SQLB: A Query Allocation Framework for Autonomous Consumers and Providers
Jorge-Arnulfo Quiane-Ruiz, Philippe Lamarre, Patrick Valduriez

To cite this version:

HAL Id: hal-00374977
https://hal.archives-ouvertes.fr/hal-00374977
Submitted on 10 Apr 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SQLB: A Query Allocation Framework for Autonomous Consumers and Providers

J.-A. Quiane-Ruiz†
Atlas group, INRIA and LINA
Université de Nantes
quiane@univ-nantes.fr

Philippe Lamarre
Atlas group, LINA
Université de Nantes
lamarre@univ-nantes.fr

Patrick Valduriez
Atlas group, INRIA and LINA
Université de Nantes
Patrick.Valduriez@inria.fr

ABSTRACT
In large-scale distributed information systems, where participants are autonomous and have special interests for some queries, query allocation is a challenge. Much work in this context has focused on distributing queries among providers in a way that maximizes overall performance (typically throughput and response time). However, preserving the participants’ interests is also important. In this paper, we make two main contributions. First, we provide a model to define participants’ perception of the system w.r.t. their interests and propose metrics to evaluate the quality of query allocation methods. This model facilitates the design and evaluation of new query allocation methods that take into account the participants’ interests. Second, we propose a framework for query allocation called Satisfaction-based Query Load Balancing (SQLB). To be fair, SQLB dynamically trades consumers’ interests for providers’ interests. And it continuously adapts to changes in participants’ interests and to the workload. We implemented SQLB and compared it, through experimentation, to two important baseline query allocation methods, namely Capacity based and Mariposa-like. The results demonstrate that SQLB yields high efficiency while satisfying the participants’ interests and significantly outperforms the baseline methods.

1. INTRODUCTION
We consider distributed information systems with a mediator that allows consumers to access information providers through queries [4, 19]. Consumers and providers are autonomous in the sense that they are free to leave the mediator at any time and do not depend on anyone to do so. For clarity, henceforth refer to both consumers and providers together as participants. Leaving the mediator is equivalent to depart from the system, but it could be that a participant registers to another competing mediator. Providers can be heterogeneous in terms of capacity and data. Heterogeneous capacity means that some providers are more powerful than others and can treat more queries per time unit. Data heterogeneity means that providers provide different data and thus produce different results for a same query. Providers declare their capabilities for performing queries to the mediator. Then, the main function of the mediator is to allocate each incoming query to the providers that can satisfy it. Much work in this context has focused on distributing the query load among the providers in a way that maximizes overall performance (typically throughput and response time) [8, 13, 18, 21], i.e. query load balancing (QLB). Nevertheless, participants usually have certain expectations w.r.t. the mediator, which are not only performance-related (see Example 1). Such expectations mainly reflect their preferences to allocate and perform queries, respectively. Consumers’ preferences may represent, for example, their interests towards providers (e.g. reputation), preferred providers, or quality of service. Providers’ preferences may represent e.g. their topics of interests, relationships, or strategies.

Example 1. Consider a provider that represents a courier company. During promotion of its new international shipping service, the provider is more interested in treating queries related to international shipments rather than national ones. Once the advertising campaign is over, the provider’s preferences may change. Similarly, consumers expect the system to provide them with information that best fits their preferences.

In such distributed information systems, query allocation is a challenge. Participants’ autonomy is the main source of the problem, because they may leave the system if they are too dissatisfied. Thus, it is important to apply a query allocation strategy that balances queries such that participants are satisfied. In this context, the consumer or provider’s satisfaction means that a query allocation method meets its expectations. To make this possible, the participants’ preferences must be taken into consideration when balancing queries. However, preferences are usually considered as private data by participants (e.g. in an e-commerce scenario, enterprises do not reveal their business strategies). In addition, preferences are quite static data, i.e. long-term, while the desire of a provider (resp. a consumer) to perform (allocate) a query may depend on the context and thus is more dynamic, i.e. short-term. For instance, a provider may prefer to perform some kind of queries, but, at some time, it may not desire to perform such queries.

*Work partially funded by ARA “Massive Data” of the French ministry of research (Respire project) and the European Strep Grid4All project.
†This author is supported by the Mexican National Council for Science and Technology (CONACyT).
because local reasons, e.g. by overload. Thus, consumers and providers are required to express their desire to allocate and perform queries, respectively, via an intention notion, which may stem e.g. from combining their preferences and other private local consideration such as load (see Figure 1). When providers can express their intentions, queries may not be treated because no provider wants to perform them (as in several economic models \[5, 6, 22\]). This may hurt the satisfaction method that considers any notion of satisfaction nor the intentions of participants. Our first objective is to propose a model that provides a satisfaction notion to characterize how well the mediator meets the participants’ expectations in the long-run. Our second objective is to propose a query allocation framework that considers the satisfaction and intentions of participants.

1.1 Motivations

As a motivating example, consider a public e-marketplace where thousands of companies can share information and do business (such as ebay-business [1] and freightquote [2]). Here, business is understood in a very general sense, not necessarily involving money. Each site, which represents a company, preserves its preferences for allocating and performing queries. In the rest of this paper, we will often base our concepts definitions on this example. To scale up and be attractive over time, an e-marketplace should (i) protect, in the long-run, the participants’ intentions for doing business, (ii) allow consumers to quickly obtain results, and (iii) allocate queries so that providers should have the same possibilities for doing business (i.e. to avoid starvation) [7].

Consider a simple scenario where a company (eWine), which desires to ship wine from France to USA, requests the mediator for companies providing international shipping services, such as freightquote [2]. Here, a query is a call for proposals that providers have to answer so as to provide their services. Consider a second scenario where a company desires to run a specific application, so it requests the mediator for companies providing computing resources (e.g. CPU units), as in [3]. The following details are symmetrical for both scenarios. Suppose that eWine, to make its final choice, desires to receive proposals from the two best providers that meet its intentions, i.e. its expectations. Similarly, providers desire to participate only in those negotiations that involve queries meeting their intentions.

