Optimal Control under Stochastic Target Constraints

Abstract : We study a class of Markovian optimal stochastic control problems in which the controlled process $Z^\nu$ is constrained to satisfy an a.s.~constraint $Z^\nu(T)\in G\subset \R^{d+1}$ $\Pas$ at some final time $T>0$. When the set is of the form $G:=\{(x,y)\in \R^d\x \R~:~g(x,y)\ge 0\}$, with $g$ non-decreasing in $y$, we provide a Hamilton-Jacobi-Bellman characterization of the associated value function. It gives rise to a state constraint problem where the constraint can be expressed in terms of an auxiliary value function $w$ which characterizes the set $D:=\{(t,Z^\nu(t))\in [0,T]\x\R^{d+1}~:~Z^\nu(T)\in G\;a.s.$ for some $ \nu\}$. Contrary to standard state constraint problems, the domain $D$ is not given a-priori and we do not need to impose conditions on its boundary. It is naturally incorporated in the auxiliary value function $w$ which is itself a viscosity solution of a non-linear parabolic PDE. Applying ideas recently developed in Bouchard, Elie and Touzi (2008), our general result also allows to consider optimal control problems with moment constraints of the form $\Esp{g(Z^\nu(T))}\ge 0$ or $\Pro{g(Z^\nu(T))\ge 0}\ge p$.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

Contributeur : Bruno Bouchard <>
Soumis le : vendredi 3 avril 2009 - 17:52:12
Dernière modification le : mercredi 19 février 2020 - 08:57:23
Archivage à long terme le : vendredi 12 octobre 2012 - 16:11:21


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00373306, version 1


Bruno Bouchard, Romuald Elie, Cyril Imbert. Optimal Control under Stochastic Target Constraints. SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2010, 48 (5), pp.3501-3531. ⟨hal-00373306⟩



Consultations de la notice


Téléchargements de fichiers