On Hopkins’ Picard Group Pic_2 at the prime 3

Nasko Karamanov

To cite this version:

Nasko Karamanov. On Hopkins’ Picard Group Pic_2 at the prime 3. 2009. <hal-00372518>
ON HOPKINS’ PICARD GROUP Pic_2 AT THE PRIME 3

NASKO KARAMANOV

Abstract. In this paper we calculate the algebraic Hopkins’ Picard Group Pic_{alg}^2 at the prime $p = 3$, which is a subgroup of the group of isomorphism classes of invertible $K(2)$-local spectra i.e. of the Hopkins’ Picard Group Pic_2. We use the resolution of the $K(2)$-local sphere introduced in [3] and the methods from [5] and [7].

1. Introduction

Let \mathcal{C} be a symmetric monoidal category with product \wedge and unit I. We say that an object X in \mathcal{C} is invertible if there exists an object Y in \mathcal{C} such that $X \wedge Y \cong I$. If the collection of equivalence classes of invertible objects is a set, then the product defines a group structure on it. We denote this group by $\text{Pic}(\mathcal{C})$, the Picard group of \mathcal{C}.

For example, by [6] the homomorphism $\mathbb{Z} \to \text{Pic}(\mathcal{S}) : n \mapsto S^n$ defines an isomorphism between the integers and the Picard group of \mathcal{S}, the stable homotopy category.

Let K_n be the category of $K(n)$-local spectra, where $K(n)$ is the n-th Morava K-theory at the prime p. The unit in K_n is given by $L_{K(n)} S^0$ and the product of two $K(n)$-local spectra by $X \wedge Y := L_{K(n)} (X \wedge Y)$ (as the ordinary smash product of two $K(n)$-local spectra need not be $K(n)$-local). Hopkins’ Picard group is the group $\text{Pic}(K_n)$ which we denote by Pic_n. The first account of it appears in [8] and the case $n = 1$ is treated in details in [6] where also some examples of elements of Pic_2 at the prime $p = 2$ are given.

In this paper we are interested in Pic_2 at the prime $p = 3$.

One way to study K_n is through the functor $E_n \ast X := \pi_\ast L_{K(n)} (E_n \wedge X)$ where E_n is the Lubin-Tate (commutative ring) spectrum with coefficients ring $E_{n, \ast} \cong \mathbb{W}F_p[[u_1, \ldots, u_{n-1}]][u, u^{-1}]$, where the power series ring is over the Witt vectors $\mathbb{W}F_p$. Recall that E_n is acted on by the (Big) Morava Stabilizer group $G_n = S_n \rtimes \text{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)$ by E_∞-maps (Goerss-Hopkins, Hopkins-Miller). Let $\mathcal{E}G_n$ be the category of profinite $E_{n, \ast}[[\mathbb{G}_n]]$-modules, i.e. $E_{n, \ast}$-modules with an \mathbb{G}_n-action compatible with the action of G_n on $E_{n, \ast}$. The tensor product (over $(E_n)_\ast$) gives a monoidal structure on $\mathcal{E}G_n$.

Proposition 1.1. [6] Let $X \in K_n$. Then the following conditions are equivalent:

a) X is invertible in K_n;

b) $E_{n, \ast}X$ is free $E_{n, \ast}$-module of rank 1;

c) $E_{n, \ast}X$ is invertible in $\mathcal{E}G_n$.

1.1. Let $Pic_{alg}^1 := \text{Pic}(\mathcal{E}G_n)$. By Proposition 1.1 there is a homomorphism :

$$
\epsilon_n : Pic_n \rightarrow Pic_{alg}^1
$$

$$
X \mapsto E_{n, \ast}X.
$$
Let Pic_{n}^{alg} be the subgroup of Pic_{n}^{alg} of index 2 of modules concentrated in even degrees. Let $M \in \text{Pic}_{n}^{alg}$ and ι_M be a generator of M in degree 0, as an $(E_n)_*$-module. Then for all $g \in G_n$ there exists a unique element $u_g \in (E_n)_0^\times$ such that $g_* (\iota_M) = u_g \iota_M$. The map $\theta_M : g \mapsto u_g$ is a crossed homomorphism and is a well defined element in $H^1(G_n; (E_n)_0^\times)$ that does not depend on ι_M. Thus we have a homomorphism $\text{Pic}_{n}^{alg} \to H^1(G_n; (E_n)_0^\times)$.

Proposition 1.2. [5] $\text{Pic}_{n}^{alg,0} \cong H^1(G_n; (E_n)_0^\times)$.

Not much is known for the kernel κ_n of ϵ_n (cf. [8]). When $n^2 \leq 2(p-1)$ and $n > 1$ or when $n = 1$ and $p > 2$ it is known to be trivial. It is conjectured (Hopkins, [8]) that k_n is a finite p-group.

The next theorem is an unpublished result of Goerss, Henn, Mahowald and Rezk.

Theorem 1.3. At the prime $p = 3$, $\kappa_2 \cong \mathbb{Z}/3 \times \mathbb{Z}/3$.

The next two theorems describe some known results for Pic_n.

Theorem 1.4. [6]

<table>
<thead>
<tr>
<th>p</th>
<th>Pic_1</th>
<th>Pic_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$\mathbb{Z}_2 \times \mathbb{Z}/2 \times \mathbb{Z}/4$</td>
<td>$\mathbb{Z}_2 \times \mathbb{Z}/2 \times \mathbb{Z}/4$</td>
</tr>
<tr>
<td>$p > 2$</td>
<td>$\mathbb{Z}_p \times \mathbb{Z}/(p-1)$</td>
<td>$\mathbb{Z}_p \times \mathbb{Z}/(p-1)$</td>
</tr>
</tbody>
</table>

The spectrum S^1 is a generator of Pic_1 in the case $p > 2$. In an unpublished result and using Shimomura’s calculations of $\pi_* L_2 S$ at primes $p > 3$ Hopkins shows

Theorem 1.5. For primes $p > 3$

$$\text{Pic}_2 \cong \mathbb{Z}_p^2 \times \mathbb{Z}/2(p^2-1).$$

The main result of this paper is the following theorem.

Theorem 1.6. At the prime 3

$$\text{Pic}_2^{alg} \cong \mathbb{Z}_2^2 \times \mathbb{Z}/16$$

generated by $(E_2), S^1$ and $(E_2), S^0[det]$, where det is a suitable character of G_2.

