalized Hölder inequality, Adams [1, 8.11, Page 234℄)Let h ∈ EXP (I) and g ∈ L log L(I). Then hg ∈ L1(I), with
‖hg‖L1(I) ≤ 2‖h‖EXP (I)‖g‖L log L(I).Lemma 4.3 (Continuity)Let T > 0. Assume that u ∈ L∞((0, +∞) × R) su
h that

‖∂xu‖L∞((0,T );L log L(R)) + ‖∂tu‖L∞((0,T );L log L(R)) ≤ C2Then that for all δ, h ≥ 0 and all (t, x) ∈ (0, T − δ) × R, we have:
|u(t + δ, x + h) − u(t, x)| ≤ 6C2

(
1

ln(1
δ

+ 1)
+

1

ln( 1
h

+ 1)

)

.Proof of Lemma 4.3:For all h > 0 and (t, x) ∈ (0, T ) × R, we have:
|u(t, x + h) − u(t, x)| ≤

∣
∣
∣
∣

∫ x+h

x

∂xu(t, y)dy

∣
∣
∣
∣

≤ 2‖1‖EXP (x,x+h)‖∂xu(t, ·)‖L log L(x,x+h),

≤ 2
1

ln( 1
h

+ 1)
‖∂xu‖L∞((0,T );L log L(R)),

≤ 2C2
1

ln( 1
h

+ 1)
,

(4.25)
where we have used in the se
ond line the generalized Hölder inequality (Lemma 4.2).Now, we prove the 
ontinuity in time, for all δ > 0 and (t, x) ∈ (0, T − δ)× R, we have:

δ|u(t + δ, x) − u(t, x)|

=

∫ x+δ

x

|u(t + δ, x) − u(t, x)|dy,

≤

K1

︷ ︸︸ ︷
∫ x+δ

x

|u(t + δ, x) − u(t + δ, y)|dy, +

K2

︷ ︸︸ ︷
∫ x+δ

x

|u(t + δ, y) − u(t, y)|dy, +

K3

︷ ︸︸ ︷
∫ x+δ

x

|u(t, y) − u(t, x)|dy .Similarly, as in the last estimate (4.25), we get that:
15



K1 + K3 ≤ δ

∫ x+δ

x

|∂xu(t + δ, y)|dy, +δ

∫ x+δ

x

|∂xu(t, y)|dy,

≤ 4C2
δ

ln(1
δ

+ 1)
.Now, we use that ∂tu is bounded in L∞((0, T ); L logL(R)), to obtain that:

K2 ≤
∫ x+δ

x

∫ t+δ

t

|∂tu(s, y)|ds dy,

≤ 2δ‖1‖EXP (x,x+δ)‖∂tu‖L∞((0,T );L log L(R)) ≤ 2C2
δ

ln(1
δ

+ 1)
.Colle
ting the estimates of K1, K2 and K3, we get that:

|u(t + δ, x) − u(t, x)| ≤ 1

δ
(K1 + K2 + K3) ≤ 6C2

1

ln(1
δ

+ 1)
.This last inequality joint to (4.25) implies the result.

24.2 Proof of Theorem 1.1The authors would like to thank T. Gallouët for fruitful remarks that helped to simplifyof the proof of Theorem 1.1. Before to prove Theorem 1.1, we �rst prove the followingresult.Theorem 4.4 (Passage to the limit)Assume that uε is a solution of system (2.14) given by Theorem 2.2, with initial data
uε

0 = u0 ∗ ηε where u0 satis�es (H3). If we assume that for all T > 0, there exists a
onstant C > 0 independent on ε, su
h that:
‖∂xu

ε‖[L∞((0,T );L log L(R))]d ≤ C, (4.26)then up to extra
t a subsequen
e, the fun
tion uε 
onverges, as ε goes to zero, to afun
tion u weakly-⋆ in [L∞((0, +∞) × R)]d. Moreover, u is a solution of (1.1)-(1.2),and satis�es






‖u‖[L∞((0,+∞)×R)]d ≤ ‖u0‖[L∞(R)]d,

‖∂xu‖[L∞((0,T );L log L(R))]d ≤ C,

‖∂tu‖[L∞((0,T );L log L(R))]d ≤ M0C,and u(t, ·) is non-de
reasing in x, for all t > 0 and satis�es16



