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Abstract

A new method for the binary classification problem is studied. It relies opirgzal minimization of the hinge risk over an
increasing sequence of finite-dimensional spaces. A suitable dimeisspoked by minimizing the regularized risk, where the
regularization term is proportional to the dimension. An oracle-type ifi#gusa established for the excess generalization risk
(i.e. regret to Bayes) of the procedure, which ensures adequatergence properties of the method.

We suggest to select the considered sequence of subspaces byngyielsnel principal components analysis. In this case
the asymptotical convergence rate of the method can be better than vkreiwis for the Support Vector Machine. Exemplary
experiments are presented on benchmark datasets where the prastided of the method are comparable to the SVM.
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dimension reduction
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Finite Dimensional Projection for Classification and
Statistical Learning

I. INTRODUCTION.
A. The classification framework.

In this paper, we consider the framework of supervised pinkassification. Let X, Y") denote a random variable with values
in X x {—1,+1} and probability distribution?. The marginal distribution oX is denoted byQ. Y is thelabel associated to
theinput variable X. We observe a set of independent and identically distributed (i.i.d.) pai’s;, Y;)?_, sampled according
to P. These observations form theining set (We will supposer > 3 to avoid inconsistencies in the sequel.)

A classifier is a mapping’ from X to {—1,+1} assigning to every point € X a prediction of its label. The quality
of such a classifier is naturally measured by generalization errorP[f(X) # Y]. Consequently, the aim is to estimate
(using only the information of the training set) the classifiaving minimal generalization error, callBéyes classifierWe
will denote this optimal classifief™ ; it is well-known that f*(z) = 21{,(,)>1/2y — 1 @.s. on the sefn(z) # 1/2}, where
n(z) =PY = 1|X = z].

Given a certain set of classifie€sfixed in advance, th&mpirical Risk Minimizatiorprocedure (see, e.g., [1]) consists in
finding a classifierf € C minimizing the empirical classification err(%rzzl:l 1i5(x,)+v,} - Here, the functiord(f, (z,y)) =
1{4(x)2y} also called 0-1 loss, is the natural loss function for theessification framework. Unfortunately, minimizing exactl
the empirical classification error is, in most cases, pecallfi intractable, mainly because it is not a convex optation
procedure.

This is the reason why numerous classification algorithinsh sis the support vector machine (SVM for short in the s¢quel
or boosting, do not consider the 0-1 loss, but minimize ext@convexsurrogate loss functiof over some real-valued (instead
of {—1; 1}-valued) function spac#&, opening way to the use of efficient convex programming nshé real output function
f over X can then be transformed into a binary classifier by considedign(f). We will in this work concentrate on the
surrogate loss function used by the SVM, called hiiregge loss

(g, (@,y)) = (1 = yg(z))+,
where(a) = alg,>o; denotes the positive part.

B. Regularization in classification and in regression

For a given loss function we caltlsk the averaged loss over some data distribution. The averagsdover the training
set is calledempirical riskand the averaged loss over the draw of a new independentmanteervation(X,Y) is called
generalization riskor sometimes justisk. Overfitting is the phenomenon of excessive discrepancy between eaipiisk
(observed on the training sample) and generalization niskndependent test data, and leads to performance degradatd
inconsistency. To avoid overfitting, a common remedy is tosiaer regularization: it consists in adding to the emplriisk
an additional balancing terf( f), which, roughly speaking, should be representative of hoggular the considered function
is. The functionf € F minimizing the sum of these two terms is then picked. For SVMs regularizatiom)(f) = C || ||
is taken proportional to the squared normjofn a certain functional Hilbert spack.

The latter form of regularizer is also known as Arsenin-Bikbv's regularization (Tikhonov's regularization for shin the
sequel), and has already been widely used and studied istisgin the framework of least squares regression. Indhge,
and if the proportionality constartt’ is chosen in a suitable way as a function of the training sarsjde, it can be shown
that the resulting estimator enjoysinimaxity properties over the Hilbert ballB(R) = {f € H, || f|| < R} (see, e.g., [2] for
a survey). Note thaB(R) can equally be seen as an (Hilbert-Schmidt) ellipsoid.efQ).

However, in the case of least square regression, an alsdywided alternative strategy to Tikhonov's regularizatisn
to consider least squares fitting over an increasing seguehiinear, finite dimensional subspacés C Sy C ..., and to
use a regularization term proportional to the subspace riioge (the “number of parameters”). The selected dimengien
minimizes the sum of the residual least squares and of thdanézation term (see, e.g., [3] for a extended study anddé]
regression on a random design).

The interesting thing here is that these two regularizaipproaches for regression can be compared. More precikely,
following has been shown in the particular case of Gaussiaitewoise regression (see [5], section 4.3): if the sulespac
is taken to be the span of the first principal axes ofB(R) (as an ellipsoid inL,(Q)), then the finite-projection estimator
is also minimax ovetB(R). More than that, it is even minimax for any other Hilbert-8iatit ellipsoid of L»(Q) having the
same principal axes. This, on the other hand, is not gegetadl case for the estimator obtained by Tikhonov's regeddion.
In conclusion, the finite-dimensional approach can actuadl more adaptive than Tikhonov’'s regularization.



The reason for this long discussion of the regression ggei$ito motivate the goals of this paper. Namely, it does npeap
that an approach similar to the finite-dimensional progectthas been studied for classification. This is preciselyatihe of
the present work.

The paper is organized as follows. In Section 2, we preseanffittite-dimensional projection method and give our main
theoretical result, an oracle inequality bounding the sgaesk of the method. For this, we use theoretical tools afddimation
(6], [7]). In Section 3, we compare the obtained bound to antobavailable for SVMs and taking a similar form. In Section
4, we propose to use kernel principal component analysistimate the subspaces used for projection. The resultgayitim
is dubbed the kernel projection machine (KPM, originalliraduced in [8]): the model selection used in this new athoni
is guided by the previous theoretical result. Testing it ome benchmark datasets, we find results comparable to the. SVM
While we do not outperform the SVM, the main point we want tovegnin the present work is to show that finite dimensional
projection is a viable alternative to Tikhonov’'s regulatinn.

[I. FINITE DIMENSIONAL PROJECTION FOR CLASSIFICATION
A. The finite dimensional projection estimator.

Remember our main loss function is the hinge logsg, (z,y)) = (1 — yg(x))+. The hinge loss is consistent in the sense
that the Bayes classifier satisfies (see [9])

f*=argminE [y(g)] -
g
It is straightforward that the hinge loss upper-bounds thesification error (0-1 loss):

'Yh(g, ($7y)) > 1{g(x);éy} .
Moreover, theexcesor regrethinge risk with respect to the Bayes classifier upper-bouthdsxcess classification error [10]:

Em(9)] —E[m(f*)] = P(Yg(X) <0) = PYf*(X) £0). @)

This means that the rate of convergence to the Bayes cladsifi¢the hinge risk is an upper bound on the classification
error convergence rate.