Theorem 1.3 and Theorem 1.6 imply the following theorem.

Theorem 1.7. At the prime 3

$$\text{Pic}_2 \cong \mathbb{Z}_3^2 \times \mathbb{Z}/3 \times \mathbb{Z}/3 \times \mathbb{Z}/16.$$
2. ON THE MORAVA STABILIZER GROUP AND THE GHMR RESOLUTION

In this section we recall some basic properties of the Morava stabilizer group and some important finite subgroups in the case \(n = 2 \) and \(p = 3 \). We also describe the main tool of this work, that is the algebraic GHMR resolution of the \(K(2) \)-local sphere constructed in [3]. This resolution is used in [5] and [7] to determine the homotopy of the mod-3 Moore spectrum localized at \(K(2) \). We will use some of the calculations of [5] and [7] and the spectral sequence used there. For more details the reader is referred to the corresponding papers.

2.1. Recall that \(S_n \) is the group of automorphisms of the Honda formal group law \(\Gamma_n \) with \(p \)-series \([p]\Gamma_n(x) = x^{p^n}\), that is, the group of units in the endomorphism ring \(\text{End}(\Gamma_n) \). Let \(\mathcal{O}_n \) be the non-commutative ring extension of \(\mathbb{W}F_{p^n} \) (the Witt vectors over \(\mathbb{F}_{p^n} \), that we denote by \(\mathbb{W} \) from now on) generated by an element \(S \) satisfying \(S^n = p \) and \(Sw = w^\sigma S \) where \(w \in \mathbb{W} \) and \(\sigma \) is the lift of the Frobenius automorphism of \(\mathbb{F}_{p^n} \). Then \(\text{End}(\Gamma_n) \) can be identified with \(\mathcal{O}_n \). For example, in the case \(n = 2 \) and \(p = 3 \) each element \(g \) of \(S_2 \) can be written as \(g = g_1 + g_2 S \) with \(g_1 \in \mathbb{W}^\times \) and \(g_2 \in \mathbb{W} \).

2.2. Right multiplication of \(S_n \) on \(\text{End}(\Gamma_n) \) defines a homomorphism \(S_n \to \text{GL}(\mathbb{W}) \). Composition with the determinant can be extended to \(\mathcal{O}_n \) to obtain a homomorphism \(G_n \to \mathbb{W}^\times \rtimes \text{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p) \) and it is easy to check that this lands in \(\mathbb{Z}_p^\times \rtimes \text{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p) \). The quotient of \(\mathbb{Z}_p^\times \) with its torsion subgroup, isomorphic to \(\mathbb{Z}/(p-1) \), can be identified with \(\mathbb{Z}_p^\times \) and we get a homomorphism called reduced determinant or reduced norm:

\[G_n \to \mathbb{Z}_p. \]

The kernel of this homomorphism is denoted by \(G_n^1 \) and in the case when \(p - 1 \) divides \(n \) we have \(G_n \cong G_n^1 \times \mathbb{Z}_p \).

2.3. The element \(S \) generates a two sided maximal ideal \(\mathfrak{m} \) in \(\mathcal{O}_n \) with quotient \(\mathcal{O}_n/\mathfrak{m} \cong \mathbb{F}_{p^n} \). The strict Morava stabilizer group \(S_n \) is the kernel of the homomorphism \(\mathcal{O}_n^\times \to \mathbb{F}_{p^n}^\times \) induced by reduction modulo \(\mathfrak{m} \). We denote its intersection with \(G_n^1 \) by \(G_n^1 \).

2.4. Let \(n = 2 \) and \(p = 3 \) from now on. Let \(\omega \) be a primitive eighth root of unity, \(\phi \in \text{Gal}(\mathbb{F}_3/\mathbb{F}_9) \) the generator, \(t := \omega^2 \), \(\psi := \omega \phi \) and \(a := \frac{1}{2}(1 + \omega S) \). It is easy to verify that \(a \) is an element of order 3. These elements satisfy \(\psi a = a \psi \), \(t\psi = \psi t^3 \), \(ta = a^2 t \) and \(\psi^2 = t^2 \). Then \(a, \psi \) and \(t \) generate a subgroup of order 24, denoted \(G_{24} \), \(\omega \) and \(\phi \) a subgroup isomorphic to the semi-dihedral group of order 16, denoted \(SD_{16} \). The elements \(\omega^2 \) and \(\phi \) generate a subgroup of \(SD_{16} \) isomorphic to the quaternion group of order 8, denoted \(Q_8 \) and we have

\[SD_{16} \cong Q_8 \rtimes \text{Gal}(\mathbb{F}_9/\mathbb{F}_3). \]

2.5. The action of the element \(a \) on \(\mathbb{F}_9[[u_1]][u, u^{-1}] \) is described in [5, Cor. 4.7]. For our purposes we only need the following formulae:

\[a \cdot u \equiv (1 + (1 + \omega^2)u_1)u \mod (u_1^3) \]
\[a \cdot u_1 \equiv u_1 - (1 + \omega^2)u_1^2 \mod (u_1^3). \]

The (integral) action of \(\omega \) is given by

\[\omega \cdot u_1 = \omega u_1 \text{ and } \omega \cdot u = \omega u \]
and the Frobenius \(\phi \) acts \(\mathbb{Z}_3 \)-linearly by extending the action of the Frobenius on \(\mathbb{T} \) via

\[
(3) \quad \phi_u u_1 = u_1 \text{ and } \phi_u u = u .
\]

2.6. The GHMR resolution. In [3] a resolution of the trivial \(G_2^1 \)-module \(\mathbb{Z}_3 \) is constructed that has the following form

\[
\begin{array}{c}
0 \rightarrow C_3 \xrightarrow{\partial_3} C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} \mathbb{Z}_3 \rightarrow 0
\end{array}
\]

where \(C_0 = \mathbb{C}_1 = \mathbb{Z}_3[[G_2^1]] \otimes_{\mathbb{Z}_3[G_{24}]} \mathbb{Z}_3 \) and \(C_1 = C_2 = \mathbb{Z}_3[[G_2^1]] \otimes_{\mathbb{Z}_3[S\text{D}_{16}]} \chi \) and \(\chi \) is the non trivial character of \(S\text{D}_{16} \) defined over \(\mathbb{Z}_3 \), on which \(\omega \) and \(\phi \) act by multiplication by \(-1\). The complete ring \(\mathbb{Z}_3[[G]] \) is by definition \(\lim_{n \rightarrow \infty} \mathbb{Z}_3/p^n[G/U] \) where \(U \) runs through the open subgroups of \(G \). Then we have the following lemma (cf. [5, Lemma 6.1]).