‖ui‖L∞((0,+∞);L1(R)) ≤ 2‖ui
0‖L∞(R) for i = 1, . . . , d. (4.27)Proof of Theorem 4.4:Step 1 (u solution of (1.1)): First, we remark that by estimate (3.24) we know thatfor any T > 0, the solutions uε of the system (2.14) obtained with the help of Theorem2.2, are ε-uniformly bounded in [L∞((0, +∞) × R)]d. Hen
e, as ε goes to zero, we 
anextra
t a subsequen
e still denoted by uε, that 
onverges weakly-⋆ in [L∞((0, +∞) × R)]dto some limit u. Then we want to show that u is a solution of system (1.1). Indeed, sin
ethe passage to the limit in the linear terms is trivial in [D′((0, +∞) × R)]d, it su�
es topass to the limit in the non-linear term

λ(uε) ⋄ ∂xu
ε.A

ording to estimate (3.24) we know that for all open and bounded interval I of Rthere exists a 
onstant C independent on ε su
h that:

‖uε‖[L∞((0,T );W 1,1(I))]d + ‖∂tu
ε‖[L2((0,T );W−1,1(I))]d ≤ C.From the 
ompa
tness of W 1,1(I) →֒ L1(I), we 
an apply Simon's Lemma (i.e. Lemma4.1), with X = [W 1,1(I)]

d, B = [L1(I)]
d and Y = [W−1,1(I)]

d, whi
h shows in parti
ularthat
uε is relatively 
ompa
t in [L1((0, T ) × I)]

d. (4.28)Then, we 
an see that (up to extra
t a subsequen
e)
λ(uε) → λ(u) a.e.Moreover, from Lemma 4.2, similarly as in (4.25), we 
an get, for all t ∈ (0, T ) thefollowing estimates:

∣
∣
∣
∣

∫

I

∂xu
ε(t, y)dy

∣
∣
∣
∣
≤ 2C

1

ln( 1
|I|

+ 1)
,where C is given in (4.26). By the previous estimate and the fa
t that λ(uε) is uniformlybounded in [L∞((0, +∞) × R)]d and 
onverges a.e. to λ(u), we 
an apply the Dunford-Pettis Theorem (see Brezis [4, Th IV.29℄) and prove that

λ(uε) ⋄ ∂xu
ε → λ(u) ⋄ ∂xuweakly in [L1((0, T ) × I)]

d. Be
ause this is true for any bounded open interval I, thenwe 
an pass to the limit in (2.14) and get that,
∂tu + λ(u) ⋄ ∂xu = 0 in D′((0, +∞) × R).17



Step 2 (A priori bounds): By weakly-⋆ 
onvergen
e and from the fa
t that L∞((0, T ); L log L(R))is the dual of L1((0, T ); Eexp(R)) (see Adams [1℄ for the de�nition of the Bana
h spa
e
Eexp(R)), we 
an 
he
k that u satis�es the following estimates:

‖∂xu‖[L∞((0,T );L log L(R))]d ≤ lim inf
ε→0

‖∂xu
ε‖[L∞((0,T );L log L(R))]d ≤ C,

‖u‖[L∞((0,+∞)×R)]d≤ lim inf
ε→0

‖uε‖[L∞((0,+∞)×R)]d ≤ ‖u0‖[L∞(R)]d . (4.29)Thanks to these two estimates, we obtain that
‖∂tu‖[L∞((0,T );L log L(R))]d ≤ ‖λ(u) ⋄ ∂xu‖[L∞((0,T );L log L(R))]d

≤ M0‖∂xu‖[L∞((0,T );L log L(R))]d ≤ M0C.Moreover (4.27) follows from (4.29) and the fa
t that u(t, ·) is non-de
reasing in x (as itwas the 
ase for uε).Step 3 (Re
overing the initial data): Now we prove that the initial 
onditions (1.2)
oin
ides with u(0, ·). Indeed, by the ε-uniformly estimate given in Corollary 3.4, we
an prove easily that, we have
‖uε(t) − uε