We will now consider the following setting. Lé®,, U5, . ..) be an arbitrary family of functions fixed beforehand. We deno
Sp =span{¥y,---,¥p} the functional subspace spanned by the fibstunctions in the family. The following classifier is
associated to each dimensiéhe N* by minimization of the empirical hinge risk ovetp:

n

fp = arg J}glsfé % ;(1 —Yif(Xi))+- (2)

At an intuitive level, we can think about the function famédg a smoothness basis (think, e.g., a Fourier basis): stésfia
with lower dimensionD contain smoother functions. Note that there is no regudéion term of any kind in the definition
of fp. Instead, it the dimension parameterwill play the role of a complexity penalty. We now devise a hwoet for the
selection of the dimension. R

Some technical problems arising when analyzing the staisproperties offp are caused by the unboundedness of the
loss function+y;,. In order to alleviate these, we introduce here ¢lip function (which was already considered in [11] in a
regression framework, in [12], and in [13] in relation to tB¥M) :

1 if g(x) >1
clip(g(z)) = { g(z) if —1<g(x)<1
-1 if g(x) <-—1.

Note that the hinge loss of a clipped function correspondgritaming’ the hinge loss of the original function:

’Yh(dip(f)7 (.73, y)) = min(r)/h(f’ ('rv Z/))7 2) .

_We now apply the following dimension selection strategy: fiwst “clip” the estimated functior]fD for each D, defining
fp = clip(fp). We define our final estimator by performing the model sedecttep over values oD using the clipped
estimatorsfp . This is obtained by penalized minimization of the empiriésk: the final classifier isign(f5) where

n

~ (1 ~
D = arg min (n _Z;u — Y fp(X:)+ +AD> : ©)
1=
and the constank has to be suitably chosen. The linear penalfy will be justified from a statistical point of view in the
next section.
Some preliminary comments are in order. First, note thatdipping operation does not alter the associated classifier

function since clipping leaves the sign unchanged. As argkpoint, note that the clipping is only performed for the dimsion



selection step. We could, of course, consider the option iofmizing the 'trimmed’ lossmin(y;,2) over each modeb, to

get completely rid of boundedness issues. But since therteichloss is not convex, it would be difficult to devise a picadti
procedure to minimize this function over a modgj. This is why we first minimize thérue hinge lossy;, on every modelSp
(which is a convex optimization problem, hence amenableotwex programming techniques), and then choose the diorensi
D by minimizing the penalized trimmed loss of the functiofys. This, again, is a practically feasible step, since we only
have to compare a finite — and relatively small — number oftions (we typically expect that the maximum dimensiop,,..
taken into consideration satisfiés,,.,, < n). To sum up, the above procedure is practically feasible.

B. Main result.

We are now ready to formulate our main theoretical resul&ints at giving a precise statistical justification to the elod
selection procedure (3) involved in the finite dimensioregularization, and will be used for theoretical comparisothn the
SVM in the next section. R

Theorem 1:Let (Sp)p>1 be a family of linear subspaces 6f(Q) whereSp is of dimension at mosD and fp denotes
the minimizer of the empirical risk:

fp = arg min ;u — Yif (X)) + - @)
Let n be defined ag)(z) = P[Y = 1|X = z|. We suppose that the following “noise margin” conditiondsl
1
dhg >0, Vz € X, 7](!17)—2’>h(). (5)

Let fD = clip(fD) . The dimension of the final estimator is selected by

~ (1< ~
D = arg min (n Z;(l — Y fp(Xi)+ + penn(D)> : (6)
Then, there exist universal constadts and C> such that, for anyk” > 1, the following holds: provided that
K D1
VD > 1, pen, (D) > S DL8N. )
ho n
then the excess risk satisfies
E [L4(F5. )] < int ((inf Lu(/, 1) + 2Elpen, (D)) ) ) + 25 ©®)
D> - K—1\D>1\sesp ’ " hon

where Ly (g, f*) = E[v.(9)] — E [ya(f*)] is the excess hinge risk.
This result is proved in appendix in a more generic framewlvk now give some comments.

« The above theorem takes the form of a so-catiescle inequality(8), where the excess risk of the penalized estimator
can be compared to the excess risk of the best possible cbbfoaction over each model. There is a tradeoff appearing
between approximation error, decreasing withand estimation error (represented by the penalization ter the right-
hand side) which increases with. If we make additional assumptions about the approximapimperties ofSp with
respect to the targef*, this can be used to derive rates of convergence (this wiklaborated in the next section). A
crucial point, however, is that the oracle inequality itsahd the penalty, arsndependenbf any such assumptions on
f*. It means that the resulting estimator enjadaptivity properties.

« This result means that the penalty linear with the dimension used in the criterion (3) is statély justified. However,
admittedly, the multiplicative constaidt; obtained by this theoretical study is too large to be diyeaied in practice.
This theorem therefore should be seen essentially as aeticadrguarantee that using this form of penalty is wellrdded
from a statistical point of view, and will have suitable cernyence properties as the sample sizgrows large.

« Using inequality (1), inequality (8) also provides an uppeund of the excess classification error (i.e. excess riskht®
0-1 loss) with respect to the Bayes classifier.

« One important drawback of this result is the dependence efptinalty on the unknown margin parametgr Results
of [14] show that this parameter plays a crucial role for miak rates of convergence in classification. A related and
more general noise condition &sybakov's noise expone(gee [15], [16]) which similarly has a prominent influence
on minimax rates. Procedures that can be shown to be addptittee noise margin parameter or to Tsybakov’s noise
exponent have only been studied very recently [17]—[20].



IIl. COMPARISON WITH THE RISK BOUND FOR THESVM.

In this section, we try to compare the rate of convergence ¢ha be obtained for the finite-dimensional approach via
Theorem 1 to the Tikhonov regularization approach. Therahtandidate to compare against is therefore the Suppatbie
Machine (SVM), which uses this form of regularization witietsame loss function as above.

If we draw a parallel to what can be shown in the least squagsession case [5], we must however consider several
caveats This will result in the picture of the present situationrmpunfortunately noticeably less complete.

« There is, up to our knowledge, no definite universal refezdymund agreed upon that would accurately depict the behavio
of the SVM, but there is a diversity of performance boundshoose from in the recent literature (e.g., [13], [21], [22])
Here, we have chosen to compare the bound of Theorem 1 to tfempance bound shown in [23]. The main reason
for this choice is that the bounds in [23] have a very similaratle-type’ form involving approximation properties of
models (in the case of SVMs, these models are ellipsoidshhiexcess hinge risk. This makes a comparison easier.

« For least squares regression, minimax rates have beersaegrstudied, and provide a definite yardstick for estdtitig
when a convergence bound is optimal and cannot be improwedl&ssification with the hinge loss, up to our knowledge,
no minimax bounds have been established (and we do not kndswef bound results on the rate of convergence of the
SVM). Here, the comparison will be therefore limited to arpepbound comparison.

« Inregression again, the least squares loss is associateddion approximation i, distance, which is particularly well
suited to compare approximation properties of ellipsoiad finite dimensional subspaces. For the hinge loss, congpari
such approximation properties is far from obvious. We wikrefore resort to bounding the excess hinge risk bylthe
distance and compare the obtained bounds.

