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Abstract—This paper proposes greedy numerical schemes to
compute lower bounds of the restricted isometry constants that
are central in compressed sensing theory. Matrices with small
restricted isometry constants enable stable recovery from a
small set of random linear measurements. We challenge this
compressed sampling recovery using greedy pursuit algorithms
that detect ill-conditionned sub-matrices. It turns out that these
sub-matrices have large isometry constants and hinder the
performance of compressed sensing recovery.

I. COMPRESSED SAMPLING RECOVERY

Compressed sampling paradigm consists in acquiring a
small number of linear measurements y = Ax, where x ∈ RN

is the high resolution signal to recover, and y ∈ RP is the
vector of measurements with P � N . Using the underdeter-
mined sensing matrix A that is drawn from a proper random
ensemble, and having knowledge of the measurements y, the
sparsest vector giving rise to these measurements is sought.
Throughout this paper, we consider the case where the entries
of A are independent and identically distributed N (0, 1/P ).

For noiseless measurements y = Ax, the recovery of a
sparse vector x is achieved by solving the convex program

min
x̃∈RN

||x̃||1 subj. to Ax̃ = y, (1)

where ||x̃||1 =
∑

i |x̃i|.
The vector x is said to be identifiable if the solution x? to

(1) is unique and coincides exactly with x. To ensure iden-
tifiability, several sufficient conditions on x were considered
in the literature. Of particular interest are those relying on the
sparsity (or cardinality of the support) ||x||0 = |I(x)|, where
the support of x is

I(x) = {i \ xi 6= 0} .

With high probability on the sampling matrix A, compressed
sampling theory [1], [2] asserts that any vector satisfying

||x||0 6 ρ(P/N)P (2)

is identifiable for ρ(η) > 0.

Restricted isometry based criteria. The seminal work of
Donoho [1], Candès, Romberg and Tao [2] has focused on the
stability of the compressed sampling decoder. Towards this
goal, these authors introduced the restricted isometry property
(RIP), with the RIP constants 0 < δmin

s 6 δmax
s < 1. These

constants are the smallest numbers such that for every vector
x ∈ RN with ||x||0 6 s,

(1− δmin
s )||x||2 6 ||Ax||2 6 (1 + δmax

s )||x||2. (3)

Let AI = (ai)i∈I be a sub-matrix of s = |I| columns extracted
from A. Then (3) is equivalent to saying that for all I such
that |I| = s, the smallest and largest eigenvalues λmin(AI) and
λmax(AI) of the Gram matrix A∗

IAI are respectively lower-
bounded and upper-bounded by 1− δmin

s and 1 + δmax
s . Thus,

the RIP constants are equivalently defined as

δmin
s = max

|I|=s
δmin(AI) and δmax

s = max
|I|=s

δmax(AI)

where
{

δmin(AI) = 1− λmin(AI),
δmax(AI) = λmax(AI)− 1 .

The original work of Candès et al. [2] considers a symmetric
RIP constant δmin

s = max(δmax
s , δs). These authors proved

that a small enough value of δ2s ensures identifiability of all
s-sparse vectors. For instance, it is proved in [3] that δ2s 6√

2− 1 guarantees identifiability of all s-sparse vectors. This
is achieved with high probability on A if s 6 CP/ log(N/P ),
which corresponds to condition (2) with ρ(η) 6 C/ log(η−1)
with η−1 = N/P the redundancy of the matrix A.

It turns out that the largest and smallest eigenvalues
λmin(AI) and λmax(AI) do not deviate from 1 at the same
rate. Using asymmetric RIP constants, Foucart and Lai [4]
show that

(4
√

2− 3)δmin
2s + δmax

2s < 4(
√

2− 1) (4)

implies identifiability of all s-sparse vectors. Blanchard et al.
[5] determine ρ0 such that with high probability on A

||x||0 6 ρ0(P/N)P (5)

ensures that condition (4) is in force. Condition (5) guarantees
not only identifiability, but also robustness to noisy measure-
ments. This however causes the function ρ0(η) to be quite
small, and for instance ρ0(1/2) = 0.003 and ρ0(1/4) =
0.0027.

Topological noiseless criteria. More precise identifiability
criteria exist that do not rely solely on the sparsity level ||x||0
of x. Donoho [6] devises a topological recovery criterion that
allows him to derive an explicit sharp value for ρ(η) in (2).