In these two scenarios, the mediator must perform several tasks. First, it needs to identify the sites that are able to deal with eWine’s query (i.e. to find the providers). Next, the mediator should obtain eWine’s intentions to deal with such providers and the providers’ intention to deal with eWine’s query. Assume that the resulting list contains, for simplicity, only 5 providers: \(p_1, \ldots, p_5 \). Table 1 shows these providers with their intention to perform the query and eWine’s intention to deal with each of them. To better illustrate the query allocation problem in these environments, we also show in Table 1 the providers’ available capacity. However, it is not always possible to know this information since providers may consider it as private. Suppose, then, that \(p_6 \) is overloaded, i.e. has no more resources for doing business, and that \(p_2 \) and \(p_4 \) do not intend to deal with eWine’s query (notice that this does not means they can refuse it) because e.g. \(p_2 \) is more interested in its new shipping service to the Asian continent and \(p_4 \) has had experience with eWine. Also, assume that eWine does not intend to deal with \(p_1 \) nor \(p_3 \) since it does not trust them. Finally, the mediator needs to select the two most available providers, such that eWine’s and providers’ intentions be respected. To the best of our knowledge, no existing e-marketplace is able to do so. In fact, current QLB methods (whose aim is to select the most available providers) also fail in such scenarios since neither \(p_2 \) intends to deal with the query nor \(p_4 \) is of eWine’s interest. Allocating the query to these providers may cause the departure from the system of \(p_2 \) and eWine. The only satisfactory option (regarding the consumer and providers’ intentions) is \(p_5 \), but allocating the query to it may considerably hurt response time and cause eWine’s and \(p_5 \)’s departure from the system. Besides, eWine desires to receive two different proposals.

So, what should the mediator do in the above scenarios? Should it consider the consumer’s intention? the providers’ intention? or the providers’ available capacity? In this paper, we address this question so that a query allocation method can decide online what to do according to the status of participants (see Section 5).

1.2 Contributions and Organization

The rest of this paper is organized as follows. After defining the problem in Section 2, we present the main contributions of this paper:

- We propose a new model to characterize the participants’ expectations in the long-run, which allows evaluating a system from a satisfaction point of view. This model facilitates the design and evaluation of query allocation methods for environments with autonomous participants (Section 3). We define the properties to evaluate the quality of QLB methods and propose metrics to do so (Section 4).

For simplicity, we assume in this example that intentions’ values are binary.

<table>
<thead>
<tr>
<th>Table 1: Providers for eWine’s query.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Providers</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>(p_1)</td>
</tr>
<tr>
<td>(p_2)</td>
</tr>
<tr>
<td>(p_3)</td>
</tr>
<tr>
<td>(p_4)</td>
</tr>
<tr>
<td>(p_5)</td>
</tr>
<tr>
<td>(p_6)</td>
</tr>
</tbody>
</table>

Figure 1: The Query Allocation Schema.
• We propose Satisfaction-based Query Load Balancing (SQLB), a flexible framework with self-adapting algorithms for balancing queries while considering participants’ intentions. SQLB allows to trade consumers’ intentions for providers’ intentions. Furthermore, it affords consumers the flexibility to trade their preferences for the providers’ reputation and provides the flexibility to trade their preferences for their utilization (Section 5).

• We demonstrate, through experimental validation, that SQLB significantly outperforms baseline query allocation methods (namely Capacity based and Mariposa-like) and yields significant performance benefits. We also show that applying the proposed metrics over the provided model allows the prediction of possible departures of participants (Section 6).

Finally, we survey related work in Section 7 and conclude the paper in Section 8.

2. PROBLEM DEFINITION

We consider a system consisting of a mediator \(m \), of a set of consumers \(C \), and of a set of providers \(P \). These sets are not necessary disjoint, an entity may play more than one role. Queries are formulated in a format abstracted as a triple \(q = < c, d, n > \) such that \(q.c \in C \) is the identifier of the consumer that has issued the query, \(q.d \) is the description of the task to be done, and \(q.n \in \mathbb{N} \) is the number of providers to which the consumer wishes to allocate its query. Parameter \(q.d \) is intended to be used within a matchmaking procedure to find the set of providers, denoted by the set \(P_q \), that are able to treat \(q \). There is a large body of work on matchmaking, see e.g. [11, 14], so we do not focus on this problem and we assume there exists one in the system that is sound and complete: it does not return false positive or false negatives. We use \(N_q \) for denoting \(|| P_q || \), or simply \(N \) when there is no ambiguity on \(q \). Consumers send their queries to the mediator \(m \) that allocates each incoming query \(q \) to \(\min(q.n, N) \) providers in \(P_q \). We only consider the arrival of feasible queries, that is, those queries in which there exists at least one provider, which is able to perform them. In the system, for the sake of simplicity we only use, throughout this paper, the “query” term to denote a feasible query. Query allocation of some query \(q \) among the providers in \(P_q \) is a vector \(\text{All} \rightarrow \text{c} \), or \(\text{All} \rightarrow \text{c} \rightarrow q \) if there is an ambiguity on \(q \), of length \(N \) such that,

\[
\forall p \in P_q, \ \text{All} \rightarrow \text{c} \rightarrow q \rightarrow p = \begin{cases} 1 & \text{if } p \text{ gets the query} \\ 0 & \text{otherwise} \end{cases}
\]

As we assume that queries should be treated if possible, this leads to \(\sum_{p \in P_q} \text{All} \rightarrow \text{c} \rightarrow q \rightarrow p = \min(q.n, N) \). In the following, the set of providers such that \(\text{All} \rightarrow \text{c} \rightarrow q \rightarrow p = 1 \) is noted \(P_q \). Notice that, without any loss of generality, in some cases (e.g. when consumers pay services with real money) the query allocation term just means that providers are selected for participating in a negotiation process with consumers. Providers have a finite capacity that may denote e.g. the number of computational units or physical resources they have (depending on their kind of business, e.g. if they provide computational or physical services). Thus, the utilization of a provider \(p \in P \) at time \(t \), \(U_t(p) \), denotes how much it is loaded w.r.t. its capacity.

A consumer \(c \in C \) is free to express its intention, denoted by the function \(cI_q(q, p) \), for allocating its query \(q \) to each provider \(p \in P_q \). Results are memorized in the vector \(C_\text{I} \). Similarly, a provider \(p \in P_q \) is free to express its intention for performing a query \(q \), denoted by the function \(pI_q(q) \). Values of participants’ intention are in \([-1,1]\). A positive value means that a provider (resp. a consumer) intends to perform (allocate) a query, while a negative value means that a provider (a consumer) does not intend to perform (allocate) a query. A null value, i.e. a 0 value, denotes a participant’s indifference. It is up to a participant to compute its own intentions by combining different local and external criteria (e.g. utilization, preferences, response time, reputation, past experiences...). The way in which participants compute their intentions is considered as private information and not revealed to others.

In these environments, where participants are autonomous, it is crucial that a query allocation method considers their intentions in order to preserve the total system capacity, i.e. the aggregate capacity of all providers (e.g. in terms of computational or physical resources). To summarize, we can state the problem as follows.

Problem Statement. Given a mediator and autonomous participants, the problem we address is computing and using participants’ intentions to perform query allocation at the mediator such that response time, system capacity, and participants’ satisfaction are ensured.

