Non-relativistic conformal symmetries and Newton-Cartan structures

Abstract : This article provides us with a unifying clas\-sification of the conformal infini\-tesimal sym\-metries of non-relativistic Newton-Cartan spacetime. The Lie algebras of non-relativistic conformal transformations are introduced via the Galilei structure. They form a family of infinite-dimensional Lie algebras labeled by a rational ``dyna\-mical exponent'', $z$. The Schrödinger-Virasoro algebra of Henkel et al. corresponds to $z=2$. Viewed as projective Newton-Cartan symmetries, they yield, for timelike geodesics, the usual Schrödinger Lie algebra, for which~$z=2$. For lightlike geodesics, they yield, in turn, the Conformal Galilean Algebra (CGA) and Lukierski, Stichel and Zakrzewski [alias ``$\alt$" of Henkel], with $z=1$. Physical systems realizing these symmetries include, e.g., classical systems of massive, and massless non-relativistic particles, and also hydrodynamics, as well as Galilean electromagnetism.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00373011
Contributeur : Christian Duval <>
Soumis le : samedi 26 septembre 2009 - 17:43:25
Dernière modification le : mercredi 21 mars 2018 - 10:54:03
Document(s) archivé(s) le : vendredi 24 septembre 2010 - 11:59:36

Fichiers

CGal-CNC-New.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00373011, version 5
  • ARXIV : 0904.0531

Collections

Citation

Christian Duval, Péter A. Horvathy. Non-relativistic conformal symmetries and Newton-Cartan structures. Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2009, 42, pp.465206. 〈hal-00373011v5〉

Partager

Métriques

Consultations de la notice

354

Téléchargements de fichiers

186