For instance ρ(1/2) ≈ 0.089 and ρ(1/4) ≈ 0.065. This is
better than the RIP-based bound ρ0 given above, since the RIP
condition imposes a stronger metric constraint on the sensing
matrix. These bounds based on topological criteria are however
not robust to noise, and we restrict in this paper our analysis
to the RIP condition.

This topological criterion is local and ensures recovery
of a given x alone. This allows Donoho to devise a bound
that ensures the recovery of most sparse vectors. This bound
is better than (5) since it does not constrain all s-sparse
vectors but only most of these vectors. In contrast, recovery
conditions based on restricted isometry constants are globals.
The recovery of some x ∈ RN does not only rely on the
conditioning of the matrix AI for I = I(x). In particular,
a single matrix AI , with |I| 6 2s may be a problem for
the identifiability of many s-sparse vectors x if δmin(AI) or
δmax(AI) is too large.

II. GREEDY SINGULAR VALUE PURSUIT

The exact computation of the RIP constants δmin
s and δmax

s

is combinatorial since it requires an exhaustive enumeration
of all sub-matrices AI for |I| = s, which might take an
exponential time in N . We here propose to compute good
approximate lower-bounds δ̃min

s and δ̃max
s by considering only

a small sub-set of the whole set of supports.
The set of all supports is a lattice ordered by inclusion, that

is visualized using a graph structure, as depicted in Figure 1. A
small sub-set of this lattice is computed by several traversals,
starting from the singleton supports I of size |I| = 1.

Figure 1. Lattice of the set of supports, for N = 4. Dashed: a possible
path followed by the algorithm to select a matrix AI with I = {0, 2, 3}.

A step of the traversal, that follows an edge in the lattice,
corresponds to a greedy extension I ← I ∪ {i} computed by
adding a properly selected index i /∈ I to increase the size
of a support I . This new index is added so as to maximize
the value of δmin(AI∪i) or δmax(AI∪i). The corresponding
brute force greedy search is described in Algorithm 1 for the
computation of δ̃max

s . A similar algorithm computes δ̃min
s by

adding at each step the index i that maximizes δmin(AI∪{i}).
Figure 2, dashed curve, shows examples of the lower

bounds δ̃min
s and δ̃max

s computed with this brute-force greedy
algorithm for several values of s.

Algorithm 1: Brute force greedy pursuit.

Initialization: set I(1) = {{0}, {1}, . . . , {N − 1}} ;
for k = 2, . . . , s do

Initialization: I(k) = ∅ ;
for I ∈ I(k−1) do

Compute i? = argmax
i/∈I

δmax(AI∪{i}) ;

Set I(k) ← I(k) ∪ {I ∪ {i?}} ;
Set k ← k + 1.

Return: δ̃max
s = max

I∈I(s)
δmax(AI).

III. BOUNDING THE SINGULAR VALUES

The brute force greedy scheme is still too computationally
intensive to be applicable to large scale sampling matri-
ces. This is because the evaluation of the isometry constant
δmin(AI∪{i}) is required for all candidate extensions i /∈ I .
This necessitates the computation of a large amount of mini-
mum and maximum singular values of P × s matrices for an
increasing value of s.

To alleviate this computational difficulty, we propose a
family of criteria that bounds the minimum and maximum
singular values of each sub-matrix indexed by I by using
the ”radius” of clustering of its columns, see Proposition 1.
A specific instantiation of these bounds leads to one that is
easy to compute, and that can be approximately optimized
by computing simple inner products with a properly chosen
vector. This is made formal in Proposition 2.

Bounding singular values by clustering. We define two
regions of RP associated to a non-zero vector d ∈ RP{

Cd =
{
v ∈ RP \ |〈d, v〉| > 1

}
,

Cc
d =

{
v ∈ RP \ |〈d, v〉| 6 1

}
.

Remark 1. In the normalized case—columns of A have unit
`2-norm— Cd and its complement have a nice geometrical
interpretation. In such a case, Cd corresponds to a double-
spherical cap, whose radius r satisfies r2 = 1 − 1/||d||2.
Similarly, Cc

d defines a band on the unit sphere in RP .

The following proposition shows that clustering the vectors
{ai}i∈I within these regions allows one to lower-bound the
maximum or minimum RIP contants of AI .