3. THE MODEL

We define in this section a model that allows comparing, from a satisfaction point of view, query allocation methods that have different approaches to regulate the system (such as the QLB and economic methods). We are interested in three characteristics of participants that show how they perceive the system. The first one is adequation. From a general point of view, two kinds of adequations could be considered: (i) the system’s adequation to a participant, e.g. a system where a provider cannot find any query it intends to perform is considered inadequate to such a provider, and (ii) the participant’s adequation to the system, e.g. a consumer issuing queries that no provider intends to treat is considered inadequate to the system. Because of space limitations, we only consider the former in this paper, which we simply call adequation. The adequation notion helps a participant to evaluate if it might reach its goals in the system. The second one, called satisfaction, represents the feeling that a participant has about what it really gets from the system, e.g. a consumer that receives results from the providers it wants to avoid is simply not satisfied. The third one is allocation satisfaction, which allows a participant to evaluate the query allocation method regarding its intentions. For instance, a provider that performs queries that it does not want is not satisfied with the query allocation method if there exist queries of its interests that it does not get. These last two notions (satisfaction and allocation satisfaction) may have a deep impact on the system because a participant may decide whether to stay or to leave the system based on them.

Therefore, preserving the participants’ intentions, in the long-run, is quite important so they stay in the system. A way to achieve this is to make a regular assessment over

\footnote{It is worth remembering that this does not means it can refuse to perform (resp. allocate) the query.}
their k last interactions with the system\(^3\), i.e. the k last query allocations. This is why we define these characteristics over the k last interactions. In addition, those values may evolve with time, but, for the sake of simplicity, we do not introduce time in our notations.

The following definitions may be introduced w.r.t. intentions or preferences as well (no technical difference). However, it is worth noting that preferences are frequently considered as private. In which case, only the participants can apply the following definitions. As far we intend to observe the system’s behavior and for simplicity, we just develop the following definitions for intentions, which are public.

3.1 Consumer Characterization

Intuitively, the consumer’s characteristics are useful to answer the following questions: “How well do my expectations correspond to the providers that were able to deal with my last queries?”

Consumer Adequation – ; “How far the providers that have dealt with my last queries meet my expectations?” – **Consumer Satisfaction** – ; and “Am I satisfied with the job done by the query allocation process?”

Consumer Allocation Satisfaction –. To make this reasoning, a consumer c needs a memory of its k last issued queries, which is denoted by the set IQ^k.

3.1.1 Adequation

This notion characterizes how a consumer considers the mediator. For example, in our motivating example of Section 1.1, eWine considers the mediator as interesting (i.e. adequate), in such a query allocation, because it has providers that eWine considers interesting: p_2, p_4, and p_5.

The adequation of a consumer c concerning its query q allocation, noted $\delta_a(c,q)$, is defined as the average of c’s shown intentions towards the set P_k of providers (Equation 1). Its values are between 0 and 1.

$$\delta_a(c,q) = \left(\frac{1}{|P_k|} \sum_{p \in P_k} CI^c_{p}[q] \right) + 1 \right) / 2$$

Let $\overline{CA}_i[q]$ denote the vector of the adequations obtained by the consumer c concerning its k last queries. Thus, we define the adequation of a consumer $c \in C$, $\delta_a(c)$, as the average of the $\overline{CA}_i[q]$ values (see Definition 1). Its values are between 0 and 1. The closer δ_a’s value from 1, the greater the adequation of the mediator to a consumer.

Definition 1. Consumer Adequation

$$\delta_a(c) = \frac{1}{|IQ^k|} \sum_{q \in IQ^k} \overline{CA}_i[q]$$

3.1.2 Satisfaction

This notion helps a consumer to evaluate if the mediator is allocating its queries to the providers it wants. To define the consumer’s satisfaction over its k last issued queries, we first define the satisfaction of a consumer concerning the allocation of a given query. Intuitively, it corresponds to the average of the intentions that a consumer has shown to the providers that have performed its query. Nevertheless, a simple average does not take into account the fact that a consumer may desire different results. Let us illustrate this using our example scenario presented in Section 1.1. Assume that the mediator allocates eWine’s query only to p_2, to which eWine has an intention of 1. In such a query allocation, eWine is completely satisfied (with a satisfaction of 1) even if it did not receive the number of results it desired. Thus, to consider the number of providers desired by a consumer, we define the satisfaction of a consumer $c \in C$ concerning the allocation of its query q, $\delta_s(c,q)$, as follows,

$$\delta_s(c,q) = \left(\frac{1}{n} \sum_{p \in P_q} CI^c_{p}[q] + 1 \right) / 2$$

where n stands for q,n, i.e. it is the number of results that c desires to obtain. Its values are between 0 and 1.

Let $CS_c[q]$ denote the vector of the obtained satisfaction by a consumer c concerning its k last queries. Then, the satisfaction of a consumer $c \in C$, $\delta_s(c)$, is a simple average of the $CS_c[q]$ values (Definition 2). Its values are between 0 and 1. The closer the consumer’s satisfaction value from 1, the more a consumer is satisfied.

Definition 2. Consumer Satisfaction

$$\delta_s(c) = \frac{1}{|IQ^k|} \sum_{q \in IQ^k} CS_c[q]$$

3.1.3 Allocation Satisfaction

Let us introduce this notion by means of our example scenario presented in Section 1.1. Assume that eWine has an intention of 1, 0.9, and 0.7 for allocating its query to p_2, p_4, and p_5, respectively. Now, suppose that the mediator allocates the query to p_2. Such a query allocation corresponds to eWine’s high intentions, so eWine is satisfied. However, there is still a provider to which its intention is higher (p_2). The Consumer Allocation Satisfaction notion, $\delta_a(c)$ in Definition 3, reflects how much a query allocation method strives to give the best providers to a consumer.

Values of the function $\delta_a(c)$ are between 0 and ∞.

Definition 3. Consumer Allocation Satisfaction

$$\delta_a(c) = \frac{\delta_s(c)}{\delta_a(c)}$$

If the allocation satisfaction of a consumer c is greater than 1, it means that the query allocation method works well for c (from c’s point of view). If the value is smaller than 1, the closer it is to zero, the more c is dissatisfied with the query allocation method. Finally, a value equal to 1 means that the query allocation method is neutral for c.