0‖[W−1,1(R)]d ≤ Ct
1

2 .Then, we get
‖u(t) − u0‖[W−1,1(R)]d ≤ ‖u − u0‖[L∞((0,t);W−1,1(R))]d

≤ lim inf
ε→0

‖uε − uε
0‖[L∞((0,t);W−1,1(R))]d ≤ Ct

1

2 ,where we have used the weakly-⋆ 
onvergen
e in L∞((0, t); W−1,1(R)) in the se
ond line.This proves that u(0, ·) = u0 in [D′(R)]d.
2Proof of Theorem 1.1:Step 1 (Existen
e): Remark that by assumption (H2) and estimate (3.18), we dedu
efrom (3.20) joint to (3.21) that, the solution uε given by Corollary 3.4 satis�es thefollowing estimate:

‖∂xu
ε‖[L∞((0,T );L log L(R))]d ≤ C, (4.30)where C = C

(
T, d, M1, ‖u0‖[L∞(R)]d , ‖∂xu0‖[L log L(R)]d

). Now, we apply Theorem 4.4 toprove that, up to extra
t a subsequen
e, the fun
tion uε 
onverges, as ε goes to zero, toa fun
tion u weakly-⋆ in [L∞((0, +∞) × R)]d, with u is beeing solution to (1.1)-(1.2).Moreover, from Lemma 4.3, we dedu
e that the fun
tion u satis�es the 
ontinuity esti-mate (1.7). 18



Step 2 (Justi�
ation of (1.5)): Let






Γij(u
ε) = 1

2

(
λi

,j(u
ε) + λj

,i(u
ε)
)
, for i, j = 1, . . . , d,

wε = ∂xu
ε.For a general matrix Γ, where tΓ = Γ ≥ 0, let us introdu
e the square root B =

√
Γ of

Γ, uniquely de�ned by
tB = B ≥ 0 and B2 = Γ.Remark that for non-negative symmetri
 matri
es, the map Γ 7−→

√
Γ is 
ontinuous.Then we 
an rewrite

∫ t

0

∫

R

∑

i,j=1,...,d

λi
,j(u

ε)wε,iwε,j =

∫ t

0

∫

R

∣
∣
∣

√

Γ(uε)wε
∣
∣
∣

2

≤ C,where C is given in (3.18). Therefore
√

Γ(uε)wε → q weakly in [L2((0, t) × R)]
d.Applying the same argument as in Step 1, of the proof of Theorem 4.4, for the 
onver-gen
e of λ(uε) ⋄ ∂xu

ε, we see that
√

Γ(uε)∂xu
ε →

√

Γ(u)∂xu = q weakly in [L1((0, t) × R)]
d.Therefore, using the weakly 
onvergen
e in L2((0, t) × R), we get

∫ t

0

∫

R

∑

i,j=1,...,d

λi
,j(u)∂xu

i∂xu
j =

∫ t

0

∫

R

q2 ≤ lim inf
ε→0

∫ t

0

∫

R

∣
∣
∣

√

Γ(uε)∂xu
ε
∣
∣
∣

2

≤ C. (4.31)Remark also that for wi = ∂xu
i, we have

sup
0≤t≤T

∫

R

f(wi) ≤ 1 + ‖wi‖L∞((0,T );L log L(R)) + ‖wi‖L∞((0,T );L1(R)) ln
(
1 + ‖wi‖L∞((0,T );L log L(R))

)

≤ 1 + ‖wi‖L∞((0,T );L log L(R)) + 2‖ui
0‖L∞(R) ln

(
1 + ‖wi‖L∞((0,T );L log L(R))

)
:= g[wi]

≤ lim inf
ε→0

g[wε,i]

≤ 1 + C + 2‖ui
0‖L∞(R) ln(1 + C) := C ′,where in the �rst line we have used (3.19), in the se
ond line we have used (4.27),in the third line we have used the weakly-⋆ 
onvergen
e of wε,i towards wi in

L∞((0, T ); L logL(R)) and in the fourth line, we have used (4.30). Putting this resulttogether with (4.31), we get (1.5) with C1 = C + C ′.
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5 Appendix: Example of the dynami
s of dislo
ationdensitiesIn this se
tion, we present a model des
ribing the dynami
s of dislo
ation densities. Werefer to Hirth et al. [17℄ for a physi
al presentation of dislo
ations whi
h are (moving)defe
ts in 
rystals. Even if the problem is naturally a three-dimensional problem, wewill �rst assume that the geometry of the problem is invariant by translations in the
x3-dire
tion. This redu
es the problem to the study of dislo
ations densities de�nedon the plane (x1, x2) and moving in a given dire
tion b belonging to the plane (x1, x2)(whi
h is 
alled the �Burger's ve
tor�).In Subse
tion 5.1, we present the 2D-model with multi-slip dire
tions. In the parti
ulargeometry where the dislo
ations densities only depend on the variable x = x1 + x2,this two-dimensional model redu
es to a one-dimensional model whi
h is presented inSubse
tion 5.2. Finally in Subse
tion 5.3, we explain how to re
over equation (1.1) as amodel for dislo
ation dynami
s with