Proposition 1. If {ai}i∈I ⊂ Cd, then

δmax
s > s/||d||2 − 1. (6)

If {ai}i∈I ⊂ Cc
d and if d ∈ Span(ai)i∈I then

δmin
s > 1− s/||d||2. (7)

Proof: We prove (6) and (7) can be proved similarly.
The orthogonal projection d̃ of d onto Span(ai)i∈I reads
d̃ = AIA

+
I d = (A+

I )∗A∗
Id where A+

I = (A∗
IAI)−1A∗

I is the
pseudo-inverse of AI .

Since {ai}i∈I ⊂ Cd, we have

∀ i ∈ I, 〈d̃, ai〉 = 〈d, ai〉 > 1.



This shows that

||A∗
I d̃||2 =

∑
i∈I

|〈d̃, ai〉|2 = ||A∗
Id||2 > s,

and hence

||d||2 > ||d̃||2 > λmin((A+
I )∗)||A∗

Id||2 >
s

λmax(AI)
.

Given a sub-matrix AI , a precise estimate of δmax(AI)
is obtained by maximizing the right hand side of (6). This
is achieved by identifying the region Cd that encloses the
columns of AI , and corresponding to the smallest ||d||.

Clustering with appropriate d. Finding such an optimal
cluster of points is however difficult in large dimension. It is
thus desirable to compute an approximate clustering using a
well chosen vector d for the region Cd.

In the following, we consider a vector d = d(σ) defined by
the vectors {σiai}I , where

{σi}i∈I ∈ {+1,−1}|I|

is an appropriate set of signs. The following proposition
ensures that this vector can be easily computed.

Proposition 2. For a given set of signs {σi}i∈I such that AI

has full rank, the vector

d(σ) = AI(A∗
IAI)−1σ, (8)

is such that
∀ i ∈ I, 〈σiai, d(σ)〉 = 1. (9)

Any other region Cd with another vector d that satisfies this
property leads to a worse lower bound on δmax

s .

Proof: By definition 〈ai, d(σ)〉 = σi, and any other
vector d with this property satisfies ||d|| > ||d(σ)||. Indeed,
〈ai, d − d(σ)〉 = 0, and since d(σ) ∈ Span(ai)i∈I , we have
〈d(σ), d − d(σ)〉 = 0 implying that ||d||2 = ||d − d(σ)||2 +
||d(σ)||2 > ||d(σ)||2. In view of the right hand side of (6), the
conclusion follows.

This region Cd(σ) is an optimal choice to estimate δmax(AI)
using (6) if we restrict the choice to regions whose boundary
contains the vectors {σiai}i∈I , which corresponds to condi-
tion (9). Better estimates might be obtained using another
region Cd that pass only through a subset of these vectors,
or that is defined using different signs, but it is not obvious
how to compute them efficiently. Once a set of signs σ is fixed,
the vector d(σ) (and corresponding region) is fast to compute
as it only requires inverting an overdetermined linear system.

Remark 2. When the columns of A have unit norm, it is worth
noting the following geometrical facts:

• Any other choice of d in Proposition 2 leads to a larger
spherical cap Cd.

• The cap Cd(σ) draws a circle on the unit sphere which is
a circumcircle cap since it passes through all the points
{σiai}i∈I . The vector d(σ) intersects the circumcircle at
its circumcenter.

IV. GREEDY PURSUIT USING d(σ)

Proposition 1, applied to the region Cd(σ) defined from
Proposition 2 leads to the following lower bounds on the RIP
constants of AI {

δmax
s > s/||d(σ)||2 − 1,

δmin
s > 1− s/||d(σ)||2, (10)

and these bounds are expected to be reasonably tight since
d(σ) pass through the points {σiai}i∈I .

Minimal and maximal extensions. To extract a sub-matrix
AI with a large isometry constant δmax(AI), we thus propose
a greedy scheme that iteratively extends both the support I
and the set of signs.

An elementary step of the scheme extends the sign vector
σ into

σ̃ = σ + ζ∆i with ζ ∈ {+1,−1},

for i /∈ I , where ∆i is the Dirac vector at location i. The
support is thus extended from I = I(σ) to Ĩ = I(σ̃) = I∪{i}.
In view of (10), the choice of i and ζ should be made
in order to minimize or maximize ||d(σ̃)||. The following
proposition gives essential guidelines to reformulate and solve
this optimization problem.

Proposition 3. Let ãi ∈ Span(aj , j ∈ Ĩ) be the dual vector
such that

∀ j ∈ I, 〈ãi, aj〉 = 0 and 〈ãi, ai〉 = 1 .

Then
||d(σ̃)||2 = C + ||ãi|||〈d(σ), ai〉 − ζ| ,

where C does not depend on i.