3.2 Provider Characterization

Intuitively, the provider’s characteristics answer the following questions: “How well do my expectations correspond to the last queries that have been proposed to me?” – **Provider Adequation** – ; “How well the last queries I have treated meet my expectations?” – **Provider Satisfaction** – ; and “Am I satisfied with the job done by the query allocation process?” – **Provider Allocation Satisfaction** –. To define these characteristics, a provider p tracks its shown intentions for performing the k last proposed queries (allocated to it or not) in the vector PQ^k. The k last proposed queries to a provider p is denoted by the set PQ^k_p.
3.2.1 Adequation

The adequation notion helps a provider to evaluate if the queries that consumers issue correspond to its expectations. Considering our example scenario of Section 1.1, one can consider the mediator as adequate to \(p_1, p_3, \) and \(p_5 \), because eWine’s query is of their interest. However, we cannot consider the mediator as inadequate to \(p_2 \) and \(p_4 \) only by this query proposition. What is more important for a provider is that consumers generally issue queries of its (the provider’s) interests. Thus, we define the adequation of a provider \(p \in P \), \(\delta_s(p) \), as the average of its shown intentions towards the set \(\mathcal{P}_s^{PQ} \) (Definition 4). Its values are between 0 and 1. The closer the \(\delta_s(p) \) value from 1, the greater the adequation of the mediator to a provider.

Definition 4. Provider Adequation

\[
\delta_s(p) = \left\{ \begin{array}{ll}
\frac{1}{|\mathcal{P}_s^{PQ}|} \sum_{q \in \mathcal{P}_s^{PQ}} \frac{Pq_s^P[q]}{1} + 1 & \text{if } \mathcal{P}_s^{PQ} \neq \emptyset \\
0 & \text{otherwise}
\end{array} \right.
\]

3.2.2 Satisfaction

Conversely to adequation, the satisfaction notion depends only on the queries that a provider performs. Thus, it helps a provider to evaluate whether it performs queries that allow it to fulfill its objectives or not. To illustrate this notion, suppose that in our motivating example (see Section 1.1) the mediator allocates eWine’s query to \(p_2 \). In such a query allocation, \(p_2 \) is not satisfied since it did not intend to perform the query. Nonetheless, what is more important for a provider is to be globally satisfied with the queries it performs, even if it sometimes performs queries that are not of its interest. Let \(\mathcal{SQ}_s^{PQ} \subseteq \mathcal{P}_s^{PQ} \) denote the set of queries that a provider \(p \) performed among the set \(\mathcal{P}_s^{PQ} \). Then, the satisfaction of a provider \(p \in P \), \(\delta_s(p) \) in Definition 5, is defined as a simple average of its \(\mathcal{SQ}_s^{PQ} \) values. The \(\delta_s(p) \) values are between 0 and 1. The closer the value from 1, the greater the satisfaction of a provider.

Definition 5. Provider Satisfaction

\[
\delta_s(p) = \left\{ \begin{array}{ll}
\frac{1}{|\mathcal{SQ}_s^{PQ}|} \sum_{q \in \mathcal{SQ}_s^{PQ}} \frac{Pq_s^P[q]}{1} + 1 & \text{if } \mathcal{SQ}_s^{PQ} \neq \emptyset \\
0 & \text{otherwise}
\end{array} \right.
\]

3.2.3 Allocation Satisfaction

As for consumers, a provider is not satisfied when it does not get what it expects. There are different reasons for this. First, it may be because the system does not have interesting resources, i.e. the provider has low adequation. Second, the query allocation method may go against the provider’s intention. This is measured by the allocation satisfaction notion. In other words, by means of this notion a provider can evaluate how well the query allocation method works for it. We formally define the Allocation Satisfaction of a provider \(p \in P \), \(\delta_a(p) \), as the ratio of its satisfaction to its adequation (see Definition 6). Its values are in \([0, \infty]\).

Definition 6. Provider Allocation Satisfaction

\[
\delta_a(p) = \frac{\delta_s(p)}{\delta_a(p)}
\]

If the allocation satisfaction of a provider \(p \) is greater than 1, it means that the query allocation method works well for \(p \) (from the point of view of \(p \)). If the value is smaller than 1, the closer it is to zero, the more \(p \) is dissatisfied with the query allocation method. Finally, a value equal to 1 means that the query allocation method is neutral for \(p \).

3.3 Discussion

The proposed model can be applied with three main purposes. First, to evaluate how well a query allocation method satisfies the participants’ expectations. Second, to evaluate the reasons of the participants’ departures from the system. For example, to know if they are leaving the system because (i) they are dissatisfied with the queries they perform, (ii) they are dissatisfied with the mediator’s job, or (iii) the system is inadequate to them. To do so, one has to apply metrics, which reflect a global behavior, over the adequation, satisfaction, and allocation satisfaction of participants (see Section 4). Third, to design new self-adaptable query allocation methods that meet the participants’ expectations in the long-run (see Section 5).

Reputation does not directly appear, but it is clear that it has a major role to play in the manner that participants work out their intentions. Thus, it is taken into account as much as participants consider it important.

4. SYSTEM METRICS

The metrics we use are the same for consumers and providers, and can be used to measure the \(\delta_s, \delta_a, \delta_{as} \), and \(U_i \) functions. Thus, for simplicity, the \(g \) function denotes one of these four functions and \(S \) denotes either a set of consumers or providers, i.e. \(S \subseteq C \) or \(S \subseteq P \). To better evaluate the quality of a query allocation method for balancing queries, one should reflect (i) the effort that a query allocation method does for maximizing or minimizing a set \(S \) of \(g \) values - efficiency -, (ii) any change in a set \(S \) of \(g \) values - sensitivity -, and (iii) the distance from the minimal value to the maximal one in a set \(S \) of \(g \) values - balance -. A well-known metric that reflects the efficiency of a query allocation method is the mean \(\mu \) function. Because participants’ characteristics (see Section 3) are additive values and may take zero values, we utilize the arithmetic mean to obtain this representative number (Equation 3).

\[
\mu(g, S) = \frac{1}{|S|} \sum_{s \in S} g(s)
\]

However, the mean metric might be severely affected by outlier values. Thus, we have to reflect the \(g \) values’ fluctuations in \(S \), i.e. the sensitivity of a query allocation method. In other words, we evaluate how fair a query allocation method is w.r.t. a set \(S \) of \(g \) values. An appropriate metric to do so is the fairness index \(f \) proposed in [9] (defined in Equation 4). Its values are between 0 and 1.

\[
f(g, S) = \frac{\left(\sum_{s \in S} g(s) \right)^2}{|S| \left(\sum_{s \in S} g(s) \right)}
\]

Intuitively, the greater the fairness value of a set \(S \) of \(g \) values, the fairer the query allocation process w.r.t. such values. To illustrate the sensitivity property, suppose that there exist two competitive mediators \(m \) and \(m’ \) in the motivating example of Section 1.1. Assume, then, that the set of providers registered to \(m \) and \(m’ \) are \(P = \{p_1, p_2, p_3\} \).
and $P' = \{p_1', p_2', p_3'\}$, respectively. Now, consider that the satisfaction of such providers are $\delta_s(p_1) = 0.2$, $\delta_s(p_2) = 1$, $\delta_s(p_3) = 0.6$, $\delta_s(p_1') = 1$, $\delta_s(p_2') = 0.7$, and $\delta_s(p_3') = 0.9$. Reflecting the sensitivity of both mediators w.r.t. satisfaction (0.77 and 0.97 for m and m' respectively), we can observe that enterprises have almost the same chances of doing business in m' than in m.