Lemma 2.1. Let \(M \) be a left \(G_2^1 \)-module. Then there is a first quadrant cohomological spectral sequence \(E_1^{s,t} \), \(r \geq 1 \) with

\[
E_1^{s,t} = \text{Ext}_{G_2^1}^1(C_s; M) \Rightarrow H^{s+t}(G_2^1; M)
\]

in which \(E_1^{s,t} = 0 \) for \(0 < s < 3 \) and \(t > 0 \), and for \(s \geq 0 \) and \(t > 3 \), and also

\[
E_1^{0,t} \cong E_1^{3,t} \cong H^1(G_{24}; M) \text{ and } E_1^{1,0} \cong E_1^{2,0} \cong \text{Hom}_{S\text{D}_{16}}(\chi; M).
\]

Note that \(\text{Hom}_{S\text{D}_{16}}(\chi; M) \cong \{ m \in M | \omega_m = \phi_m, m = -m \} \).

2.7. Let \(N_0 \) be the kernel of \(\partial_0 \) and \(j : N_0 \rightarrow C_0 \) the inclusion. As explained in the remark after [5, Lemma 6.1] the differentials in the spectral sequence can be evaluated if we know projective resolutions \(Q_* \) of \(N_0 \) and \(P_* \) of \(C_0 \) as well as a chain map \(\phi : Q_* \rightarrow P_* \) covering \(j \). These data can be assembled in a double complex \(T_* \), with \(T_0 = P_0, T_1 = Q_0 \), vertical differentials \(\delta_0 \) and \(\delta_1 \) and horizontal differentials \(-1)^s \phi_n : Q_n \rightarrow P_n \). The filtration of the spectral sequence of this double complex agrees (up to reindexing) with that of the spectral sequence of the lemma. Hence extension problems in the spectral sequence (4) can be studied by using the double complex. As in [5] we obtain a resolution \(P_* := \mathbb{Z}_3[[G_2^1]] \otimes_{\mathbb{Z}_3[G_{24}]} P_* \) induced from an explicit resolution of the trivial \(G_{24} \)-module \(\mathbb{Z}_3 \).

Lemma 2.2. [5, Lemma 6.2] Let \(\mathbb{T} \) be the \(\mathbb{Z}_3[Q_8] \)-module whose underlying \(\mathbb{Z}_3 \)-module is \(\mathbb{Z}_3 \) and on which \(t \) acts by multiplication by \(-1\) and \(\psi \) by the identity. Then the trivial \(\mathbb{Z}_3[G_{24}] \)-module \(\mathbb{Z}_3 \) admits a projective resolution \(P_* \) of period 4 of the following form

\[
\begin{array}{c}
\mathbb{Z}_3
\end{array}
\]

We obtain \(Q_* \) from splicing the exact complex \(0 \rightarrow C_1 \rightarrow C_2 \rightarrow C_1 \rightarrow N_0 \rightarrow 0 \) with the projective resolution \(P_* \) of \(C_3 = C_0 \) (as \(C_1 \) and \(C_2 \) are projective). If we denote by \(e \) the unit of \(G_2^1 \), by \(e_1 \) the generators \(e \otimes 1 \) of \(C_1 \) and by \(\tilde{e}_1 \) the generators \(e \otimes 1 \) of \(P_1 \), then by [5, Lemma 6.3] there is a chain map \(\phi : Q_* \rightarrow P_* \) covering the homomorphism \(j \) such that \(\phi_0 : Q_0 = C_1 \rightarrow P_0 \) sends \(e_1 \) to \((e - \omega)\tilde{e}_0\).
2.8. We denote by E the spectral sequence for $M = E_{2*}/(3) \cong \mathbb{F}_3[[u]][u, u^{-1}]$. The structure of the E_1-page is well known (cf. [4] for the group S_n, the case of G_n can be deduced in the same way).

Proposition 2.3. As $\mathbb{F}_3[\beta, v_1]$-modules (β acting trivially on $E_1^{*,*}$ if $s = 1, 2$)

$$E_1^{*,*} = \begin{cases} F_3[[\alpha, v_1, \alpha, \beta]] & s = 0, 3 \\ \omega^2 u^4 F_3[[u]] & s = 1, 2 \\ 0 & s > 3 \end{cases}$$

where

$$|e_s| = (s, 0, 0) \quad |v_1| = (0, 0, 4) \quad |\Delta| = (0, 0, 24) \quad |\beta| = (0, 2, 12) \quad |\alpha| = (0, 1, 4) \quad |\tilde{\alpha}| = (0, 1, 1, 12).$$

Recall that $v_1 = u_1 u^{-2}$ is invariant modulo 3 with respect to the action of G_2 and therefore all the differentials in the spectral sequence are v_1-linear. The element $\alpha \in H^1(G_2; (E_2)_{12})$ is defined as the modulo 3 reduction of $\delta^0(v_1)$, where δ^0 is the Bockstein with respect to the short exact sequence

$$0 \longrightarrow E_{2*} \longrightarrow E_{2*}/(3) \longrightarrow 0.$$

The element $\tilde{\alpha} \in H^1(G_2; (E_2)_{12})$ is defined as $\delta^1(v_2)$, where $v_2 = u^{-8}$ and δ^1 is the Bockstein with respect to the short exact sequence

$$0 \longrightarrow E_{2*}/(3) \longrightarrow E_{2*}/(3, u_1) \longrightarrow 0$$

and $\beta \in H^2(G_2; (E_2)_{12})$ is the modulo 3 reduction of $\delta^0 \delta^1(v_2)$. The definition of Δ is more complicated and we have the following formula (cf. [5, Prop. 5.1]).

$$\Delta \equiv \omega^2(1 - \omega^2 u_1^2 + u_1^4) u^{-12} \mod (u_1^6).$$

One of the main results in [7] (see also [5, Thm. 1.2]) is the following theorem.