A. Background material on the SVM.

In this subsection, we recall briefly some points cruciah® support vector machine. Although it was not originallyivksl
this way, the (soft-margin) SVM algorithm can be formulatedithe minimization of the regularized empirical hinge ia4],
[25]:

§=argmin = > "(1 - Yig(X:))+ + Anllgll3, ©)
gent i
Here H® = {g(x) +b, g € H,b € R} andH is a reproducing kernel Hilbert space (RKHS) of functionsX@nwith Hilbert
norm ||-||,, . We will actually consider a restricted case of the aboverevitiee minimization is ovet instead of/", i.e., the
arbitrary constanb is set to zero. We will denote the resulting functiggn This simplified setting is frequently (although not
always) used in theoretical studies of the SVM, among whi3],[which exposes the bound we wish to compare ourselves
to. It is expected that this modification does no change fonegdally the asymptotical properties of the SVM.

Note that the optimization problem (9) (with the above sifigdtion to b = 0) can be rewritten in the following way:

9o = gp Where

n

1
gr = argmin — » (1-Yig(X;))+,
geE(R) M ;

and

R = argmin <1 Z(l —Yigr(X:))+ + CR2> , (20)
Rz \"i5

where&(R) are balls of radius® in H . Thus, we can equivalently interpret the regularizationg®model selectionwhere

the models are ball§(R), gr is the minimum empirical risk estimator on each model, artbrion (10) is used to select

the radiusR.

At this poaint, it is interesting to recall that the balls inetiRKHS spacéH can be viewed as ellipsoids ib2(Q). Let us
recall some facts about the structure of a RKHSsuch a space is uniquely characterized by a symmetrictimsiefinite
kernel functionk : X x X — R. We will assume thaft’ is a metric compact space akda continuous kernel, which allows
us to apply Mercer’s theorem. L&, be the following integral kernel operator & (Q):

Ty : g — /X k(z,.)g(z)dQ(z) . (11)

The operatofT}, is compact and self-adjoint, and can therefore be diagoedililet(¥,),>1 be anL,(Q)-orthonormal basis
of eigenfunctions corresponding to the non-increasingueece of eigenvalueg););>1. Mercer’s theorem allows to get a
representation of{ in terms of spectral quantities associated’}o Precisely,H can be characterized as

2
H=1g¢€LQ) : g:Zai\I/isuchthatHgH%:Z%<oo . (12)

i>1 i>1



We then have

g(R):{geHa|9||H<R}={gELg(Q),g:Zai\pi’Z; }

i>1 >1

Consequently, a ball of the RKHS is an ellipsoid bf(()) whose principal axes are precisely the eigenfunctionyof

In [23], the following result was proved for the SVM: assumik(xz, z) < M for all x € X', and under the same margin
condition (5) as in Theorem 1, the functi@p defined in equation (9) satisfies with probability at least ¢, over the i.i.d.
draw of the training sample:

Ln(@o. /") <2 ( inf Lalg.£7) + CODA, gl ) + C'An (13)

provided thatA,, is bounded from below by a certain function depending on terwalue sequencg\;) . If the elgenvalues
are of the form\; = O(j~27) for somey > 1, then the corresponding condition reatls > C(M, hg,8)n~ i . Finally,

it is reported in [23] that a similar bound holds for the expelcexcess riskEL;, (g0, f*) (averaged over the draw of the
training sample), up to additional logarithmic factors e tpenalty. We will use this averaged risk version for consoar
with Theorem 1.

B. Bound comparison.

To set up the comparison with the finite-dimensional subspaethod, we will consider the subspacgs spanned using
the sequence of functiongl;, ¥o,...) defined in the previous section as the eigenfunctions ofatpef},. Note that in
the present section, we assume that the margihad known, and therefore that botiW;) and (\;) are known to be able
to compare the performance bounds. (In the next section, Weliscuss a practical procedure in order to approximate th
sequenceé¥;) when is unknown.)

We will compare the obtained bounds in the following speafitting:

(@) the eigenvalues satisfy a polynomial decay= ©(j~27). (Note thaty > % since the eigenvalues series must be
summable T, being a trace-class operator.)

(b) the coefficients of the Bayes classifigt in the L, (Q) orthogonal basigV;) satisfy (f*,¥;) = ©(;~*). (Note that
o> 1 sincef* € L,(Q).)

As previously discussed in the caveats, in order to comgaeapproximation properties of the balls&fand the subspaces

Sp, we will additionally upper-bound (for both compared boshthe excess hinge risk in the following way:

Lp(f ) < f = fllgr <

where the first inequality holds because the hinge tpss Lipschitz.
We are now left with comparing the following bounds: for theNs classifier gy, we have from (13), (14) and condition

(a):

(14)

o~ * . * 2y 2
E(L(Go 1)) S nf (g = Fllga +n =7 ali) - (15)
while Theorem 1 together with (14) yields for the finite-dims@nal estimatof:

. » D
BILGT S %, (i o= Fllga+ %) (16)

where < means that the bound holds up to a fixed multiplicative coristad possibly an additional factosg(n) .
We sum up some necessary computations in the following lemma
Lemma 2: Assume condition (b) above holds.Then the right-hand sfdeemuality (16) is bounded the following way:

a—1

D 2
i < n” 2a+1
ggl < mf lg—f* ”Q 2+ ) ~ .

On the other hand, if conditions (a) and (b) above hold, and 2+ + =, the right-hand side of inequality (15) is at least

inf (g = Fllgz+n=Hillgl) 2 n™ =
In can be checked easily thé# > Wﬂf&% is implied by the sufficient condition < ~ + l . Of course, since we
are only comparing upper bounds the above resuft does mdy tmat the finite dimensional prOJectlon classifiemniscessarily
better than the SVM: more to the point, whenever the aboveition is satisfied, the known bound on the rate of convergenc
of the finite dimensional projection classifier outperforthe known bound on the rate of the SVM.
It is now legitimate to ask in what situation the condition< v + g is satisfied. We argue that, if the eigenvalues and the
expansion coefficients follow a polynomial decrease asmasdwabove, then the condition actually covers most of theiples



range of values forv and~. A simple observation is namely that the Bayes classifiercannot belong to the RKHS{,
since it is discontinuous (except for the trivial case whielie constant), while we assumed that the kernel was cootisu
implying that all functions ir{ are also continuous. This therefore means that the sgries) f? /X must diverge, implying
in turn necessarily that < ~ + % . Therefore, the condition < v + % covers a very large part of the available range. It also
trivially implies the condition needed for the second pdrthee lemma.

Let us finally briefly describe a very simple example illustrg the above situation. Assume that is the real interval
[0,1], that the marginal) is the Lebesgue measure; and consider the following kernel:

k(z,y)=1+2 Z Aj (cos(2mjx) cos(2mjy) + sin(2mjz) sin(27jy)) ,
i>1

where, forj > 2, \; = (2mj)~%7 with v > 1. In this case{¥,},>; is the trigonometric basis af,([0,1]). It is known
(see e.g. [2], chapter 2 ) that, 4f is an integer, the RKHS associated with this kernel is theofwbspace of ordety with
periodic boundary conditioni—[ﬁlﬂ. Precisely,HI(,ZB is the set of functions of.5(]0, 1]) with v — 1 continuous derivatives

satisfying f(0) = f(1),---, fO=1Y(0) = fO=9(0), and with () € Ly([0,1]). It is endowed with the Sobolev norm

1120y = S £ (8)[2dt + (fol f(t)dt) . This norm coincides with the RKHS norm implicitly defined by

In this situation, the non-continuity of* prevents normal convergence of its Fourier series, so thegéssarilya < 1.
On the other hand, the parameterepresents the regularity of the kernel and it is not custgnia choose very irregular
kernels, so that we would expect in a reasonable practicat®n thaty > 1: in this case, the sufficient condition giving the
advantage to the finite dimensional bound is satisfied.