Finally, a traditional metric that reflects the ensured balance by a query allocation method is the Min-Max ratio. The Min-Max ratio σ is defined in Equation 5, where $c_0 > 0$ is some pre-fixed constant. Values of the function σ are between 0 and 1. The greater the balance value of a set S of g values, the better the balance of such values. The Min-Max ratio is useful to know whether there exists a punished entity $s \in S$, and then, one can evaluate if this is because of the query allocation method or the entity’s adequation.

$$\sigma(g, S) = \frac{\min_{s \in S} g(s) + c_0}{\max_{s \in S} g(s) + c_0}$$

(5)

These metrics are complementary to evaluate the global behavior of the system, and the use of only one of them may cause the loss of some important information.

5. THE SQLB FRAMEWORK

We now present SQLB, a flexible framework for balancing queries in considering the participants’ intentions. A salient feature of SQLB is that it affords consumers the flexibility to trade their preferences for the providers’ reputation (Section 5.1) and providers the flexibility to trade their preferences for their utilization (Section 5.2). Then, SQLB allows to trade consumers’ intentions for providers’ intentions in according to their satisfaction (Section 5.3). In this way, SQLB continuously adapts to changes in participants’ expectations and workload. So, we assumed that a matchmaking technique has found the set of providers that are able to deal with a query, named P_q. Therefore, we only focus on the allocation of q among the P_q set (Section 5.4). Without any loss of generality, participants may differently obtain their intentions.

5.1 Consumer Intentions

The idea is that a consumer makes a balance between its preferences for allocating queries and the providers’ reputation, in accordance to its past experiences with providers. For example, if a consumer does not have any past experience with a provider p, it pays more attention to the reputation of p. We formally define the intention of a consumer $c \in C$ to allocate its query q to a given provider $p \in P_q$ as in Definition 7. Function $\pi_f_q(c, p, q) \in [-1..1]$ gives c’s preference for allocating q to p, and function $\pi_p(c) \in [-1..1]$ gives the reputation of p.

Definition 7. Consumer’s Intention

$$\pi_f_q(c, p, q) = \begin{cases} \pi_f_q(c, q, p) \times \pi_p(c) & \text{if } \pi_f_q(c, q, p) > 0 \land \pi_p(c) > 0 \\ \left(1 - \pi_f_q(c, q, p) + \epsilon\right) \times \left(1 - \pi_p(c) + \epsilon\right)^{-\epsilon} & \text{else} \end{cases}$$

Parameter $\epsilon > 0$, usually set to 1, prevents the intention of a provider from taking 0 values when its reputation is equal to 1 whatever its utilization is. Figure 2 illustrates the behavior that the $\pi_p(c)$ function takes when the satisfaction is 0.5. We can observe that the providers’ preferences and utilization have the same importance for providers. Also, we observe that providers show positive intentions to deal with queries only when they are not overutilized and want to perform the queries. This helps to keep good response times in the system.

5.2 Provider Intentions

The provider’s intention is based on its preferences for performing queries and its utilization. The question that arises is: what is more important for a provider, its preferences or its utilization? The importance of the provider’s preferences and its utilization should be balanced on the fly according to satisfaction. Intuitively, on the one hand, if a provider is satisfied, it can then accept sometimes queries it does not want. On the other hand, if a provider is dissatisfied, it does not pay so much consideration to its utilization and focuses on its preferences in order to obtain desired queries. To do so, the satisfaction it uses to make the balance has to be based on its preferences and not on its intentions as defined in Section 3.2. This is possible since a provider has access to its private information. So, we define the intention of a provider $p \in P_q$, to deal with a given query q as in Definition 8.

Definition 8. Provider’s Intention

$$\pi_p(q) = \begin{cases} \left(\pi_f_p(q) \times U_p(q)\right)^{1-\delta_s(p)} & \text{if } \pi_f_p(q) > 0 \land U_p(q) < 1 \\ \left(1 - \pi_f_p(q) + \epsilon\right)^{1-\delta_s(p)} \times \left(U_p(q) + \epsilon\right)^{-\epsilon} & \text{else} \end{cases}$$

Parameter $\epsilon > 0$, usually set to 1, prevents the intention of a provider from taking 0 values when its preference is equal to 1 whatever its utilization is. Figure 2 illustrates the behavior that the $\pi_p(q)$ function takes when the satisfaction is 0.5. We can observe that the providers’ preferences and utilization have the same importance for providers. Also, we observe that providers show positive intentions to deal with queries only when they are not overutilized and want to perform the queries. This helps to keep good response times in the system.

5.3 Scoring and Ranking Providers

Given a query q, a provider is scored by considering its intention for performing q and $q.c$ consumer’s intention for preferences and the providers’ reputation. In particular, if $\nu = 1$ (resp. 0) the consumer only takes into account its preferences (the provider’s reputation) to allocate its query. So, if a consumer has enough experiences with a given provider p, it sets $\nu > 0.5$, or else it sets $\nu < 0.5$. When $\nu = 0.5$ means that a consumer gives the same importance to its preferences and the provider’s reputation.

Figure 2: Tradeoff between preference and utilization for providers’ intention when satisfaction is 0.5.
allocating q to it. Considering the mediation process proposed in [10], the score of a provider \(p \in P_q \) regarding a given query \(q \) is defined as the balance between the \(q.c's \) and \(p's intentions \) (Definition 9).