λi(u) =
∑

j=1,...,d

Aiju
jfor some parti
ular non-negative and symmetri
 matrix A.5.1 The 2D-modelWe now present in details the two-dimensional model. We denote by X the ve
tor

X = (x1, x2) ∈ R
2. We 
onsider a 
rystal �lling the whole spa
e R

2 and its displa
ement
v = (v1, v2) : R

2 → R
2, where we have not yet introdu
ed the time dependen
e.We introdu
e the total strain ε(v) = (εij(v))i,j=1,2 whi
h is a symmetri
 matrix de�nedby

εij(v) =
1

2

(
∂vi

∂xj

+
∂vj

∂xi

)

.The total strain 
an be spitted in two parts:
εij(v) = εe

ij + εp
ij with εp =

∑

k=1,...,d

ε0,kuk,where εe
ij is the elasti
 strain and εp

ij is the plasti
 strain. The s
alar fun
tion uk is theplasti
 displa
ement asso
iated to the k-th slip system whose matrix ε0,k
ij is de�ned by

ε0,k
ij =

1

2

(
bk
i n

k
j + nk

i b
k
j

)
,20



where (bk, nk) is a family of ve
tors in R
2, su
h that nk is a unit ve
tor orthogonal tothe Burger's ve
tor bk (see Hirth et al. [17℄ for the de�nition of the Burger's ve
tor of adislo
ation)To simplify the presentation, we assume the simplest possible periodi
ity property ofthe unknowns.Assumption (H):i) The fun
tion v is Z

2-periodi
 with ∫
(0,1)2

v dX = 0.ii) For ea
h k = 1, . . . , d, there exists Lk ∈ R
2 su
h that uk(X)−Lk ·X is a Z

2-periodi
.iii) The integer d is even with d = 2N and we have for k = 1, . . . , N :
Lk+N = Lk, nk+N = nk, bk+N = −bk, ε0,k+N = −ε0,k.iv) We denote by τk ∈ R

2 a unit ve
tor parallel to bk su
h that τk+N = τk. We requirethat Lk is 
hosen su
h τk · Lk ≥ 0.Remark in parti
ular that the plasti
 strain εp
ij is Z

2-periodi
 as a 
onsequen
e of As-sumption (H). The stress matrix is then given by
σij =

∑

k,l=1,2

Λijklε
e
kl for i, j = 1, 2,where Λ = (Λijkl)i,j,k,l=1,2, are the 
onstant elasti
 
oe�
ients of the material, satisfyingfor some 
onstant m > 0:

∑

i,j,k,l=1,2

Λijklεijεkl ≥ m
∑

i,j=1,2

ε2
ij , (5.32)for all symmetri
 matri
es ε = (εij)ij

, i.e. su
h that εij = εji.Then the stress is assumed to satisfy the equation of elasti
ity
∑

j=1,2

∂σij

∂xj

= 0 for i = 1, 2.On the other hand the plasti
 displa
ement uk is assumed to satisfy the following trans-port equation
∂tu

k = ckτk.∇uk with ck =
∑

i,j=1,2

σijε
0,k
ij .This equation 
an be interpreted, saying that21



θk = τk.∇uk ≥ 0, (5.33)is the density of edge dislo
ations asso
iated to the Burger's ve
tor bk moving in thedire
tion τk at the velo
ity ck. Here ck is also 
alled the resolved Pea
h-Koehler for
e inthe physi
al literature. In parti
ular, we see that the dislo
ation density θk satis�es thefollowing 
onservation law
∂tθ

k = div(ckτkθk).Finally, for k = 1, . . . , d, the fun
tions uk and v are then assumed to depend on (t, X) ∈
(0, +∞) × R

2 and to be solutions of the 
oupled system (see Ye�mov [28, 
h. 5.℄ andYe�mov, Van der Giessen [29℄):