As a final note, it is reported in [23] that the quadratic pgnal, ||g||3{ in the 'standard’ SVM (i.e., Tikhonov’s regularization)
could in principle be reduced to a lighter linear (insteadqofidratic) penalty of the formh,, ||g||,, . With this type of
regularization, different from Tikhonov’s, it is still psible to ensure good statistical properties, i.e., an erawbquality
similar to (13) holds. It is possible that, for this modifie)8 with linear penalty, the corresponding oracle bound wioul
also give rise to a faster convergence rate. Here howeverpant here was to compare the finite dimensional approach to
the “standard” SVM only, so that we did not consider this ralégive regularization.

The above bound comparison suggests that it should be a deadtd use the bas{@, ¥, ...) of eigenfunctions ofl},
for the finite-dimensional projection approach. Howeviese functions are in general not available, since the mar@ is
not known. In the next section, we will propose a practicalgedure to approximate these functions using Kernel PCA.

IV. KERNEL PROJECTION MACHINE AND NUMERICAL RESULTS

In this section, we will compare the finite dimensional potign approach to the classical SVM on real data by constrgict
an actual classification algorithm based on the finite diriegrad projection principle. This algorithm is dubbed kdrpmjection
machine (KPM, originally introduced in [8]).

A. Using kernel PCA to approximate eigenfunctions

The theoretical study in the previous section suggests ¢oausasis of functions which is, in some sense, adapted to the
underlying distribution) of the input data, by considering

Sp =span{¥y,...,¥Up},

where(¥q,...,¥p) are the eigenfunctions (in order of decreasing eigenvahighe operatof/}, given by (11). In practice)
is not known exactly, so that the functio(®,) are also unknown. A standard approach, the so-céllestitdm approximation
[26], consists in replacing) by the empirical distribution of theX; in the definition of the kernel operator.

Formally, we will therefore consider the eigenfunctiohs of the operator

Tinf () = =3 f(wk(z, 2:) a7

n-
=1

n

to define the models$, . Finding the eigenfunctions dfy ,, is equivalent to performing the well-knowkernel principal
components analysi@&PCA) algorithm [27]. A very convenient fact used to perfothis step efficiency is to note that it
suffices to diagonalize the x n kernel Gram matrixX; ,, = %(kz(Xi,Xj))lgi’jgn to obtain the eigenfunctions dfj, .
Indeed, forj > 1 such thath > 0,

I &
— > V"k(Xia), (18)

i(@) = ﬁ 2

where(V;)1<,<» IS an orthonormal basis of eigenvectorsiof ,, associated to the eigenvaIL(e%)lngn , sorted in decreasing
order. The above normalization ensutes; | = 1.



This choice of functions and modef, is now data-dependent; for this reason, strictly speakimg,does not enter in the
framework of Theorem 1 where models are assumed to be fixe@xAat study of the whole data-dependent procedure, also
taking precisely into account the variability in the dagpdndent models, is however out of the scope of the presget.pa
Let us only mention here that it is well-known thét converges tol; asn — oo and details of this convergence have been
studied (see, e.g., [28]-[30]), so that using this appratiom is a well-founded heuristic.

Furthermore, there is a particular data-dependent settiveye Theorem 1 strictly applies, namely when the eigertions
are estimated on a distinct data sample. Let us assume thiadweean independent (unlabeled) san(pte) drawn according
to the same input distributio) . This situation is not uncommon in a lot of practical apdi@as where only a part of
the available data has been labeled. The eigenfunc{ibns are estimated using this unlabeled sample. These are tleeh us
to perform the finite-dimensional projection estimation tbe original samplegX;,Y;). In this case, conditionally t¢X))
Theorem 1 applies. We therefore have the following:

Corollary 1: Assume that the noise margin condition (5) holds. Det= (X;,Y;);=1,..» be an i.i.d. sample drawn frof?
andD’ = (X;)jzl ,,,,, = be an independent, unlabeled i.i.d. sample.

Assume the unlabeled sampl¥ is used to construct a family of functiori®;) and putSp = span {\Tfl, e \TJD} .

Follow the same estimation procedure as in Theorem 1 witldéta-dependent subspace fanﬁw used in place of5p,
i.e. definitions (4), (6), giving rise to estimat@
Then, there exist universal constaidis, C; such that for any’ > 1, if condition (7) on the penaly function holds, then

% K . CyK
/ L < , * )
Ep.p [Lh( o f )} < 7E | inf (flenSfD Lu(f. f*) + 2Ep [penn(D)]ﬂ o (19)
Proof: Conditionally to the unlabeled sampl®’ the functions(\f/i), and the model$,, are fixed; therefore Theorem
1 applies. We then take the expectation of (8) with respe@’to ]
In the next section, we will however only consider the sitwatwhere we use only one sample for simplicity and give a
detailed account of the obtained algorithm.

B. The kernel projection machine (KPM) algorithm.
Using the approximate eigenfunctions, the first step ctsmgiscomputing the empirical minimizers ovét, \Tll, e ,\T/D> :

fo=arg  min _ Y (1-Yif(Xi) (20)
fe(, ¥y, Wp) i
Note that the constant functiahequal to one is systematically included in the models in iotdéake into account translation
on the data: this function corresponds to the threshatdthe original SVM algorithm. This optimization problemrcae put
under the form of a linear programming (LP) problem (see (&lpw).
If we adopt the parametrization bify,b) of f, of the form fp = ZJD 1 \/—QS] + b*, then equation (18) leads to

(4) — ~
= ( /%_KLan) = ,/n)\jvj(” , so that(¥,b) are given as the solutions of
n

D
(ﬁ,@\) =arg min Z 1-Y; Zijj( )
WERD,bER i=1 j=1 N
To conclude, the KPM algorithm can be summarized as follows:
1) givendataXy,..., X, € X and a positive kernédl defined ont' x X', compute tt the kernel matrik’; ,, and its eigenvectors
Vi,..owVa together with its eigenvalues in decreasing orﬁier> A2 . > A

2) for each dimensioD such that\p > 0 solve the linear optimization problem
A,E) = arg min p
(v g mi 5;5

D
under the constraint&%i =1...n : & >0, andy; Zvjvj(z) +b)|>1-¢. (21)
j=1

D <
Next, puta; = >~V and finally fp = S, @ik(as,.) + .

j=1 "



3) The last step is the model selection problem consistinthoosing the dimensioP ; for this step, we use the penalized
trimmed hinge loss as studied earlier:

n

D= arg %ér% (711 Z(l - YifD(Xi))Jr + )\D> , (22)

i=1

where fp = clip(fD).