Definition 9. Provider’s Score

\[
\text{Scr_q}(p) = \begin{cases}
\left(\text{PI}_q[p]\right)^\omega \left(\text{CI}_q[p]\right)^{1-\omega} & \text{if } \text{PI}_q[p] > 0 \land \text{CI}_q[p] > 0 \\
-\left(1 - \text{PI}_q[p] + \epsilon\right)^\omega \left(1 - \text{CI}_q[p] + \epsilon\right)^{1-\omega} & \text{else}
\end{cases}
\]

Vector \(\text{PI}_q[p] \) denotes the \(p \)’s intentions to perform \(q \). Parameter \(\epsilon > 0 \), usually set to 1, prevents the provider’s score from taking 0 values when the consumer or provider’s intention is equal to 1. Parameter \(\omega \in [0..1] \) ensures a balance between the consumer’s intention for allocating its query and the provider’s intention for performing such a query. In other words, it reflects the importance that the query allocation method gives to the consumer and providers’ intentions. To guarantee equity at all levels, such a balance should be done in accordance to the consumer and providers’ satisfaction. That is, if the consumer is more satisfied than the provider, then the query allocation method should pay more attention to the provider’s intentions. Thus, we compute the \(\omega \) value as in Equation 6. Conversely to provider’s intention, the query allocation module has no access to private information. Thus, the satisfaction it uses has to be based on the intentions.

\[
\omega = \left(\delta_q(c) - \delta_q(p)\right) + 1 \big/ 2
\]

Figure 3 illustrates the tradeoff between the consumer and provider’ intention for obtaining the \(\omega \) value. One can also set \(\omega \)’s value in accordance to the kind of application. For instance, if providers are cooperative (i.e. not selfish) and the most important is to ensure the quality of results, one can set \(\omega = 0 \). Finally, providers are ranked from the best to the worst scored, the \(\tilde{R} \) vector. Intuitively, \(\tilde{R}[1] \) is the best scored provider to deal with \(q \), \(\tilde{R}[2] \) the second, and so on up to \(\tilde{R}[N] \) which is the worst. As a result, if \(q.n < N \) the \(q.n \) best ranked providers are selected, or else all the \(N \) providers are selected.

5.4 Query Allocation Principle

Algorithm 1 shows the main steps of the query allocation process. Given a query \(q \) and a set \(P_q \) of providers that are able to perform \(q \), the query allocation module first asks for \(q.c's \) intention for allocating \(q \) to each provider \(p \in P_q \) (line 2 of the Algorithm 1). In parallel, it also asks for \(P_q \)’s intention for performing \(q \) (lines 3 and 4). Then, it waits for \(q.c \) and \(P_q \)’s intentions or for a given timeout (line 5). Once such vectors are computed, as second job, the query allocation module computes the score of each provider \(p \in P_q \) by making a balance between the \(q.c \) and \(p's intentions \) (line 6 and 7). Then, it computes \(P_q \)’s ranking (line 8). Finally, the query allocation module allocates \(q \) to the \(q.n \) best scored providers in \(P_q \) and sends the mediation result to the \(P_q \setminus P_q \) providers (lines 9 and 10), i.e. to those that were not selected for performing the query. In the case that \(q.n < N \), then \(q \) is allocated to all \(N \) providers. Algorithm 1 can be optimized, but our goal is to show the steps involved in the query allocation process.

6. EXPERIMENTAL VALIDATION

Our experimental validation has three main objectives: (i) to evaluate how well query allocation methods operate, (ii) to analyze if SQLB satisfies participants while ensuring good QLB because it is not obvious that when adding new criteria, a query allocation method still gives good results for the initial criteria, and (iii) to study how well our metrics capture query allocation methods’ operation. To do so, we carry out two kinds of evaluations. First, we evaluate the general query allocation process as well as the computed metrics. Second, we evaluate the impact of participants’ autonomy on performance.

6.1 Experimental Setup

We built a Java-based simulator and simulate a mono-mediator distributed information system, which follows the mediation system architecture presented in [10]. For all the query allocation methods we tested, the following configuration (Table 2) is the same and the only thing that changes is the way in which each method allocates the queries.

Participants work out their adequation, satisfaction, and allocation satisfaction as presented in Section 3. We initialize them with a satisfaction value of 0.5, which evolves with their last 200 issued queries and 500 queries that have been proposed to them. That is, the size of \(k \) is 200 for...
consumers and 500 for providers. The number of consumers and providers is 200 and 400 respectively, with only one mediator allocating all the incoming queries. We assume sufficient resources to the mediator so that it does not cause bottlenecks in the system. We assume that consumers and providers compute their intentions as defined in Sections 5.1 and 5.2, respectively. For simplicity, we set v = 1, i.e. the consumers’ intentions denote their preferences.

To simulate high heterogeneity of the consumers’ preferences for allocating their queries to providers, we divide the set of providers into three classes according to the interest of consumers: to those that consumers have high interest (60% of providers), medium interest (30% of providers), and low interest (10% of providers). Randomly obtain their preferences between 1 and 3 for high-interest providers, between 0.5 and 1.0 for medium-interest providers, and between 0 and 0.5 for low-interest providers. On the other side, to simulate high heterogeneity of the providers’ preferences towards the incoming queries, we also create three classes of providers: those that have high adaptation (35% of providers), medium adaptation (60% of providers), and low adaptation(5% of providers). The providers randomly obtain their preferences between −2 and 1 (high-adaptation), between −1 and 1 (low-adaptation). More sophisticated mechanisms for obtaining such preferences can be applied (for example using the TCL or Rush language), but this is beyond the scope of this paper and orthogonal to the problem addressed here. Without any loss of generality, the participants’ expectations, in the long run, are static in our simulations. We assume this to evaluate the query allocation methods in a long-term trend, but our model allows expectations to be dynamic.

We set the providers’ capacity heterogeneity in accordance to the results presented in [20]. We generate around 10% of providers with low-capacity, 60% with medium, and 30% with high. The high-capacity providers are 3 times more powerful than medium-capacity and still 7 times more powerful than low-capacity providers. We generate two classes of queries that consume, respectively, 130 and 150 treat-

6.2 Baseline Methods

6.2.1 Capacity based method

In distributed information systems, a well known approach is Capacity based [13, 18, 21], which allocates each incoming query q to providers that have the highest available capacity (i.e. the least utilized) among the set Pq of providers. Capacity based has been shown to operate well in heterogeneous distributed information systems. Hence, we use it as baseline method in our simulations. Note that Capacity based does not take into account the consumers nor providers’ intentions.

6.2.2 Economic method

Mariposa [22] is one of the most important approaches to allocate queries in autonomous environments and that has shown good results. Thus, we implemented a Mariposa-like method to compare it to our SQLB. In this approach, all the incoming queries are processed by a broker site that requests providers for bids. Providers bid for obtaining queries and then the broker selects the set of bids that has an aggregate price and delay under a bid curve provided by the consumer. In Mariposa, providers modify their bids with their current load (i.e. bid × load) in order to ensure QLB. Note that different economic methods may lead to different performance results than those presented here.

6.3 Results

We start, in Section 6.3.1, with an evaluation of the quality of the query allocation methods w.r.t. satisfaction and QLB. Then, in Section 6.3.2, we evaluate how well these methods deal with the possible participants’ departure by dissatisfaction, starvation, and overutilization.

6.3.1 Quality results without autonomy

If participants are autonomous, they may leave the system by dissatisfaction, starvation, or overutilization. Nevertheless, the choice of such departure’s thresholds is very subjective and may depend on several external factors. Thus, for these first experiments, we consider captive participants (i.e. they are not allowed to leave the system). To measure the three methods’ quality, we apply the metrics defined in Section 4. However, for space reasons, we can only present two of them. We ran a series of experiments where each one starts with a workload of 30% that uniformly increases up to 100% of the total system capacity.