Theorem 2.4. There are elements

$$\Delta_k \in E_1^{0,24k} \quad b_{2k+1} \in E_1^{1,0,8(2k+1)} \quad \bar{b}_{2k+1} \in E_1^{2,0,8(2k+1)}$$

for each $k \in \mathbb{Z}$ satisfying

$$\Delta_k \equiv \Delta_k e_0 \quad b_{2k+1} \equiv \omega^2 u^{-4(2k+1)} e_1 \quad \bar{b}_{2k+1} \equiv \omega^2 u^{-4(2k+1)} e_2$$

(where the first congruence is modulo (u_1^2) and the last two modulo (u_1^4)) such that

$$d_1(\Delta_k) = \begin{cases} b_{2(3m+1)+1} & k = 2m + 1 \\ (-1)^{m+1} u_1^{3^n+2} & k = 2 \cdot 3^n m, m \neq 0 \mod (3) \end{cases}$$

$$d_1(b_{2k+1}) = \begin{cases} (-1)^n u_1^{3^n+2} & k = 3^{n+1}(3m+1) \\ (-1)^n u_1^{10^3+2} \bar{b}_{3n+1} & k = 3^n(9m+8) \\ 0 & \text{otherwise.} \end{cases}$$
3. Two Elements of $Pic_{n}^{alg,0}$

3.1. We have two distinguished elements in $Pic_{n}^{alg,0} \cong H^{1}(\mathbb{G}_{n};(E_{n})_{0}^{\times})$. In the case $n = 2$ and $p = 3$ these will generate the first cohomology. The first one is given by the crossed homomorphism:

$$\eta: \mathbb{G}_{n} \rightarrow (E_{n})_{0}^{\times}$$

$$g \mapsto \frac{g_{\ast}u}{u}.$$

The second one is given as the composition of the reduced norm and the canonical inclusion:

$$\text{det}: \mathbb{G}_{n} \rightarrow \mathbb{Z}_{p}^{\times} = (E_{n})_{0}^{\times}.$$

We denote the corresponding elements of $H^{1}(\mathbb{G}_{n};(E_{n})_{0}^{\times})$ by η and det. Note that by the isomorphism of Proposition 1.2 the element $(E_{n}), S^{2} \in Pic_{n}^{alg,0}$ is sent to η (as $u \in (E_{n})_{-2}$ gives rise to a generator of $(E_{n})_{0}S^{2}$).

3.2. The reduction $W[[u_{1}]]^{\times} \rightarrow W^{\times}$ is equivariant with respect to the inclusion $W^{\times} \rightarrow \mathbb{G}_{n}$. Taking into account the Galois group we obtain a homomorphism:

$$\text{red}: H^{1}(\mathbb{G}_{n};(E_{n})_{0}^{\times}) \rightarrow H^{1}(W^{\times} \times \text{Gal}; W^{\times}) \rightarrow H^{1}(W^{\times}; W^{\times})^{\text{Gal}}$$

and the last homomorphism is induced by the short exact sequence $1 \rightarrow W^{\times} \rightarrow W^{\times} \times \text{Gal} \rightarrow \text{Gal} \rightarrow 1$ and the corresponding spectral sequence.

Proposition 3.1. Let $n = 2$ and $p > 2$. Then the image of the homomorphism red is (topologically) generated by the images of η and det.

Proof. Recall that when $p > 2$ then $W^{\times} \cong W \times \mathbb{F}_{p^{n}}$ with the obvious Galois action. Thus

$$H^{1}(W^{\times}; W^{\times})^{\text{Gal}} \cong \text{End}(W^{\times})^{\text{Gal}} \cong \mathbb{Z}_{p}^{n} \times \mathbb{Z}/(p^{n} - 1).$$

The image of det is given by the composition

$$W^{\times} \rightarrow \mathbb{G}_{n} \xrightarrow{\text{det}} \mathbb{Z}_{p}^{\times} = (E_{n})_{0}^{\times} \rightarrow W^{\times}.$$

If $g = g_{0} + g_{1}S + \cdots + g_{n-1}S^{n-1}$ with $g_{i} \in W$ and $w \in W$ then

$$gw = (g_{0} + g_{1}S + \cdots + g_{n-1}S^{n-1})w = g_{0}w + g_{1}wS + \cdots + g_{n-1}w^{\phi^{n-1}}S^{n-1}.$$

and the composition above sends w to $ww^{\phi} \cdots w^{\phi^{n-1}}$. The image of η is given by the composition

$$W^{\times} \rightarrow \mathbb{G}_{n} \xrightarrow{\eta} (E_{n})_{0}^{\times} \rightarrow W^{\times}$$

and this is easily verified to be the identity. \qed

4. Reductions

In this short section we present three short exact sequences that we use in our calculations. The last two were also used by Hopkins in the case $n = 2$ and $p > 3$. 4.1. The first one

$$(6) \quad 1 \rightarrow \mathbb{G}_{2}^{1} \rightarrow \mathbb{G}_{2} \rightarrow \mathbb{Z}_{3} \rightarrow 1$$

was described in section 2. We use the Lyndon-Hochschild-Serre spectral sequence associated to (6) to calculate $H^{1}(\mathbb{G}_{2}; W[[u_{1}]]^{\times})$. The main difficulty is computing $H^{1}(\mathbb{G}_{2}^{1}; W[[u_{1}]]^{\times})$. This is done in Theorem 6.4.
4.2. The reduction modulo 3 gives a short exact sequence

(7) \[0 \to \mathbb{W}[[u_1]]^\times \to \mathbb{F}_9[[u_1]]^\times \to \mathbb{F}_9 \to 0 \]

We will use the long exact sequence associated to (7) to calculate \(H^1(G_2^1; \mathbb{W}[[u_1]]) \).

The difficult part is \(H^1(G_2^1; \mathbb{F}_9[[u_1]])^\times \) (Corollary 6.2).

4.3. We have another short exact sequence coming from the reduction modulo \(u_1 \)

(8) \[1 \to U_1 \to \mathbb{F}_9[[u_1]]^\times \to \mathbb{F}_9^\times \to 1 \]

where \(U_1 := \{ h \in \mathbb{F}_9[[u_1]]^\times \mid h \equiv 1 \mod (u_1) \} \). The hard part is to calculate \(H^1(G_2^1; U_1) \). This is by far the hardest part of this work (cf. Theorem 5.10). Note that the group \(U_1 \) is 3-profinite.