Proof: Since d(σ) ∈ Span(aj , j ∈ I) and I ⊂ Ĩ , we have

〈d(σ)− d(σ̃), d(σ)〉 = 0.

Consequently

||d(σ̃)||2 = ||d(σ)||2 + ||d(σ)− d(σ̃)||2.

We then have that

d(σ̃)− d(σ) = −ãj(〈d(σ), ai〉 − ζ), ∀ j ∈ Ĩ ,

which implies that

||d(σ)− d(σ̃)|| = ||ãi|||〈d(σ), ai〉 − ζ| .

Finding an extension that maximizes (resp. minimizes)
||d(σ̃)|| is thus equivalent to maximizing (resp. minimizing)
||ãi|||〈d(σ), ai〉− ζ| over both i and ζ. Calculating ||ãi|| for all
possible i /∈ I is computationally demanding since it requires
to solve an over-determined system of linear equations for
each i.

We thus select an approximately optimal extension by
maximizing or minimizing |〈d(σ), ai〉 − ζ| instead of
||ãi|||〈d(σ), ai〉−ζ|. This optimization can be solved in closed



form, and defines the extension σ̃ = σ + ζ∆i for the
approximation of δmax

s using s/||d(σ̃)||2 − 1 where{
i = argmin

j /∈I(σ)

|1− |〈d(σ), aj〉||,

ζ = sign(〈d(σ), ai〉).
(11)

Similarly, the approximation of δmin
s is obtained using{

i = argmax
j /∈I(σ)

|〈d(σ), aj〉|,

ζ = − sign(〈d(σ), ai〉).
(12)

Greedy pursuit with d(σ). By exploiting Proposition 3, our
iterative scheme suggests to compute a lower bound δ̃max

s by
iteratively extending a support according to (11). This greedy
pursuit is summarised in Algorithm 2. A similar algorithm
allows one to estimate δ̃min

s by using the extension rule (12).

Algorithm 2: (Pruned-Weak)-Greedy pursuit with param-
eters Q and R.

Initialization: set Σ(1) = {∆0,∆1, . . . ,∆N−1} ;
for k = 2, . . . , s do

Initialization: Σ(k) = ∅ ;
for σ ∈ Σ(k−1) do

Compute for each
i ∈ argmin

j /∈I(σ)

[R]|1− |〈d(σ), aj〉|| ;

Compute ζ = sign(〈d(σ), ai〉) ;
Set Σ(k) ← Σ(k) ∪ {σ + ζ∆i} ;

Pruning: set Σ(k) = argmin
σ∈Σ(k)

[Q] ||d(σ)|| ;

Set k ← k + 1.
Return: δ̃max

s = max
σ∈Σ(s)

δmax(AI(σ)).

The algorithm is accelerated by pruning the candidate
set Σ(k) at each iteration. This pruning corresponds to the
extraction of the Q signs σ ∈ Σ(k) corresponding to the
smallest values of ||d(σ)||, which is formally written as

argmin
σ∈Σ(k)

[Q] ||d(σ)||.

This keeps only those signs that generate the largest maximum
singular value, as approximately measured by s/||d(σ)||2.

As our algorithm is greedy by nature, the selection rules
(11)-(12) may be too stringent, and important candidate ex-
tensions can be missed while the algorithm evolves. We then
consider the so-called weak selection rule which keeps the
R smallest values of |1 − |〈d(σ), aj〉|| for δ̃max

s , and largest
values of |〈d(σ), aj〉| for δ̃min

s . For δ̃max
s , this is written

argmin
j /∈I(σ)

[R]|1− |〈d(σ), aj〉||,

and similarly for δ̃min
s . Corresponding variants of greedy

pursuit are called weak greedy pursuit with parameter R.

Empirical evaluation of our greedy pursuit bound. To
assess the performance of our greedy pursuit, Algorithm 2

(with R = Q = 1), we compare it with the brute force
pursuit, Algorithm 1, that is expected to perform better since
at each of its step, it maximizes the RIP constants. Figure 2
shows that this is indeed the case, but the gap between the two
estimates of the RIP constants provided by the two methods
is rather small. This proves numerically that the heuristic (10)
is accurate in practice.