First, we analyze the providers results. Figure 4(a) shows the satisfaction mean ensured by the three methods. The satisfaction used in this measurement is based on the providers’ intentions, i.e. what a query allocation method can see. We observe in these results that providers are more satisfied with the SQLB than with the two others. As the workload increases, providers’ satisfaction decreases because their intentions decrease as they are loaded (just because utilization becomes the most important for them). Thus, SQLB cannot satisfy the providers’ intentions for high workloads since their adequation (based on intentions) is low. Capacity based and Mariposa-like do not satisfy the providers’ intentions from the beginning, simply because

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>nbConsumers</td>
<td>Number of consumers</td>
<td>200</td>
</tr>
<tr>
<td>nbProviders</td>
<td>Number of providers</td>
<td>400</td>
</tr>
<tr>
<td>nbMediators</td>
<td>Number of mediators</td>
<td>1</td>
</tr>
<tr>
<td>qDistribution</td>
<td>Query arrival distribution</td>
<td>Poisson</td>
</tr>
<tr>
<td>iniSatisfaction</td>
<td>Initial satisfaction</td>
<td>0.5</td>
</tr>
<tr>
<td>conSatSize</td>
<td>k last issued queries</td>
<td>200</td>
</tr>
<tr>
<td>proSatSize</td>
<td>k last treated queries</td>
<td>500</td>
</tr>
<tr>
<td>nbRepeat</td>
<td>Repetition of simulations</td>
<td>10</td>
</tr>
</tbody>
</table>
they allocate queries based on other criteria, which do not exactly meet intention.

Nonetheless, this does not reflect what providers really feel with respect to their preferences. To show this, we need to measure the mean ensured by the three methods concerning the providers’ satisfaction based on their preferences. Although we can measure such satisfaction in our simulations, this is not always possible since such preferences are usually considered as private. Figure 4(b) shows the results of these measurements. We observe that SQLB has the same performance as Mariposa-like even if it considers the consumers’ intentions. When the workload is close to 100%, the providers’ satisfaction slightly decreases with SQLB. This is because providers pay more attention to their utilization for obtaining their intentions, thus their preferences are less considered by the SQLB method.

It is worth noting that, as expected, Capacity based is the only one among these three methods that punishes the providers. This is clear in Figure 4(c), which illustrates the mean of these three methods with respect to the providers’ allocation satisfaction. We observe that Capacity based severely punishes the providers (mean values are always under 1). Then, based on these results, we can predict that when providers will be free to leave the system, Capacity based will suffer from serious problems with providers’ departures by dissatisfaction reasons. Figure 4(d) illustrates the satisfaction fairness ensured by the three methods. We see that they guarantee almost the same satisfaction fairness. However, as seen in the previous results, this does not mean that providers are satisfied with all three methods.

Now, let us analyze the consumers results. Figure 4(e) illustrates the allocation satisfaction mean concerning the
consumers’ intentions. We observe that while SQLB is the only one to satisfy consumers, the two others are neutral to consumers (mean values equal to 1). These results allow us to predict that Capacity based and Mariposa-like may suffer from consumer’s departures while SQLB does not. The SQLB’s mean decreases for high workloads because of providers. Remember that providers’ satisfaction decrease because they take care of their utilization. So, SQLB pays more attention to providers’ satisfaction than to the consumers’ satisfaction. Nonetheless, consumers are never punished. Conversely to providers, the consumers’ satisfaction fairness has less variations because they are not in direct competition to allocate queries (Figure 4(f)).

Concerning QLB, as expected, Capacity based better balances the queries among providers than SQLB and Mariposa-like (see Figure 4(g)). We can see that the Mariposa-like has serious problems to balance queries. It may lose providers by starvation or overutilization reasons. Figure 4(h) shows that SQLB has some difficulties to be fair (w.r.t. QLB) for workloads under 40%. In contrast, when the workload increases, SQLB pays more attention to QLB and becomes fairer. This demonstrates the high adaptability of SQLB to the variations in the workloads.

All above results show that, while Capacity based may severely suffer from providers’ departures by dissatisfaction, Mariposa-like may also suffer from providers’ departures by overutilization problems. Furthermore, these results demonstrate the SQLB’s self-adaptability to changes in the participants’ satisfaction and to the workload. This feature makes our proposal highly suitable for autonomous environments.

Finally, Figure 4(i) shows the ensured response times in these environments (with captive participants). As is conventional, response time is defined as the elapsed time from the moment that a query q is issued to the moment that q.c receives the response of q. As expected, the Capacity based method outperforms the others. However, even if SQLB takes into account the participants’ intentions, it only degrades performance by a factor of 1.4 in average while Mariposa-like does so by a factor of 3.

As concluding remark, we can say that even if not designed for environments where participants are captive, SQLB ensures quite good response times and pay attention to the quality of results and queries that consumers and providers get from the system, respectively.

6.3.2 Dealing with autonomy

To validate our measurements and intuitions of Section 6.3.1, we also ran several experimental simulations where participants are given the autonomy to leave the system. Our main goal, in this section, is to study the reasons by which providers leave the system and evaluate the impact on performance. We evaluate the ensured response times by the three methods in autonomous environments and compare it with those of the captive environments (see Figure 4(i)). To do so, we have to set thresholds under, or over, which a consumer or provider decides to leave the system. To avoid any suspicion on the choice of such thresholds, we assume that participants support high degrees of dissatisfaction, starvation, and overutilization. Thus, a consumer leaves the system, by dissatisfaction, if its satisfaction is smaller than its adequation, i.e. the allocation method punishes it. A provider leaves the system (i) by dissatisfaction, if its satisfaction is smaller than its adequation minus 0.15, (ii) by starvation, if its utilization is smaller than 20% of its optimal utilization, and (iii) by overutilization, if its utilization is greater than 220% of its optimal utilization. With a workload of 80% of the total system capacity, the optimal utilization of a provider is 0.8.

We ran a first series of experiments with different workloads where providers are allowed to leave the system only by dissatisfaction or starvation. The results are shown in Figure 5(a). We observe that SQLB significantly outperforms the others two methods for all workloads. Furthermore, we can see that Capacity based performs better than Mariposa-like. This is because, as seen in Section 6.3.1, the Mariposa-like method tends to overutilize some providers (those that are the most adapted to the incoming queries), which severely hurts response times.