5. The spectral sequence

We use the spectral sequence (4) with \(M = U_1 \) and denote it by \(E^\infty \) to distinguish it from the (additive) case \(M = E_{2*}/(3) \) that we also make use of. We start with the \(E^1 \)-page. As we only need to calculate the first cohomology, it is sufficient to determine \(E^1_1, E^1_2 \) and \(E^1_0 \approx E^2_0 \) and the corresponding differentials and extension problems.

5.1. The term \(E^1_1 \).

Proposition 5.1. \(H^1(G_{24}; \mathbb{F}_9[[u_1]])^\times \cong \mathbb{Z}/6 \).

Proof. Let \(\mathbb{F}_9((u_1))^\times \) be the multiplicative group of the field of fractions of \(\mathbb{F}_9[[u_1]] \). Each element of \(\mathbb{F}_9((u_1))^\times \) is of the form \(u_1^n f \) with \(f \in \mathbb{F}_9[[u_1]]^\times \) and \(n \in \mathbb{Z} \). The map

\[\mathbb{F}_9((u_1))^\times \to \mathbb{Z} : u_1^n f \mapsto n \]

is a group homomorphism with kernel \(\mathbb{F}_9[[u_1]]^\times \). Thus we have a short exact sequence of \(G_{24} \)-modules

(9) \[1 \to \mathbb{F}_9[[u_1]]^\times \to \mathbb{F}_9((u_1))^\times \to \mathbb{Z} \to 1 \]

where \(G_{24} \) acts trivially on \(\mathbb{Z} \).

By Hilbert 90, the multiplicative version, we have \(H^1(G_{24}; \mathbb{F}_9((u_1))^\times) = 0 \) and thus the long exact sequence induced by (9) yields

\[H^0(G_{24}; \mathbb{F}_9[[u_1]]^\times) \to H^0(G_{24}; \mathbb{F}_9((u_1))^\times) \to H^0(G_{24}; \mathbb{Z}) \to H^1(G_{24}; \mathbb{F}_9[[u_1]]^\times) \]

By Proposition 2.3 we have \(H^0(G_{24}; \mathbb{F}_9[[u_1]]^\times) \cong \mathbb{F}_3[[u_1^6 \Delta^{-1}]]^\times \) and by a similar argument we conclude \(H^0(G_{24}; \mathbb{F}_9((u_1))^\times) \cong \mathbb{F}_3((u_1^6 \Delta^{-1}))^\times \). By (5) we have \(u_1^6 \Delta^{-1} \equiv u_1^6 \mod (u_1) \) so the image of the homomorphism

\[H^0(G_{24}; \mathbb{F}_9((u_1))^\times) \to H^0(G_{24}; \mathbb{Z}) \cong \mathbb{Z} \]

is \(6 \mathbb{Z} \), and the result follows.

Note that \(\eta \) is not defined on \(U_1 \) (as for example \(\omega u/u = \omega u \not\in U_1 \)), but \(8 \eta \) is well defined.

Proposition 5.2. \(E^1_1 \cong H^1(G_{24}; U_1) \cong \mathbb{Z}/3 \) generated by the restriction of \(8 \eta \).
Proposition 5.3.\hfill \Box

5.1. The 0-th line. In the following proposition we give the structure of the 0-th line of the first page of our spectral sequence. We end up with a nice description of the corresponding groups as products of copies of the 3-adics.

Recall that $v_1 = u_1^{-2}$ is in degree 4 and Δ is in degree 24. Thus $v_1^4 \Delta^{-1}$ is in degree 0.

Proposition 5.3.

a) $E_1^{1,0} \cong \{ g \in ((E_2)_0/3)^{G_{24}} \cong F_3[[v_1^4 \Delta^{-1}]]^\times | g \equiv 1 \mod (u_1^1) \}.$

b) Let $g_k \in E_1^{0,0}$ be such that $g_k \equiv 1 + v_1^{6k} \Delta^{-k} \mod (u_1^{6k+2})$. Then

$$E_1^{0,0} \cong \prod_{k \geq 1} \mathbb{Z}_3 \{ g_k \} \prod_{k \neq 0 \mod (3)}$$

c) $E_1^{1,0} = \{ h \in U_1 | \exists k \in (E_2/3)^{Q_8} \cong F_3[[\omega^2 u_1^2]], h = \omega^k k \}$

d) Let $h_k \in E_1^{0,0}$ be such that $h_k \equiv 1 + \omega^2 u_1^{4k+2} \mod (u_1^{4k+4})$. Then

$$E_1^{1,0} \cong E_1^{2,0} \cong \prod_{k \geq 0} \mathbb{Z}_3 \{ h_k \} \prod_{k \neq 0 \mod (3)}$$
Proof. Proposition 2.3 implies (a). By (a) each element \(g \in \mathcal{E}_{1,0} \) can be written as a product \(\prod_{k \geq 1} g_k^{\lambda_k} \) with \(\lambda_k \in \{-1, 0, 1\} \). As \(g_k \equiv g_k^3 \mod (u_1^{18k+2}) \) we obtain the result. To get the action of \(Q_8 \) on \((E_2/3)_0 \) we use formulae (2) and (3) and then (c) follows. As \(\omega^2 = -\omega^6 \) we have \(h_{3k+1}^1 \equiv 1 + \omega^6 u_1^{4(3k+1)+2} \equiv (1 + \omega^2 u_1^{2k+2})^3 \equiv h_k^3 \mod (u_1^{12k+8}) \) and we obtain (d). \(\square \)

5.2. The goal of what follows is to construct families of generators \(\{g_k\}_{k \geq 1, k \neq 0} \mod (3) \) and \(\{h_k\}_{k \geq 0, k \neq 1} \mod (3) \) as in the previous proposition on which \(\partial_1 \) is easy to describe.

We start with a particular element \(m \in \mathcal{E}_{1,0} \) that is related to \(8\eta \) and plays the same role as the element \(b_1 \) in [5].