C. Some numerical results.

We first illustrate the Nystim approximation on a controlled example where the thezale¢igenfunctions are known. Then,
in our main experiment, the performances of KPM are compaiigid the SVM on several benchmark classification datasets.
First, we consider the idealized case giexfectmodel selection step. This amounts to choosing the regaléwn parameter

for both methods (denoted in equation (9) for the SVM and for the KPM) on the test sefThis allows to compare directly
the best estimators within the families considered by th1@wd the KPM, respectively. Remember that the “KPM classifie
family” is formed of empirical risk minimization (ERM) estiators on linear subspaces of increasing dimension, whde t
“SVM classifier family” can be understood as ERM estimatardRIKHS balls of increasing radii. Although selecting the mlod
on the test set does not correspond to a realistic situaticomparison is useful to decouple and understand gepathe
quality of the classifier families considered, indepenlyeat the additional error introduced by model selection.

In our final experiments, we consider in turn a comparisorafagalistic practical scenario: in this case, 5-fold cresl&dation
is used to select the regularization parameter for eachadeth

1) Numerical experiments for the Ny&tn approximation: The KPM algorithm relies on the Ny&tm approximation
formulated in equations (17), (18). In order to illustrate & Gaussian kernel is considered along with a Gaussiart inpu
distribution@. In this case, Theorem 9, recalled for completeness in tperafix, gives explicitly the eigenfunctions; they are
of multiplicity 1. The empirical eigenfunctions are computed by using foen{B) and a random draw of 500 points. Figure
1 is obtained witha = % andb = % whereb determines the width of the gaussian kerhét,y) = e~@=* and q the
gaussian lawlP(z) = #ﬂe”“zdx of X.

The straight lines (resp. the circles) represent the thieateresp. empirical) eigenfunctions. These graphiaghlght a
consequence of results of [28]: the accuracy of Nystrapproximation decreases with the eigenvalues, suggetiat the
approximation of the theoretical eigenfunctions by the ieitgd ones is more suitable for large eigenvalues, i.e. tiie first
eigenfunctions.

2) Numerical results for the KPM algorithnifthe KPM was implemented in Matlab using the free library GLiBKsolving
the linear optimization problem. Since the algorithm imes the eigendecomposition of the kernel matrix, only iesiit small
datasets have been considered at this point.

It has been tested on benchmark datasets taken from [3}]: dbesist in some data originally coming from the UCI
repository, to which some standardization transforms Hzeen applied. All datasets consist of 100 samples, eachlsamp
being split into a training sample and a test sample; in alhgkts except “banana” the 100 samples actually contain the
same data points and only differ in the training/test sfliie results obtained by applying sevegal state-of-artsifiaation

_ ==yl

algorithms have been reported in [31], including the SVMmw@&aussian kernet(z,y) = e~ 222 . In this case, suitable
values (chosen by cross-validation) for parameteygkernel width) and”¢ (SVM regulatization parameter) are also reported.
These values are specific to each benchmark dafaset

In all experiments presented here, we used the Gaussiaelkeith parameterr fixed to the value reported in [31].
Without selecting the regularization parameter, the farofl classifiers obtained by the KPM algorithm (igp) p>1 and the
family obtained by the SVM algorithm iéfc)cec- The setC of possible regularization constants that we consider ter t
SVM are tailored to each benchmatkby forming a geometric sequence of 101 points running @%gy100 to 100 C¢ and
containing the “optimalC¢.

Comparison of the family of SVM classifiers and KPM classfi@emember that here we aim at comparing the two
families by shunting off the model selection procedure .dble |, for each sample, the smallest test error of the KPMt(w.
the parameteD) is compared with the smallest test error of the SVM (w.hé paramete€’). Each time, the winner is given
one point.

Parameter selection by cross-validatiorable Il presents results of SVM (resp. KPM) where the reggddéion parameters
C (resp.]) is chosen by 5 fold-cross-validation separately on eacthefsamples. The results are presented in the form
mean of the 100 test errofs+ { variance of the 100 test errots

These two tables highlight that the performances of KPM amaparable with the SVM. Considering table |, the SVM
appears to have a slight advantage over the KPM which alseaappn table || when the parameters are selected by cross-
validation. However, note that average differences aréegrmall, in particular relative to the variance. Moreoveis worth
noticing that the same fixed parametet is used for the KPM and the SVM, whereas it was originallyotet in [31] for
good performance of the SVM only.




Fig. 1. From the left to the right: approximation of the firdietsecond, the third eigenfunctions of the kernel integparator for a Gaussian kernel and
Gaussian input distribution.
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TABLE |
BEST CLASSIFIER IN THE FAMILY (NB. OF WINS)

KPM SVM
Banana 31 67
Breast Cancer 44 50
Diabetis 55 42
Flare Solar 19 63
German 43 49
Heart 27 64

TABLE Il

TEST ERRORS

SVM KPM
Banana ¢ = 0.7071) 10.694+ 0.67  10.9%0.57
Breast Cances = 5) 26.68+ 5.23 28.734.42

Diabetis ¢ = 3.1623) 23.79+ 2.01 23.7#1.69
Flare Solar § = 3.8730) 32.62+ 1.86 32.52:1.78
German & = 5.2440) 23.79+ 2.12 24.09:2.38
Heart g = 7.7460 ) 16.234+ 3.18 17.35%:-3.54

F|naIIy, from an algorithmic optimization point of view, ace property of the KPM is that the cIassmﬁb can be used as
“hot start” point in the optimization search fgfbH smcefD € Spy1. This will gnerally make the procedure faster than
restarting separately the optimization for each valuéof



V. CONCLUSION AND DISCUSSION
A. Highlight of the present work.

We described the finite dimensional approach in the claasific framework and deduced an effective algorithm: the KPM
The model selection aspect is tackled using a penalizedrionit we gave theoretical results justifying the use of aafty
which is a linear function of the dimension. We presentedemtétical study comparing known bounds on convergences rate
of the finite-dimensional projection approach as compaoetheé SVM. We also compared performances of the KPM against
the SVM in a realistic scenario in which the KPM appeared talrost as efficient as the SVM although some parameters
shared by both methods were chosen to optimize the SVM pedloce.

The main point of all the presented results is to highliglatt th

regularization can be performed thanks to a dimensionaéguction method such as Kernel-PCA.

Consequently, the finite dimensional projection is a credditernative to the Tikhonov’s regularization used, frample, in
the SVM algorithm.

An interesting view of the KPM is is that the training label® aised to select the optimal dimensiéhin a dimension-
reduction method — optimal means that the resultinrglimensional representation of the data contains the aghdunt of
information needed to classify the inputs. To sum up, the K&av be seen as a dimensionality-reduction-based clasisifica
method that takes into account the labels for choosing g dimension in the dimensionality reduction step.

B. Comparison with other work.

We provided a detailed comparison of the theoretical bowtdained for the KPM and of the bounds obtained in [23] for
the SVM. It is more difficult to draw a meaningful comparisoithwother known bounds on the SVM; for example, in [21],
a Gaussian kernel with width depending on the sample sizs well as on some “geometric” assumptions Bft'| X) is
considered. Here our focus was on a fixed kernel.

