. Agache, Mechanical properties and Young's modulus of human skin in vivo, Archives of Dermatological Research, vol.6, issue.3, pp.221-232, 1980.
DOI : 10.1007/BF00406415

. Audette, An integrated range-sensing, segmentation and registration framework for the characterization of intra-surgical brain deformations in image-guided surgery, Computer Vision and Image Understanding, vol.89, issue.2-3, pp.226-251, 2003.
DOI : 10.1016/S1077-3142(03)00004-3

. Boudou, An extended modeling of the micropipette aspiration experiment for the characterization of the Young's modulus and Poisson's ratio of adherent thin biological samples: Numerical and experimental studies, Journal of Biomechanics, vol.39, issue.9, pp.1677-1685, 2006.
DOI : 10.1016/j.jbiomech.2005.04.026

. Brown, In-vivo and in-situ compressive properties of porcine abdominal soft tissues, Stud Health Technol Inform, vol.94, pp.26-32, 2003.

. Bucki, Framework for a low-cost intraoperative image-guided neuronavigator including brain shift compensation, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.872-875, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00170005

J. M. Lagarde, Y. Gall, and M. Berson, In vivo model of the mechanical properties of the human skin under suction, Skin Res Technol, vol.6, issue.4, pp.214-221, 2000.

. Ferrant, Serial registration of intraoperative MR images of the brain, Medical Image Analysis, vol.6, issue.4, pp.337-359, 2002.
DOI : 10.1016/S1361-8415(02)00060-9

&. Gefen, . Margulies-gefen, . Amit, . Margulies, and S. Susan, Are in vivo and in situ brain tissues mechanically similar?, Journal of Biomechanics, vol.37, issue.9, pp.1339-1352, 2004.
DOI : 10.1016/j.jbiomech.2003.12.032

S. Catheline, . Fink, . Mathias, . Sandrin, . Laurent et al., Assessment of elastic parameters of human skin using dynamic elastography, IEEE Trans Ultrason Ferroelectr Freq Control, issue.8, pp.51-980, 2004.

&. Grahame, R. Holt-]-grahame, and P. J. Holt, The Influence of Ageing on the in vivo Elasticity of Human Skin, Gerontology, vol.15, issue.2-3, pp.121-139, 1969.
DOI : 10.1159/000211681

. Michael, . Greiner, . Günther, . Fahlbusch, . Rudolf et al., Strategies for brain shift evaluation, Med Image Anal, vol.8, issue.4, pp.447-464, 2004.

. Hata, Three-Dimensional Optical Flow Method for Measurement of Volumetric Brain Deformation from Intraoperative MR Images, Journal of Computer Assisted Tomography, vol.24, issue.4, pp.531-538, 2000.
DOI : 10.1097/00004728-200007000-00004

. Jemec, Measurement of the mechanical properties of skin with ballistometer and suction cup, Skin Research and Technology, vol.7, issue.2, 2001.
DOI : 10.1034/j.1600-0846.2001.70211.x

. Kauer, Inverse finite element characterization of soft tissues, Medical Image Analysis, vol.6, issue.3, pp.275-287, 2002.
DOI : 10.1016/S1361-8415(02)00085-3

P. J. Kelly, Computer-assisted stereotaxis: new approaches for the management of intracranial intra-axial tumors, Neurology, vol.36, issue.4, pp.535-541, 1986.
DOI : 10.1212/WNL.36.4.535

. Kerdok, Effects of perfusion on the viscoelastic characteristics of liver, Journal of Biomechanics, vol.39, issue.12, pp.39-2221, 2006.
DOI : 10.1016/j.jbiomech.2005.07.005

. Miga, Cortical surface registration for image-guided neurosurgery using laser-range scanning, IEEE Transactions on Medical Imaging, vol.22, issue.8, pp.22-973, 2003.
DOI : 10.1109/TMI.2003.815868

. Miller, Mechanical properties of brain tissue in-vivo: experiment and computer simulation, Journal of Biomechanics, vol.33, issue.11, pp.33-1369, 2000.
DOI : 10.1016/S0021-9290(00)00120-2

&. Miller, . Chinzei, . Miller, . Karol, . Chinzei et al., Mechanical properties of brain tissue in tension, Journal of Biomechanics, vol.35, issue.4, pp.483-490, 2002.
DOI : 10.1016/S0021-9290(01)00234-2

. Nava, Determination of the Mechanical Properties of Soft Human Tissues through Aspiration Experiments, Lecture Notes in Computer Science, vol.2878, 2003.
DOI : 10.1007/978-3-540-39899-8_28

. Ottensmeyer and P. Mark, In vivo measurement of solid organ viscoelastic properties, Stud Health Technol Inform, vol.85, pp.328-333, 2002.

M. Ottensmeyer and . Peter, Minimally invasive instrument for in vivo measurement of solid organ mechanical impedance, 2001.

. Pathak, A rate-controlled indentor for in vivo analysis of residual limb tissues, IEEE Transactions on Rehabilitation Engineering, vol.6, issue.1, pp.12-20, 1998.
DOI : 10.1109/86.662616

. Reinertsen, Clinical validation of vessel-based registration for correction of brain-shift, Medical Image Analysis, vol.11, issue.6, pp.673-84, 2007.
DOI : 10.1016/j.media.2007.06.008

. Samur, A robotic indenter for minimally invasive measurement and characterization of soft tissue response, Medical Image Analysis, vol.11, issue.4, pp.361-373, 2007.
DOI : 10.1016/j.media.2007.04.001

&. Shattuck, . Leahy, . Shattuck, W. David, and R. M. Leahy, BrainSuite: An automated cortical surface identification tool, Medical Image Analysis, vol.6, issue.2, pp.129-142, 2002.
DOI : 10.1016/S1361-8415(02)00054-3

. Skrinjar, Model-driven brain shift compensation, Medical Image Analysis, vol.6, issue.4, pp.361-373, 2002.
DOI : 10.1016/S1361-8415(02)00062-2

&. Taylor, . Taylor, . Zeike, and K. Miller, Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus, Journal of Biomechanics, vol.37, issue.8, pp.1263-1269, 2004.
DOI : 10.1016/j.jbiomech.2003.11.027

V. Vuskovic, Device for in-vivo measurement of mechanical properties of internal human soft tissues, 2001.