Proposition 5.4. There exists \(m \in \mathcal{E}_{1,0} \) such that

\begin{align*}
\text{a)} & \quad m \equiv 1 - \omega^2 u_1^2 \mod (u_1^4) \\
\text{b)} & \quad \partial_1(m) = 1 \\
\text{c)} & \quad 24\eta = m \text{ in } H^1(G_{1,1}^1; U_1).
\end{align*}

Proof. We imitate the proof of [5, Prop. 5.5] and use paragraph 2.7. By definition \(8\eta \) is a permanent cycle so there are cochains \(c \in \text{Hom}_{\mathbb{Z}_2[[G_1]]}(P_1, U_1) \) and \(d \in \text{Hom}_{\mathbb{Z}_2[[G_1]]}(Q_0, U_1) \) such that \(c + d \) is a cocycle in the total complex of the double complex \(\text{Hom}_{\mathbb{Z}_2[[G_1]]}(T_{\bullet \bullet}, U_1) \) and such that \(c \) represents the restriction of \(8\eta \) in \(H^1(G_{24}; U_1) \). From the proof of the Proposition 5.2 we have an explicit cocycle \(c_1 \) for \(8\eta \) in the resolution \(P_{\bullet \bullet} \), so there exists \(h \in \text{Hom}_{\mathbb{Z}_2[[G_1]]}(P_0; U_1) \) such that \(c = c_1 + \delta c \). As \(24\eta = 1 \) in \(H^1(G_{24}; U_1) \) (Proposition 5.2) there exists \(h \in \text{Hom}_{\mathbb{Z}_2[[G_1]]}(P_0; U_1) \) such that \(\delta c(h) = 3c_1 \). In the double complex the cochain \(3c + 3d \) is cohomologous to \(3d - \delta c(h + 3h_0) \). One can easily check that \(h = a^{-3} / (a^b(a^c a^d)(a^e a^f)) \). Then \(3d - (e - \omega)_c(h + 3h_0) \) is a cocycle concentrated in \(\text{Hom}_{\mathbb{Z}_2[[G_1]]}(T_{1 \circ 0}, U_1) \) representing \(24\eta \). The formula for \(m \) can be deduced using the formulae for the action of \(a \) and \(\omega \) given in paragraph 2.5. \(\square \)

The next lemma is elementary but crucial as it relates the differentials of \(\mathcal{E} \) and \(E \), and thus suggests that we could use the generators from Theorem 2.4 to construct convenient generators \(g_k \) and \(h_k \).

Lemma 5.5. Let \(f \in F_0[[u_1]] \) be such that \(f \equiv 0 \mod (u_1^4) \). Then

\[
\frac{1}{1 + f} \equiv 1 - f \mod (u_1^{2k}).
\]

Proposition 5.6. Let \(g_k := 1 + v_1^{6k} \Delta_{-k} \) for \(k \geq 1, k \neq 0 \mod (3) \). Then

\[
\partial_1(g_k) \equiv \begin{cases}
1 + (-1)^{m+1} \omega^2 (u_1^{12m+6} + u_1^{12m+10}) \mod (u_1^{12m+12}) & k = 2m + 1 \\
1 + (-1)^{m+1} \omega^2 u_1^{12m+2} \mod (u_1^{12m+4}) & k = 2m
\end{cases}
\]

Proof. By Lemma 5.5 we have \(\partial_1(1 + v_1^{6k} \Delta_{-k}) \equiv 1 + v_1^{6k} d_1(\Delta_{-k}) \mod (u_1^{2k}) \) where we have used the \(v_1 \)-linearity of \(d_1 \). Then the result follows from the formulae from Theorem 2.4. \(\square \)
5.3. As in [5] we will use the image of \overline{d}_1 to define h_k. We allow the generators h_k to be congruent to $1 - \omega^2 u_1^{4k+2}$ modulo higher powers of u_1. Note that $12m + 2 = 4 \cdot 3m + 2$ thus for $m \geq 1$ and $m \not\equiv 0 \mod (3)$ we can define

$$h_{3m} := \overline{d}_1(g_{2m})$$

and then by definition these elements are in the kernel of \overline{d}_1.

For the other case, note that $1 + \omega^2 (u_1^{12m+6} + u_1^{12m+10}) \equiv (1 + \omega^2 u_1^{12m+6})(1 + \omega^2 u_1^{12m+10}) \equiv (1 - \omega^2 u_1^{4m+2})^3 (1 + \omega^2 u_1^{12m+10}) \mod (u_1^{12m+12})$. Thus if h_m is already defined we could use $\overline{d}_1(g_{1+2m})$ to define h_{3m+2} by

$$h_{3m+2} := \overline{d}_1(g_{1+2m})h_m^3.$$

As $h_m \equiv 1 + \omega^2 u_1^{4m+2} \equiv 1 + v_1^{4m+2}b_{-1-2m} \mod (u_1^{4m+6})$ we can use Lemma 5.5 to calculate \overline{d}_1. In order to do that we will use the partition of \mathbb{N} introduced in Theorem 2.4. If $-1 - 2m = 1 + 2(3l + 1)$ then $1 + 2m$ is divisible by 3. The other cases are of relevance: if $-1 - 2m = 1 + 2 \cdot 3^n (3l - 1)$ then $m = 3^n (-3l + 1) - 1$ with $l \not\equiv 0 \mod (3)$, if $-1 - 2m = 1 + 2 \cdot 3^n (9l + 8)$ then $m = 3^n (-9l + 8) - 1$ with $l \leq -1$ and the last one, if $-1 - 2m = 1 + 2 \cdot 3^n (3l + 1)$ then $m = 3^{n+1} (-3l + 1) - 1$ with $l \leq -1$. In each of these cases, if h_m is defined then h_{3m+2} belongs to the same family with n augmented by one. This allows to define recursively, for $n \geq 0$:

$$h_{3^{n+1}(3l+1)-1} := \overline{d}_1(g_{1+2 \cdot 3^n(3l+1)})$$

for $l \not\equiv 0 \mod (3)$

$$h_{3^{n+1}(9l+1)-1} := \overline{d}_1(g_{1+2 \cdot 3^n(9l+1)})$$

$$h_{3^{n+2}(3l+2)-1} := \overline{d}_1(g_{1+2 \cdot 3^{n+1}(3l+2)}).$$

For this to work we need to define the corresponding element of each family for $n = 0$. In the first case h_0 is already defined. In the other cases we define:

$$h_0 := m$$

$$h_{9l+5} := \omega_4 (1 + v_1^{36l+14}b_{-1-18l})/(1 + v_1^{36l+14}b_{-1-18l})$$

for $l > 0$.