In [18], estimators with a finite expansion on a fixed functlmsis are considered, which is related to the present gettin
A /;-penalty in the coefficients is considered, and the proeedishown to be adapative to the “Tsybakov noise exponent”
parameter (a more general version of (5)). Here, we study-@enalty and our results are not adaptive to the noise margin
parameter. However, [18] needs additional hypotheses ®.4f()) structure of the function family considered as well as on
their supremum norm. In contrast, our focus here for thertétaal part was to obtain results on arbitrary functionspdtes
Sp without additional hypotheses.

C. Discussion: inverse problems and the spectral point efvvi

It is interesting to note that, in the case of least squamg®ssion, both Tikhonov's regularization and the finitexeinsional
projection (when the projection dimension is fixed) can bensas special cases of a large clas$irefar estimators that have
a diagonal form when expanded on the eigenfunction basis adr@in autoadjoint operatof . In the present cased is
the kernel integral operator, but in a broader point of viewcould be more general. This is precisely the setting which is
traditionally the basis of thénverse problemditterature. A recent and very general account of this poinview for linear
least squares estimation can be found in [32], where a muadder situation is studied (i.e. the operatbris not assumed
to be compact, so that the spectrum may not be discrete, iohwdaise the most elegant way to describe linear estimators is
really directly by their action on the spectrum).

Interpreting classification problems as inverse problemsidt new (seminal ideas are found in [33]), but has received
renewed attention recently due in particular to the stronlg of support vector machines with inverse problems, adistl
notably in [22]. In the present paper, what we calfetdte dimensional projectiois generally referred to aspectral cut-off
method in the inverse problems litterature.

A major part of the difficulties arising in the study of such thas for classification problems resides in the non-least
squares cost function, so that the penalized empirical migkmizer does not give rise to a linear estimator. In thespng
work, we have studied convergence rates for an equivalespe€tral cut-off in this setting (more precisely, combimveith
adequate model selection). Clearly, it would be of grearast to develop this point of view in more generality forssification
problems and possibly try to recover the extent of resullabdle for inverse problems in regression.

D. Ending remarks and future work.

The main drawback of Theorem 1 is the lack of adaptativityheonoise margin: the penalty function involves the unknown
noise margin parameter. This leads to difficulties to calibithe penalization constant in practice. We plan to inyat other
calibration techniques fox than cross-validation. One interesting direction is theaked “slope heuristic” where the behavior
of the empirical error offp as a function ofD is used to select a suitable parameter

An interesting potential advantage of the KPM with respecthie SVM is that it can easily be extended to use different
kernelssimultaneoushby considering finite dimensional spaces spanned by eigetifuns of kernel operators associated to



several different kernels. Oracle inequalities can beinbthin this case using the same methodology (it suffices mg
accordingly the weightr, appearing in the proof of Theorem 1). To avoid additionahtecalities, in this paper, only the
simplest version involving one model for each dimensionasesl. However, it is clear that an extension where sevalamces
with the same dimensio® are available is straightforward.

Taking into account precisely the variability in the dagpdndent models is also an interesting topic. One possibeis to
use stability results on the estimated models (see, e@)), @ other is to extend the study of the method in a semésiiged
setting where unlabeled data is available, thereby dewelajhe ideas of Section IV.

APPENDIX
RISK BOUNDS FOR THE CLIPPED FINITE DIMENSIONAL APPROACH

In this appendix, Theorem 1 is proved considering a sligitye generic setting. The training d&t&, Y1), ..., (X,,Ys))
belong to(X x Y)™ and we only assume that the loss function is Lipschitz.

A. Clipped empirical risk minimization on one model.

In this section, we obtain an excess risk bound for a clippagdiecal error minimizersp over a fixed vector spacgp of
dimension at mosD with a generic loss function:

Sp = argmin — ~v(t, (X, Y;
min ; YD),
and
:SVD = Clip(/S\D) .
The goal is to estimate the target functiomminimizing the risk over a “large” clas§ O Sp:

s* = argmin E[y(s, (X,Y))].
ses

The excess risk with respect tois:

L(g,s*) = E[y(g, (X, Y))] = E[y(s", (X, Y))] .

In the sequels* is supposed to take values fir1,1].

All the results will be stated under the following assumptan the loss which we will refer to as “assumptiph)” in the
sequel:

(AD) Vy €Y, v(y,.) is Lipschitz.
(A2) Vse S, Vye Y, Vo e X, v(y,s(x)) > v(y, clip(s(x))).

We will prove two results; the first one (Theorem 5) provideseacess risk bound for a fixed modg}, ; then, a similar
technique will be used to prove a model selection result ¢fér 6). The proofs of these two theorems rely on a very
fundamental result coming from [7], providing a control dfetempirical processes over a function class using loahlize
Rademacher averages. We recall it now.

We need to introduce some notation first. A functidn: [0,00) — [0,00) is called sub-rootif it is non-negative, non-
decreasing and if — % is non-increasing for > 0. It can be shown that the fixed point equatidir) = » has a unique
positive solution (except for the trivial cage= 0). Moreover, a sub-root function is a continuous function@ntoo| satisfing
U(r) > r for r €)0,r*[ and ¥(r) < r for r €]r*, +o00l.

Let F be a set of functions. The following notation for the Radenggicaverage ofF will be useful:

RnF = sup — Z& Xi),

fer n
where (g;);=1..., are independent and identically distributed Rademachegablas P[e; = 1] = Ple; = —1] = 1/2). The
notationE. means that the expectation is considered only with respectthe variablesXy, ..., X,, are “fixed”.

We now recall the following result:
Theorem 3 ( [7], Theorem 4.1)Let F be a class of functions with ranges jr1,+1] and assume _that there is some
constantx such that for everyf € F, Pf? < kPf. Denotestar(F) = {\f,0 < A <1, f € F}. Let T, be a (pOSSIb|y
data-dependent) sub-root function andréete the fixed point ofl,,. Fix ¢ > 0 and assume thak,, satisfies, for any > r*
€

U, (r) > 2(10 V K)ERA{f € star(F): Po f2 < 2r} + (2(10 V k) + 1)> (23)



Then, for anyK > 1 with probability at leastl — 3e~¢,

K K 11 + 50K
VfeF.Pf< p sy B E01+56K)

. -1 " n .
The crux of the results to come will rely on the apphcatlonT&eorem 3 to thexcess losfunction class on a modedp ,
defined as

Fp = {(z,y) = 7(s(x),y) —(s™(x),9), s € clip(Sp)} - (24)

An important technical result is therefore to have an edentd the fixed point-* appearing in Theorem 3, for the above
class. This is the goal of the following result, whose praopostponed to section D.
Theorem 4:Let 7 be defined as in (24); assume (z)| < 1, and that(Al) is satisfied. Letr}, ,, denote the fixed point

of the sub-root functionZ(r) =E.R, {f € star(Fp), P, f* < 2r}. Then, the following holds:

D+1
Pha < A1 ((1ogg)++1>. (25)

where A, is a constant4; = 1200 is suitable).
With these prerequisites in hand, we are now in a positiontatesand prove our main results. The first one concerns
estimation on a fixed modedp.
Theorem 5:Let Sp be a vector space of dimension at mast Assume the following conditions are met:
() The target function is bounded by fls(z)| < 1.
(i) ~ satisfies assumptio\j.
(iiy Pf?2<wPf forall fe Fp={y(t)—~(s*),t€clip(Sp)}.
Then, for all K > 1, the following inequality holds:

E[L(sp,s")] <

_ ; (10V k)2 D K(rV10)
1 (té%fD L(t,s") + C3K - - logn | + Cy4 - ,
where(C3 and C, are numerical constants.