∑

j=1,2

∂σij

∂xj

= 0 on (0, +∞) × R
2, for i = 1, 2,

σij =
∑

k,l=1,2

Λijkl

(

εkl(v) −
∑

k=1,...,d

ε0,k
ij uk

) on (0, +∞) × R
2,

εij(v) =
1

2

(
∂vi

∂xj

+
∂vj

∂xi

) on (0, +∞) × R
2,

∣
∣
∣
∣
∣
∣
∣
∣
∣

for i, j = 1, 2

∂tu
k =




∑

i,j∈{1,2}

σijε
0,k
ij



 τk.∇uk on (0, +∞) × R
2, for k = 1, . . . , d, (5.34)where Λijkl, ε0,k

ij are �xed parameters previously introdu
ed, and the unknowns of thesystem are u = (uk)k=1,...,d and the displa
ement v = (v1, v2). Remark also that ourequations are 
ompatible with our periodi
ity assumptions (H), (i)-(ii).For a detailed physi
al presentation of a model with multi-slip dire
tions, we refer toYe�mov, Van der Giessen [29℄ and Ye�mov [28, 
h. 5.℄ and to Groma, Balogh [16℄for the 
ase of a model with a single slip dire
tion. See also Cannone et al. [5℄ for amathemati
al analysis of the Groma, Balogh model.5.2 Derivation of the 1D-modelIn this subse
tion we are interested in a parti
ular geometry where the dislo
ation den-sities depend only on the variable x = x1 + x2. This will lead to a 1D-model. Morepre
isely, we make the following:Assumption (H ′): 22



i) The fun
tions v(t, X) and uk(t, X)−Lk ·X depend only on the variable x = x1 + x2.ii) For k = 1, . . . , d, the ve
tor τk = (τk
1 , τk

2 ) satis�es τk
1 + τk

2 > 0 with µk =
1

τk
1 + τk

2

.iii) For k = 1, . . . , d, the ve
tor Lk = (Lk
1, L

k
2) satis�es Lk

1 = Lk
2 = lk.For this parti
ular one-dimensional geometry, we denote by an abuse of notation thefun
tion v = v(t, x) whi
h is 1-periodi
 in x. By assumption (H ′), (iii), we 
an see(again by an abuse of notation) that u = (uk(t, x))k=1,...,d is su
h that for k = 1, . . . , d,

uk(t, x) − lk · x is 1-periodi
 in x.Now, we 
an integrate the equations of elasti
ity, i.e. the �rst equation of (5.34). Usingthe Z
2-periodi
ity of the unknowns (see assumption (H), (i)-(ii)), and the fa
t that

ε0,k+N = −ε0,k (see assumption (H), (iii)), we 
an easily 
on
lude that the strain
εe is a linear fun
tion of (uj − uj+N)j=1,...,N and of (∫ 1

0

(uj − uj+N) dx

)

j=1,...,N

.(5.35)This leads to the following LemmaLemma 5.1 (Stress for the 1D-model)Under assumptions (H), (i)-(ii)-(iii) and (H ′), (i)-(iii) and (5.32), we have
−σ : ε0,i =

∑

j=1,...,d

Aiju
j +

∑

j=1,...,d

Qij

∫ 1

0

uj dx, for i = 1, . . . , N, (5.36)where for i, j = 1, . . . , N







Ai,j = Aj,i and Ai+N,j = −Ai,j = Ai,j+N = −Ai+N,j+N ,
Qi,j = Qj,i and Qi+N,j = −Qi,j = Qi,j+N = −Qi+N,j+N . (5.37)Moreover the matrix A is non-negative.The proof of Lemma 5.1 will be given at the end of this subse
tion.Finally using Lemma 5.1, we 
an eliminate the stress and redu
e the problem to aone-dimensional system of d transport equations only depending on the fun
tion ui, for

i = 1, . . . , d. Naturally, from (5.36) and (H ′), (ii) this 1D-model has the following form
23



The 1D-model of the dynami
s of dislo
ation densities:
µi∂tu

i+

(
∑

j=1,...,d

Aiju
j +

∑

j=1,...,d

Qij

∫ 1

0

uj dx

)

∂xu
i = 0, on (0, +∞) × R, for i = 1, . . . , d,(5.38)with from (5.33)