Note that b_{-1-18l} and $b_{-11-18l}$ belong to the two families of Theorem 2.4 that have non trivial image under d_1. In both of these cases we can apply Lemma 5.4. This would not have been the case if we would have defined h_0 as $1 + v_1^2 b_{-1}$ as then Lemma 5.5 does not give the enough precision. The following proposition and the recursive definition of the generators describe $\overline{d}_1 : T_{1,0}^1 \to T_{1,0}^2$. The proof uses Theorem 2.4 and Lemma 5.5.

Proposition 5.7.

$$z_{1,l} := \overline{d}_1(h_{9l}) \equiv 1 + \omega^2 u_1^{36l+14} \mod (u_1^{36l+18})$$

$$z_{2,l} := \overline{d}_1(h_{9l+5}) \equiv 1 + \omega^2 u_1^{36l+30} \mod (u_1^{36l+34})$$

A more complete description of \overline{d}_1 is given with the following proposition.

Proposition 5.8. The following complexes are exact:

$$\prod_{n \geq 0} Z_3 \{ g_{1+2 \cdot 3^n (3l+1)} \} \to \prod_{n \geq 0} Z_3 \{ h_{3^n (3l+1)-1} \} \to 1 \quad \text{for } l \not\in 3\mathbb{N}$$

$$\prod_{n \geq 0} Z_3 \{ g_{1+2 \cdot 3^n (9l+1)} \} \to \prod_{n \geq 0} Z_3 \{ h_{3^n (9l+1)-1} \} \to Z_3 \{ z_{1,l} \} \quad \text{for } l > 0$$

$$\prod_{n \geq 0} Z_3 \{ g_{1+2 \cdot 3^{n+1} (3l+2)} \} \to \prod_{n \geq 0} Z_3 \{ h_{3^{n+1} (3l+2)-1} \} \to Z_3 \{ z_{2,l} \} \quad \text{for } l \geq 0.$$
The first homology of the following complex
\[
\prod_{n \geq 0} \mathbb{Z}_3\{g_{1+2\cdot3^n}\} \to \prod_{n \geq 0} \mathbb{Z}_3\{h_{3^n-1}\} \to 1
\]
is isomorphic to \(\mathbb{Z}_3\{h_0\}\). In each complex the infinite matrix of the first homomorphism has the following form \((-3 \ 1 \ -3 \ 1 \ -3 \ \cdots\) and when non trivial the infinite matrix of the second morphism has the following form \((1 \ 3 \ 9 \ 27 \ \cdots)\).

Proof. The proof is a consequence of Proposition 5.3, Proposition 5.4, the definitions of the generators in paragraph 5.3 and Proposition 5.8. \(\square\)

Corollary 5.9. \(E_2^{1,0} \cong \mathbb{Z}_3\).

Proof. This is consequence of the previous proposition. Indeed, the relevant part of the 0-th line of the first page of the spectral sequence is the product over \(l\) of the four complexes of the previous proposition together with the exact complex \(\prod_{m>0} \mathbb{Z}_3\{g_{2m}\} \to \prod_{m>0} \mathbb{Z}_3\{h_{3m}\} \to 1\).

Theorem 5.10. \(H^1(G_1^2;U_1) \cong \mathbb{Z}_3\) is generated by \(8\eta\).

Proof. We only need to resolve the extension problem
\[
0 \to E_2^{1,0} \cong \mathbb{Z}_3 \to H^1(G_1^2;U_1) \to \mathbb{Z}/3\mathbb{Z} \cong E_2^{0,1} \to 0.
\]
But this is immediate due to Proposition 5.4 \(\square\)

6. **Getting to** \(H^1(G_2^1;\mathbb{W}[[u_1]]^\times)\)

In this section we prove the main theorem by using the short exact sequences from Section 4. The element \(\eta\) again plays an important role in the proof.

Proposition 6.1. \(H^1(G_2^1;\mathbb{F}_9^\times) \cong \mathbb{F}_9^\times\).

Proof. There is a short exact sequence
\[
1 \to S_2^1 \to G_2^1 \to SD_{16} \to 1
\]
that gives a spectral sequence and as \(S_2^1\) acts trivially on \(\mathbb{F}_9^\times\) we have
\[
H^*(G_2^1;\mathbb{F}_9^\times) \cong H^*(SD_{16};\mathbb{F}_9^\times).
\]
There is another short exact sequence
\[
1 \to <\omega> \to SD_{16} \to \text{Gal} \to 1
\]
(where \(\text{Gal} := \text{Gal}(\mathbb{F}_9/\mathbb{F}_3)\)) and thus a spectral sequence
\[
H^*(\text{Gal}; H^*(<\omega>;\mathbb{F}_9^\times)) \Rightarrow H^*(SD_{16};\mathbb{F}_9^\times).
\]
By using the standard resolution it is easily seen that the group \(H^*(<\omega>;\mathbb{F}_9^\times)\) is isomorphic to \(\mathbb{F}_9^\times\) in each degree as \(\omega\) acts trivially on \(\mathbb{F}_9^\times\). The group \(H^1(<\omega>;\mathbb{F}_9^\times)\) is generated by the identity which is Galois invariant thus
\[
H^0(\text{Gal}; H^1(<\omega>;\mathbb{F}_9^\times)) \cong \mathbb{F}_9^\times
\]
and by Hilbert 90
\[H^1(\text{Gal}; H^0(<\omega>; \mathbb{F}_9)) = H^1(\text{Gal}; \mathbb{F}_9^\times) = 0. \]
As the image of \(\eta \) in \(H^1(\mathbb{G}_2^1; \mathbb{F}_9^\times) \cong H^1(SD_{16}; \mathbb{F}_9^\times) \) reduces to the identity in the group \(H^1(<\omega>; \mathbb{F}_9^\times) \), the differential
\[d_2 : H^0(\text{Gal}; H^2(<\omega>; \mathbb{F}_9^\times)) \to H^1(\text{Gal}; H^0(<\omega>; \mathbb{F}_9^\times)) \]
has to be trivial.

\[\square \]

Corollary 6.2. \(H^1(\mathbb{G}_2^1; \mathbb{F}_9[[u_1]]^\times) \cong \mathbb{Z}_3 \times \mathbb{F}_9^\times \) generated by \(\eta \).