Proof of Theorem 5Let sp be an arbitraty element & . First, note that

Pr(v(5p) = 7(s)) < Pa(v(5p) = (s)) < Pu(y(sp) —(s)) (26)
where the first inequality follows from assumptiof2) and the last from the definition of the empirical minimiz€hus,
L(sp,s™) = P(v(5p) =7(s") < (P = Pu)(7(sp) — 7(s")) + Pa(v(sp) —(57)) - (27)

In order to control P—P,,) (v(5p)—~(s*)), we apply as announced Theorem 3 to the class of functions- {v(t)—~(s*),t €
clip(Sp)}. Note that by assumptions (i) an& 1), all functions inFp have range if—1,1] which is the first requirement
to apply Theorem 3. Then, assumption (iii) is the second itimmdrequired to apply Theorem 3. We now need to find the
fixed point of the function appearing in (23). Let> 0 be fixed. Theorem 4 gives us a bound on the fixed pojy, of the
sub-root function@(r) =E.R, {f € star(Fp), P, f? < 2r}. In sight of (23) , we need a bound on the fixed poipt,, of

an affine tranforrm@(x) + b of ¢ (with a = 2(10 V k), b= (2(10V k) + 11)%). Elementary arguments not reproduced here
(see [34], Lemma 4.10) then show that

3

<

D+1 2
b < 407, + 25 < 16(10V £)* A~ ((log %) + 1) +2ea0ve) +11)
) J n + n

(10 V k)2 Dlogn (10 V k)
n

<C + C’§ ) (28)
n

Consequently, Theorem 3 implies thak” > 1, with probability at least — 3e~¢, Vf € Fp,

1 6K ., &£(11+5kK)
e X e

Since the bound is available simultaneously for all funwion 7, we can apply it to the random functigh= v(5p) —7(s*) €
Fp. This yields that, with probability at leagt— 3e~¢,

(P —P,)(v(5p) —7(s7)) < ﬁpn(y(gf,) (s + %FB,” . @ -
< e Pala(sp) () + S, 4 SRR

where we have used again inequality (26) for the last stepn@Ve plug this inequality into (27) to obtain

. 6K _, (11 4+ 5kK
CPa((sp) = () + i, 4 SR
This concludes the proof of Theorem 5 by integrating wittpees to the sample, bounding, ,, using (28), then taking the

infimum oversp € Sp. O

~ . K
L(sp,s*) < P



B. Model selection by penalization.
We now present a relatively general result about penalizedwization of the trimmed empirical risk over finite diméosal
vector spaces. Theorem 1 will then be derived as a corollary.
Theorem 6:Let {Sp}p>1 be a collection of vector spaces such thah(Sp) < D. Assume the following:
(i) The target function is bounded by fls*(z)] < 1.
(i) ~ satisfies assumptior\j.
(iiy Pf?2<wPf forall fe Fp={y(t)—~(s*),teclip(Sp)}-
Let K > 1. Choosing the dimension with the following penalized ciite

B :argmin <1ZV(§D3(X17}/1)) +penn(D)> ;
D=z1 N
with a possibly data dependent penalty functjgm,, such that

(kV10)2 D

VD >1,pen,(D) > CsK - logn, (30)

the following inequality holds

BILGp 57 < gy (jut, (Jnf 2Gs.s) + Blpen, ()] )

CeK(k V10
L G (kv 10)

n

)

whereCy and Cg are numerical constants.
Proof: Let sp be a fixed element ofp. The definition ofs 5 leads to the following chain of inequalitiesD > 1,

~

Poy(sp) + pen, (D) < Poy(5p) + pen, (D) < Pyy(Sp) + pen, (D) < Ppy(sp) + pen,, (D), (31)
where the second inequality is due to assump(d). Thus,vD > 1,
L(sp,s") = (P=P)(v(sp) —=7(s7) + Pu(v(5p) — 7(s7)) R
< (P=F)(v(sp) = 2(s") + Pu(v(sp) — 7(s")) + pen, (D) — pen,, (D). (32)

Let D' > 1. Let zp be such thaED21 e~ P < 1. We now follow the same reasoning leading to inequality (@%he proof
of Theorem 5, and also use (28), obtaining thaf > 1, with probability at leasti — 3e—¢— o',

1 - . K(10V k)2 D’ S K(E+2p)(10V k)
K_lpn('Y(SD’)*'V(S ) +C P WIOg(n)+C - ,

We now use a union bound to obtain the previous inequalityusemeously for allD’ > 1 and apply it toD’ = D. With
probability at leastl — 3e~¢,

(P = Pa)(v(5p7) —7(s7)) <

1 (10V k)2 D K(E+25)(10V k)
K

K
_ T * < ) * = U
(P = P))(1(3p) = 1(s") < o7 Pa(r(8p) = 2(s") + € —log(n) +C > :
Plugging this inequality into (32) and using again (31) k&at

o, K(10V k)2 D JK(E+ap)(10VK) K
—~ < - 7
L(s5,5") < C - nlog(n)+C . t 1

(Pu(1(sp) = 7(s") + pen, (D) = pen, (D)) .
Choosingzp = 2log(D + 1), condition (30) entails

L(3p.s") < C' KEOVR) | Kfi T (Pa(v(sp) = 7(s")) + pen, (D)) -

Taking the infimum overD > 1 and integrating with respect to the sample:

L(Sp:s") < o7 B | jmf (Pu(v(sp) = (") +Penn(D))} +CIW’
and finally: i K(1
L3p,57) < 37— juf, (P(1(5p) = 7(57)) + Elpen, (D)) # OB EEL

This concludes the proof of Theorem 6. [ ]



C. Application to classification: proof of Theorem 1.

Theorem 1 is now a simple consequence of Theorem 6 whoseticorsdare met for the hinge loss with = L,(Q) and

s* = f* (the Bayes classifier). Checking for conditions (i)-(ii) Dfieorem 6 is straightforward, and the lemma below ensures

that assumption (iii) is met with: = % (A related result appears in [23], but we provide a proofehiar completeness.)

This concludes the proof of Theorem 1.
Lemma 7:Let f : X — [—1,1]. We suppose thaty(z) — 1| > ho Wheren(z) = P[Y = 1|X = z]. Then

1
I (f) = (FIIE < %Lh(f, [
Proof of Lemma 7Since f, f* take their values in the intervgl-1,1], we have(1 + f(z))+ = 1+ f(z) and (1 + f*(z)) =
1+ f*(z), so that we can write explicitly

Ln(Ff%) = [ @1 = @) = (1= F@)a)+ (1= n@)[(+ @) = 1+ £ (@)s] dP()
= [0 @) = @) + (1= n@) @) - @) dPla)
- / 20(x) — 1| (x) - f(2)] dP(x),

(where the introduction of absolute values in the last lia@ e checked to hold separately for the two cag€s) >
3. /") =1) and (p(z) < 5, f*(z) = —1)), and
Iy (f) = (F)I3 = /n(x)[(l = f@)+ = (1= f@)+]* + (1 =@+ f(2))+ — A+ f(2))+]* dP(2).