∂xu
i ≥ 0 for i = 1, . . . , d. (5.39)Now, we give the proof of Lemma 5.1.Proof of Lemma 5.1:For the 2D-model, let us 
onsider the elasti
 energy on the periodi
 
ell (using the fa
tthat εe is Z

2-periodi
)
E(u, v) =

1

2

∫

(0,1)2

∑

i,j,k,l=1,2

Λijklε
e
ijε

e
kl dX with εe

ij = εij(v) −
∑

k=1,...,d

ε0,k
ij uk.By de�nition of σij and εe

ij, we have for k = 1, . . . , d

∑

i,j=1,2

(σijε
0,k
ij ) = −E ′

uk(u, v). (5.40)On the other hand using (H ′), (i)-(iii), (with x = x1 + x2) we 
an 
he
k that we 
anrewrite the elasti
 energy as
E =

1

2

∫ 1

0

∑

i,j,k,l=1,2

Λijklε
e
ijε

e
kldx.Repla
ing εe

ij by its expression (5.35), we get:
E =

1

2

∫ 1

0

∑

i,j=1,...,N

Aij(u
j − uj+N)(ui − ui+N) dx

+
1

2

∑

i,j=1,...,N

Qij

(∫ 1

0

(uj − uj+N) dx

)(∫ 1

0

(ui − ui+N) dx

)

,for some symmetri
 matri
es Aij = Aji, Qij = Qji. In parti
ular, joint to (5.40) thisgives exa
tly (5.36) with (5.37).Let us now 
onsider the fun
tions wi = ui − ui+N su
h that
∫ 1

0

wi dx = 0 for i=1,. . . ,N. (5.41)24



From (5.32), we dedu
e that
0 ≤ E =

1

2

∫ 1

0

∑

i,j=1,...,N

Aijw
iwj dx.More pre
isely, for all i = 1, . . . , N and for all w̄i ∈ R, we set

wi =

{
w̄i on [0, 1

2
],

−w̄i on [1
2
, 1],whi
h satis�es (5.41). Finally, we obtain that

0 ≤ E =
1

2

∫ 1

0

∑

i,j=1,...,N

Aijw̄
iw̄j dx.Be
ause this is true for every w̄ = (w̄1, . . . , w̄N) ∈ R

N , we dedu
e that A a non-negativematrix.
2We refer the reader to El Hajj [9℄ and El Hajj, For
adel [10℄ for a study in the spe
ial
ase of a single slip dire
tion, i.e. in the 
ase N = 1.5.3 Heuristi
 derivation of the non-periodi
 modelStarting from the model (5.38)-(5.39) where for i = 1, . . . , d, the fun
tion ui(t, x)−li ·x is

1-periodi
 in x, we now want to res
ale the unknowns to make the periodi
ity disappear.More pre
isely, we have the following Lemma:Lemma 5.2 (Non-periodi
 model)Let u be a solution of (5.38)-(5.39) assuming Lemma 5.1 and ui(t, x)− li ·x is 1-periodi
in x. Let
uj

δ(t, x) = uj(δt, δx), for a small δ > 0 and for j = 1, . . . , d,su
h that, for all j = 1, . . . , d

uj
δ(0, ·) → ūj(0, ·), as δ → 0, and ūj(0,±∞) = ūj+N(0,±∞). (5.42)Then ū = (ūj)j=1,...,d is formally a solution of

µi∂tū
i +

(
∑

j=1,...,d

Aij ū
j

)

∂xū
i = 0, on (0, +∞) × R, (5.43)where the symmetri
 matrix A is non-negative and ∂xū

i ≥ 0 for i = 1, . . . , d.25



We remark that the limit problem (5.43) is of type (1.1) when µi = 1. In parti
ular, thereare no reasons to assume that this system is stri
tly hyperboli
 in general. Neverthe-less, the general 
ase µi > 0 
an be treated with our approa
h developed in Theorem 1.1
onsidering the entropy ∫
R

∑

i=1,...,d

µif
(
∂xū

i(t, x)
)
dx instead of ∫

R

∑

i=1,...,d

f
(
∂xū

i(t, x)
)
dx.Formal proof of Lemma 5.2:Here, we know that ui

δ − δli · x is 1

δ
-periodi
 in x, and satis�es for i = 1, . . . , d

µi∂tu
i
δ +

(
∑

j=1,...,d

Aiju
j
δ + δ

∑

j=1,...,d

Qij

∫ 1

δ

0

uj
δ dx

)