A second series of experiments allow providers to leave the system by dissatisfaction, starvation, or overutilization (see Figure 5(b)). While SQLB and Mariposa-like degrade their performance only by a factor of 1.4 in average (w.r.t. Figure 4(i)), Capacity based does it by a factor of 3.5. Figure 5(c) shows the number of provider’s departures with the three methods. We observe that, except for a workload of 20%, Capacity based and Mariposa-like lose almost all the providers for all workloads. Note that SQLB only loses 28% of providers in average. This demonstrates the high efficiency of SQLB in autonomous environments. We show, in Table 3, an analysis of providers’ reasons to leave
we provide a set of strategies for balancing queries in distributed information systems with autonomous participants, but that work is complementary to the proposal of this paper and one can use such strategies to improve results (by space reasons, it is not discussed here).

Economic models can claim to take into account the participants’ intentions and have been shown to provide efficient query allocation in heterogeneous systems [5, 6, 22]. Mariposa [22] is one of the first systems to deal with the query allocation problem in distributed information systems using a bidding process. In Mariposa, all the incoming queries are processed by a broker site that requests providers for bids. Providers bid for acquiring queries based on a local bulletin board. Then, the broker site selects a set of bids that has an aggregate price and delay under a bid curve provided by the consumer. Mariposa ensures a crude form of load balancing by modifying the providers’ bid with the providers’ load. Nevertheless, our experiments show that providers suffer from overutilization. Besides, queries may not be treated even if providers exist in the system.

In [15], the authors focus on the optimization algorithms for buying and selling query answers, and the negotiation strategy. Their query trading algorithm runs iteratively, progressively selecting the best execution plan. At each iteration, the buyer sends requests for bids, for a set of queries, and sellers reply with offers (bids) for dealing with them. Then, the buyer finds the best possible execution plan based on the offers it received. These actions are iterated until either the found execution plan is not better than the plan found in the previous iteration or the set of queries has not been modified (i.e. there is no new subqueries). This approach uses some kind of bargaining between the buyer and the sellers, but with different queries at each iteration. However, this way of dealing with subqueries optimization is orthogonal to our proposal and one may combine them to improve performances. In [10], the authors propose an economic flexible mediation approach that allocates queries by taking into account the providers’ quality (given by consumers) and the providers’ bids. In contrast to our approach, the authors inherently assume that participants are captive. In addition, their proposed economic model is complementary to our proposal and one can combine them to obtain an economic version of SQLB by computing bids w.r.t. intentions (which is planned as future work).

Furthermore, the scope of this paper goes well beyond

Table 3: Provider's departures reasons for a workload of 80% of the total system capacity.

<table>
<thead>
<tr>
<th></th>
<th>SQLB Capacity based</th>
<th>Mariposa-like</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cons. Interest to Prov.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Providers' Adequation</td>
<td>low med high total</td>
<td>low med high total</td>
</tr>
<tr>
<td>Providers' Capacity</td>
<td>low med high total</td>
<td>low med high total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissat.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Providers' Adequation</td>
<td>low med high total</td>
<td>low med high total</td>
</tr>
<tr>
<td>Providers' Capacity</td>
<td>low med high total</td>
<td>low med high total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starv.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Providers' Adequation</td>
<td>low med high total</td>
<td>low med high total</td>
</tr>
<tr>
<td>Providers' Capacity</td>
<td>low med high total</td>
<td>low med high total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overuti.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Providers' Adequation</td>
<td>low med high total</td>
<td>low med high total</td>
</tr>
<tr>
<td>Providers' Capacity</td>
<td>low med high total</td>
<td>low med high total</td>
</tr>
</tbody>
</table>

Figure 6: Consumers' departures.

The system when the workload is 80%. We observe that, as predicted in Section 6.3.1, providers leave the system with Capacity based because of dissatisfaction, while they do so because of overutilization with Mariposa-like. Furthermore, the providers that decide to leave in both methods are mainly those that are the most adapted to incoming queries and that consumers desire the most. With SQLB, providers leave the system by dissatisfaction, but such providers are mainly those that are low-capacity. In fact, we can see that SQLB mainly maintains the high-interest, high-adaptation, and high-capacity providers in the system.

Finally, Figure 6 shows the consumers’ departure by dissatisfaction with these three methods. Again, SQLB is a clear winner with no consumer’s departures. Note that, the consumer’s departures have also a direct impact on performance since the less the incoming queries, the less the chances for satisfying providers.

7. RELATED WORK

The problem of balancing queries while respecting the participants’ intentions has not received much attention and is still an open field. In the context of large-scale and heterogeneous distributed information systems, most of the work on query allocation has mainly dealt with the problem of allocating queries to the least utilized providers without any consideration to the consumers or providers’ intentions [8, 13, 18, 21]. In [16], we proposed a SQLB method based on the providers’ satisfaction, but no notion of satisfaction nor intentions of consumers is considered. In a recent work [17],
related work by characterizing the participants' expectations in the long-run, proposing metrics to analyze them and new algorithms to exploit them.

8. CONCLUSION

In this paper, we considered distributed information systems where participants are autonomous to leave the system at will. In this context, it is crucial to consider the consumers and providers’ intentions for allocating and performing queries, respectively, so that their expectations, response times, and system capacity are ensured. We presented a general and complete solution for balancing queries among providers while considering the participants’ intentions. Our main contributions are the following.

First, we characterized, in the long-run, the participants’ expectations in a new model, which allows to evaluate a system from a satisfaction point of view. This model facilitates the design and evaluation of new query allocation methods for these environments.

Second, we proposed three different metrics to evaluate the quality of QLB methods: (i) the mean metric that reflects the effort that a query allocation method does for equally either maximizing or minimizing a given set of values, (ii) the fairness metric that evaluates how fair a query allocation method is, and (iii) the balance metric that measures the Min-Max values. We proved that using these proposed metrics together, one can predict possible consumer and provider’s departures from the system.

Third, we presented the SQLB framework for balancing queries in these environments. SQLB strongly differs from the related work in several ways: (i) it allows providers to trade their preferences for their utilization while keeping their strategic information private, (ii) it affords consumers the flexibility to trade their preferences for the providers’ reputation, (iii) SQLB allows trading consumers’ intentions for providers’ intentions, and (iv) SQLB strives to balance queries at runtime via the participants’ satisfaction, thus reducing starvation.

Finally, we evaluated and compared SQLB against two baseline query allocation methods (Capacity based and Mariposa-like), in two kinds of environments: captive and autonomous. We showed through experimentation that, by considering together the QLB and satisfaction of participants, SQLB significantly outperforms both. We showed that, unlike the baseline methods, SQLB maintains the high-interest, high-adaptation, and high-capacity providers in the system. Moreover, results show that while baseline methods lose more than 20% of consumers (for all workloads), SQLB has no consumer’s departures.

9. REFERENCES