- / (f(2) - f*(2))? dP(x).

Hence the ratio of the two integrands is just
|fx) = f*(x)] _ 1
2n(z) = 1] = ho’
and the statement follows by integrating with respectto O

<

D. Proof of Theorem 4.

Below we will use the standard covering number notation:N&&, G, d) (resp. M(e,G,d)) denote the covering number
(resp. packing number) of sét for distanced. The proof of Theorem 4 is inspired by the work of L. @fi and al. [11]. In
particular, it relies on Theorem 9.4 of this reference fa tlontrol of packing numbers on VC-subgraph sets of funstidvie
reproduce it here:

Theorem 8 (Gyrfi et al.): Let G be a class of functiong : X — [0, A] with V(G) > 2. Letp > 1 andv be a probability
measure onX. Let € such that) < ¢ < %. Then the following holds :

2e AP 3e AP V)
M(e, G, |z, 0)) <3 < o o8 ) ’

whereV(G) is the VC-dimension of all subgraphs of functions®f i.e., the se{{(z,t) e XY x R; t < g(2)}; g € G} .
To begin with, we control thd.5(P,,)-covering numbers oftar(Fp). Note that since this set contains the null function
and has diameter bounded by 1, any covering numbes forl is equal to 1. In what follows we therefore assume 1.
Following [7], since any € star(F) is of the formg = Af with A € [0,1], f € F, we can construct an-cover ofstar(F)
by taking the direct product of ag-cover for 7 and ans-cover for the interval0, 1], which implies

N (e, star(F), La(P,)) < (@ + 1)/\/’(;,]—‘, Lz(m) . (33)

ep

Moreover,
N (f

2,£L2(Pn)) < M(g,f,Lz(Pn))

M (g (t—s.te cnp(sD)},Lz(Pn))
M (g, {t +1,t € Clip(SD)}aLQ(Pn)) ’

IN

where the second inequality holds becatsis Lipschitz, and the last equality holds because coverimd)@acking numbers
are translation invariant.



We now apply Theorem 8 witldl = 2, thus, for0 < e < 1,

IN

32¢ 48\ ¥ (clir(Sp)+1)
(T (%))
6 £

11\ AV (elip(Sp)+1)
(%) |
The second inequality is obtained by usileg(z) < .

Moreover,V (clip(Sp)+1) = V(clip(Sp)) < V(Sp) < D+1. The first equality holds because the subgraph VC-dimension
is translation invariant. The last inequality is a well-kmoproperty of finite dimensional function spaces (see, égmma
2.6.15 of [35]). Finally, the middle inequality comes frofmetobservation that a discrete set shattered by the subgtagh
of clip(G) is also shattered by the subgraph clasgjofNamely, let(z;,t;)1<i<x be a finite set shattered by the subgraph
class ofclip(G). We must have-1 < ¢; < 1 for all i, since otherwise the corresponding point would belong ésr be
outside of) the subgraph of all functions. Using this propeit is easy to check that, if a function famillip(g;))i<;<a2x
is a witness of the shattering ifip(G) , then so is(g;) in G.

Now, gathering inequality (33) and the previous ones, wefged < ¢ < 1,

log N (e star( ). La(P,) < log () +4(D+ 1)1z (2)

M (% (t+1,te clip(SD)},Lg(Pn)>

IN

< 5(D+1)log (151) .

We now use Dudley’s entropy integral (also known as chaitéainique, see [36]) theorem, which states that

E. Ry ( f/ Viog N (u,G, Ly(P,))du
Therefore, using the above upper bound on the covering nigvérel standard calculus,

4\[ /\/ZM

77;(7) =E.R, (f € star(F), P, f*> <2r) < —

V2ral
< 4\ﬁ —VD / \/ log du

Vg N (e, star(F

~

§22( (D+1)log<\/§Al>) = ¢(r).

We easily check thaﬁ is a sub-root function. Hence, the fixed poitit of 5 is an upper bound on the fixed poir, ,, of

. Our goal is now to upper bouri by Thn = A 2 ((log B+ 1) ; once this is established the proof is finished. By
properties of sub-root functions, the inequality < 7, ,, is equivalent to the following inequality being statisfied:

6 (Fbn) <Thon- (34)
If A; > 112/(2¢), then it can be checked that

log (W) = log (\/21;*7> Vlog(11) < log(11) ((log %)+ + 1) ,
a(@;l ((logg>++1)) <cP*! ((logg)ﬁl) |

whereC' = 22,/A; log(11) . We obtain (34) by noting that’ < A; if A; > 1200. [ ]

and therefore

PROOF OFLEMMA 2.
Let 87 = (f*, ¢i) L, (@) - Obviouslyinfses, |9 — f*|l, . is attained forg = Z£1 B ¢; , therefore

1
D D | D 201
) = inf *2 Z )l <inf (D3 4+ 2 ) <p et
n) ll)gl ((;ﬂz> +n)N[1)I§1( 2 +n>Nn 2aF1

inf
D>1 \geSp



where we have used’ = O(;~“) and takenD = LnT{lJ .
2y
For the second inequality of the lemma, putting = n~ 27+7, we have

. ' 2
Hf( 2 Aullgl;) =  inf A EE
glg g, f ||Q,2 z”gHH (ﬁlI)l we + -

i)i>1 )

i>1
whereug = Z(ﬁi — 37)2. The infimum point(3;) is such that every partial derivative with respectfiocancels, so that
i>1
B = BN
LN 20080 ]
and
BAnpge \? _ 1
o = 2 PR T > — *2 .
Ho Z(/\i—I—QAn,u@o = > bi

1>1 i>1 st )\iSQAnM[ao

1

Since)\; = ©(;~%7), the condition); < 2A,,uug- is implied byi > cnﬁuﬁo " for some constant. Sinces; = O(j ),
this leads to 20-1
_2a-1 29—
pge 2T TR pgs”
Finally solving this inequality foRa — 1 < 4~ entails
—4(2a—1)~y

go Z n (4v+2)(4y—2a+1) ,

so that

(2a—1)y

i * 2 _ —4@a-1)y
inf (Ilg = £lla + Aullglfe) 2 meemssmm

This concludes the proof of the lemma. |

ADDITIONAL MATERIAL : EIGENFUNCTIONS IN THEGAUSSIAN CASE
We use the following normalization for the Hermite polynafi H,, is an orthogonal system dfg(e*f”Q) e, e2re—X =
om0 Ha(2) 25 In this case, if, (x) = Hy(2)e™ % then (fu. ), &) = Onm /72"l
Theorem 9 ( [37] and [38]):Letdu(x) = \/%e”aﬁdx andT}, be the integral operator associated with the Gaussian kkerne
k(z,y) = e b@=v)",

Ti: Lo(p) — Lo(p)
f = Jr f@)e ) dp(x)
An explicit orthonormal basis of.»(x) of eigenvectors off}, associated to\; = /5 (%)j—1 is given by:
(4c)ie~ (=" H, | (\/2cx)
Vj(z) = . - 1
(2771 — )2
wherec = va? +2abandA =a+b+candj > 1.
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