∂xu
i
δ = 0, on (0, +∞) × R. (5.44)To simplify, assume that the initial data uδ(0, ·) 
onverge to a fun
tion ū(0, ·) su
h thatthe fun
tion ∂xuδ(0, ·) inside the interval (−1

2δ
,

1

2δ

) has a support in (−R, R), uniformlyin δ, where R a positive 
onstant. Be
ause of the antisymmetry property of the matrix
Q (see assumption (5.37)), and be
ause of assumption (5.42), we expe
t heuristi
allythat the velo
ity in (5.44) remains uniformly bounded as δ → 0.Therefore, using the �nite propagation speed, we see that, there exists a 
onstant Cindependent in δ, su
h that ∂xuδ(t, ·) has a support on (−R − Ct, R + Ct) ⊂

(−1

2δ
,

1

2δ

).Moreover, from (5.42) and the fa
t that
∑

j=1,...,d

Qij

∫ 1

δ

0

uj
δ dx =

∑

j=1,...,N

Qij

∫ 1

δ

0

(uj
δ − uj+N

δ ) dx,we dedu
e that
∑

j=1,...,d

Qij

∫ 1

δ

0

uj
δ dx,remains bounded uniformly in δ. Then formally the non-lo
al term vanishes and we getfor i = 1, . . . , d

∑

j=1,...,d

Aiju
j
δ + δ

∑

j=1,...,d

Qij

∫ 1

δ

0

uj
δ dx →

∑

j=1,...,d

Aijū
j, as δ → 0,whi
h proves that ū is solution of (5.43), with the non-negative symmetri
 matrix A. 26 A
knowledgementsThe �rst author would like to thank M. Cannone, T. Gallouët and M. Jazar for fruitfulremarks that helped in the preparation of the paper. This work was partially supported26



the program �PPF, programme pluri-formations mathématiques �nan
ières et EDP�,(2006-2010), Marne-la-Vallée University and É
ole Nationale des Ponts et Chausséesand the ANR MICA "Mouvements d'Interfa
es, Cal
ul et Appli
ations" (2006-2009).Referen
es[1℄ R. A. Adams, Sobolev spa
es, A
ademi
 Press [A subsidiary of Har
ourt Bra
eJovanovi
h, Publishers℄, New York-London, 1975. Pure and Applied Mathemati
s,Vol. 65.[2℄ L. Ambrosio, Transport equation and Cau
hy problem for BV ve
tor �elds, Invent.Math., 158 (2004), pp. 227�260.[3℄ S. Bian
hini and A. Bressan, Vanishing vis
osity solutions of nonlinear hyper-boli
 systems, Ann. of Math. (2), 161 (2005), pp. 223�342.[4℄ H. Brezis, Analyse fon
tionnelle, Colle
tion Mathématiques Appliquées pour laMaîtrise. [Colle
tion of Applied Mathemati
s for the Master's Degree℄, Masson,Paris, 1983. Théorie et appli
ations. [Theory and appli
ations℄.[5℄ M. Cannone, A. El Hajj, R. Monneau, and F. Ribaud, Global existen
e fora system of non-linear and non-lo
al transport equations des
ribing the dynami
sof dislo
ation densities, to appear in Ar
hive for Rational Me
hani
s and Analysis,(2007).[6℄ R. J. DiPerna, Convergen
e of approximate solutions to 
onservation laws, Ar
h.Rational Me
h. Anal., 82 (1983), pp. 27�70.[7℄ R. J. DiPerna, Compensated 
ompa
tness and general systems of 
onservationlaws, Trans. Amer. Math. So
., 292 (1985), pp. 383�420.[8℄ R. J. DiPerna and P.-L. Lions, Ordinary di�erential equations, transport theoryand Sobolev spa
es, Invent. Math., 98 (1989), pp. 511�547.[9℄ A. El Hajj, Well-posedness theory for a non
onservative Burgers-type system aris-ing in dislo
ation dynami
s, SIAM J. Math. Anal., 39 (2007), pp. 965�986.[10℄ A. El Hajj and N. For
adel, A 
onvergent s
heme for a non-lo
al 
oupledsystem modelling dislo
ations densities dynami
s, Math. Comp., 77 (2008), pp. 789�812.[11℄ A. El Hajj and R. Monneau, Diagonal hyperboli
 systems with large and mono-tone data. part II: Some uniqueness results, In preparation, (2009).
27