We also compared the performance of the different variants
of Algorithm 2: greedy pursuit with no pruning (Q = N, R =
1), and pruned weak greedy pursuit with Q = N/4 and
R = 4. The increase in performance brought by the pruned
weak greedy variant is slighty more salient as the sparsity level
increases.
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Figure 2. Comparison of the brute force pursuit and our greedy pursuit
with Q = N, R = 1 for (N, P ) = (2000, 500). Solid and dashed lines
correspond respectively to δ̃max

s and δ̃min
s , as a function of s on the x axis.
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Figure 3. Comparison of the different variants of Algorithm 2 for (N, P ) =
(8000, 2000). Circles: greedy pursuit Q = R = 1. Asterisks: pruned weak
greedy pursuit Q = N/4, R = 4. The curve without markers corresponds
to the asymptotic upper bound of [5]. Solid and dashed lines correspond
respectively to δ̃max

s and δ̃min
s , as a function of s on the x axis.

Figure 4 shows that for a fixed value of η = P/N and
s/P = 10−2, the estimates of the RIP constants provided
by Algorithm 2 are close to being constant when the size
(P = 100s,N = P/η) of the sensing matrix varies. This



P 250 500 1000 2000
s?
0(1/4, P ) 2 3 5 8

dρ0(1/4)P e 1 2 3 6

Table I
OUR NUMERICALLY COMPUTED CRITICAL SPARSITY LEVELS s?

0(η, P )
VERSUS THE THEORETICAL UPPER-BOUND OF [5] ρ0(1/4)P ∼ 0.0027P .

is consistent with the asymptotic upper bound of restricted
isometry constants provided by Blanchard et al. [5]. A slight
drift is however observed as the sparsity increases, which
might be a consequence of the greedy nature of the algorithm.
This numerical result tends to prove that the existence of ill-
conditionned sub-matrices at such small sparsity levels is not
restricted to small dimensions.
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Figure 4. Plot of δ̃max
s (solid curves) and δ̃min

s (dashed curves) as a
function of s on the x axis, for two values of η = P/N and for P = 100s.
The curves are obtained by averaging the value of δ̃max

s and δ̃min
s for 5

realizations of the random matrix A.

Empirical sparsity bounds for RIP condition. For each
underdeterminacy value η = P/N 6 1, we computed
s?
0(η, P ), the minimum sparsity s for which our empirical

estimates invalidate condition (4), hence `1-identifiability,

(4
√

2− 3)δ̃min
2s + δ̃max

2s > 4(
√

2− 1) . (13)

Figure 5 depitcs our numerical estimate of the bound (4) for
varying s. Table I reports our numerically computed critical
sparsity levels s?

0(η, P ) for η = 1/4, and compares this
numerical evidence with the theoretical bound of Blanchard
et al. [5] ρ0(1/4) ∼ 0.0027.

Computational speed. A chief advantage of our (weak)
greedy algorithm over brute force pursuit is that it has a
much lowest computational load while leading to comparable
estimates of the RIP constants. This is clearly testified by the
exectution times reported in Table II for two typical problem
sizes. Note also that the pruned weak greedy variant is faster
than the greedy version owing to the pruning step.

V. CONCLUSION

We have proposed in this paper a new greedy algorithm
to find sub-matrices with a small number of columns that are
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Figure 5. Display of (4
√

2− 3)δ̃min
2s + δ̃max

2s for (N, P ) = (8000, 2000),
as a function of s on the x axis, computed using our greedy pursuit
with no pruning (circles) and pruning (asterisks, Q = N/4). The solid
curve corresponds to the asymptotic upper bound of [5]. The dashed line
corresponds to the limit y = 4(

√
2 − 1) bellow which condition (13) is in

force.

N = 800, P = 200, s = 10

Algorithm Time (s) δ̃max
s

Singular value pursuit 2145 0.596
Greedy pursuit (Q = N, R = 1) 11.1 0.595
Pruned weak greedy pursuit (N/Q = 10, R = 4) 6.0 0.597
Pruned weak greedy pursuit (N/Q = 100, R = 4) 5.1 0.597

N = 4000, P = 1000, s = 30

Algorithm Time (s) δ̃max
s

Singular value pursuit – –
Greedy pursuit (Q = N, R = 1) 356 0.627
Pruned weak greedy pursuit (N/Q = 10, R = 4) 113 0.634
Pruned weak greedy pursuit (N/Q = 100, R = 4) 66.3 0.629

Table II
COMPARISON OF COMPUTATION TIMES FOR THE EVALUATION OF δ̃max

s .

ill-conditionned. This allows us to check numerically sparsity-
based criteria for compressed sampling recovery based on the
restricted isometry property.
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