[12℄ R. Eymard, T. Gallouët, and R. Herbin, Existen
e and uniqueness of theentropy solution to a nonlinear hyperboli
 equation, Chinese Ann. Math. Ser. B, 16(1995), pp. 1�14. A Chinese summary appears in Chinese Ann. Math. Ser. A 16(1995), no. 1, 119.[13℄ L. G 
arding, Problème de Cau
hy pour les systèmes quasi-linéaires d'ordre unstri
tement hyperboliques, in Les Équations aux Dérivées Partielles (Paris, 1962),Éditions du Centre National de la Re
her
he S
ienti�que, Paris, 1963, pp. 33�40.[14℄ D. Gilbarg and N. S. Trudinger, Ellipti
 partial di�erential equations of se
ondorder, Classi
s in Mathemati
s, Springer-Verlag, Berlin, 2001.[15℄ J. Glimm, Solutions in the large for nonlinear hyperboli
 systems of equations,Comm. Pure Appl. Math., 18 (1965), pp. 697�715.[16℄ I. Groma and P. Balogh, Investigation of dislo
ation pattern formation in a two-dimensional self-
onsistent �eld approximation, A
ta Mater, 47 (1999), pp. 3647�3654.[17℄ J. P. Hirth and J. Lothe, Theory of dislo
ations, Se
ond edition, Krieger, Mal-abar, Florida, 1992.[18℄ S. N. Kruºkov, First order quasilinear equations with several independent vari-ables., Mat. Sb. (N.S.), 81 (123) (1970), pp. 228�255.[19℄ P. D. Lax, Hyperboli
 systems of 
onservation laws and the mathemati
al theoryof sho
k waves, So
iety for Industrial and Applied Mathemati
s, Philadelphia, Pa.,1973. Conferen
e Board of the Mathemati
al S
ien
es Regional Conferen
e Seriesin Applied Mathemati
s, No. 11.[20℄ P. LeFlo
h, Entropy weak solutions to nonlinear hyperboli
 systems under non-
onservative form, Comm. Partial Di�erential Equations, 13 (1988), pp. 669�727.[21℄ P. LeFlo
h and T.-P. Liu, Existen
e theory for nonlinear hyperboli
 systems innon
onservative form, Forum Math., 5 (1993), pp. 261�280.[22℄ P.-L. Lions, B. Perthame, and E. Tadmor, A kineti
 formulation of multidi-mensional s
alar 
onservation laws and related equations, J. Amer. Math. So
., 7(1994), pp. 169�191.[23℄ O. A. Oleinik, Dis
ontinuous solutions of non-linear di�erential equations, Amer.Math. So
. Transl. (2), 26 (1963), pp. 95�172.[24℄ F. Poupaud, Global smooth solutions of some quasi-linear hyperboli
 systems withlarge data, Ann. Fa
. S
i. Toulouse Math. (6), 8 (1999), pp. 649�659.28



[25℄ D. Serre, Systems of 
onservation laws. I, II, Cambridge University Press, Cam-bridge, 1999-2000. Geometri
 stru
tures, os
illations, and initial-boundary valueproblems, Translated from the 1996 Fren
h original by I. N. Sneddon.[26℄ J. Simon, Compa
t sets in the spa
e Lp(0, T ; B), Ann. Mat. Pura Appl. (4), 146(1987), pp. 65�96.[27℄ L. Tartar, Compensated 
ompa
tness and appli
ations to partial di�erential equa-tions, in Nonlinear analysis and me
hani
s: Heriot-Watt Symposium, Vol. IV,vol. 39 of Res. Notes in Math., Pitman, Boston, Mass., 1979, pp. 136�212.[28℄ S. Yefimov, Dis
rete dislo
ation and nonlo
al 
rystal plasti
ity modelling, Netheer-lands Institute for Metals Resear
h, University of Groningen, 2004.[29℄ S. Yefimov and E. Van der Giessen,Multiple slip in a strain-gradient plasti
itymodel motivated by a statisti
al-me
hani
s des
ription of dislo
ations, InternationalJournal of Solids and Stru
ture, 42 (2005), pp. 3375�3394.

29