Proof. The short exact sequence (8) induces a long exact sequence
\[\to H^0(\mathbb{G}_2^1; \mathbb{F}_9^\times) \to H^1(\mathbb{G}_2^1; \mathcal{U}_1) \to H^1(\mathbb{G}_2^1; \mathbb{F}_9[[u_1]]^\times) \to H^1(\mathbb{G}_2^1; \mathbb{F}_9^\times) \to H^2(\mathbb{G}_2^1; \mathcal{U}_1). \]
By Theorem 5.10 we have \(H^1(\mathbb{G}_2^1; \mathcal{U}_1) \cong \mathbb{Z}_3 \) and by Proposition 6.1 we have \(H^1(\mathbb{G}_2^1; \mathbb{F}_9^\times) \cong \mathbb{F}_9^\times \). As \(\mathcal{U}_1 \) is a 3-profinite group, the first and the last homomorphisms are trivial.

\[\square \]

Proposition 6.3.

\[\begin{align*}
&\text{a) } H^1(\mathbb{G}_2^1; \mathbb{F}_9[[u_1]]) = 0 \\
&\text{b) The group } H^1(\mathbb{G}_2^1; \mathbb{W}[[u_1]]) \text{ is 3-profinite.} \\
&\text{c) } H^1(\mathbb{G}_2^1; \mathbb{W}[[u_1]]) = 0.
\end{align*} \]

Proof. (a) is direct consequence of [5, Thm. 1.6]. The group \(\mathbb{W}[[u_1]] \) is 3-profinite and there is a resolution of finite type (Lazard) of the trivial \(\mathbb{G}_2^1 \)-module \(\mathbb{Z}_3 \) and (b) follows. Multiplication by 3 induces a short exact sequence
\[\mathbb{W}[[u_1]] \xrightarrow{\times 3} \mathbb{W}[[u_1]] \to \mathbb{F}_9[[u_1]] \]
which induces a long exact sequence
\[\to H^1(\mathbb{G}_2^1; \mathbb{W}[[u_1]]) \to H^1(\mathbb{G}_2^1; \mathbb{W}[[u_1]]) \to H^1(\mathbb{G}_2^1; \mathbb{F}_9[[u_1]]) \to H^2(\mathbb{G}_2^1; \mathbb{F}_9[[u_1]]) \]
From (a) and the long exact sequence above it follows that the homomorphism
\[H^1(\mathbb{G}_2^1; \mathbb{W}[[u_1]]) \to H^1(\mathbb{G}_2^1; \mathbb{W}[[u_1]]) \]
is surjective i.e. the group \(G := H^1(\mathbb{G}_2^1; \mathbb{W}[[u_1]]) \) is 3-divisible. As \(G \) is 3-profinite, it is the limit of finite 3-groups \(G/I_n \). Thus the homomorphism \(G/I_n \to G/I_n \) induced by the multiplication by 3 is surjective and therefore \(G \) is trivial.

\[\square \]

Theorem 6.4. \(H^1(\mathbb{G}_2^1; \mathbb{W}[[u_1]]^\times) \cong \mathbb{Z}_3 \times \mathbb{F}_9^\times \) generated by \(\eta \).

Proof. We use the long exact sequence in \(H^1(\mathbb{G}_2^1; -) \) induced from the short exact sequence (7). The homomorphism \(H^1(\mathbb{G}_2^1; \mathbb{W}[[u_1]]^\times) \to H^1(\mathbb{G}_2^1; \mathbb{F}_9[[u_1]]^\times) \) is injective by Proposition 6.3 (c) and also surjective as the image of \(\eta \in H^1(\mathbb{G}_2^1; \mathbb{W}[[u_1]]^\times) \) is a generator (by Corollary 6.2).

Finally we get to the proof of 1.6(a).

Theorem 6.5. \(H^1(\mathbb{G}_2^1; \mathbb{W}[[u_1]]^\times) \cong \mathbb{Z}_3 \times \mathbb{F}_9^\times \) generated by \(\eta \) and \(\text{det} \).

Proof. We use the short exact sequence (6). We have
\[H^1(\mathbb{Z}_3; H^0(\mathbb{G}_2^1; \mathbb{W}[[u_1]]^\times)) \cong H^1(\mathbb{Z}_3; \mathbb{Z}_3) \cong \mathbb{Z}_3 \]
and
\[H^0(\mathbb{Z}_3; H^1(\mathbb{G}_2^1; \mathbb{W}[[u_1]]^\times)) \cong H^0(\mathbb{Z}_3; \mathbb{Z}_3 \times \mathbb{F}_9^\times) \cong \mathbb{Z}_3 \times \mathbb{F}_9^\times. \]
The theorem follows from
\[1 \to H^1(\mathbb{Z}_3; H^0(G_2; W[[u_1]]^\times)) \to H^1(G_2; W[[u_1]]^\times) \to H^0(\mathbb{Z}_3; H^1(G_2; W[[u_1]]^\times)) \to 1 \]

Note the \(\det \) is the image of the identity and the image of \(\eta \) is a generator.

7. \(\text{Pic}^{\text{alg}}_2 \)

In this short section we prove of Theorem 1.6 i.e. we calculate \(\text{Pic}^{\text{alg}}_2 \).

We are left with the short exact sequence
\[0 \to \text{Pic}^{\text{alg}}_2 \to \text{Pic}^{\text{alg}}_0 \to \mathbb{Z}/2 \to 0 \]
that comes from the definition of \(\text{Pic}^{\text{alg}}_2 \) (cf. paragraph 1.1). Note that the isomorphism of Proposition 1.2 sends \((E_2)^*S^2\) to \(\eta\) (cf. paragraph 3.1). Thus \((E_2)^*S^2\) is an element of \(\text{Pic}^{\text{alg}}_2\) that generates \(\mathbb{Z}_3 \times \mathbb{Z}/8\) in \(\text{Pic}^{\text{alg}}_2\). But \((E_2)^*S^1\) is not an element of \(\text{Pic}^{\text{alg}}_2\), therefore its image in the above sequence is a generator of \(\mathbb{Z}/2\). Thus \((E_2)^*S^1\) itself must generate \(\mathbb{Z}_3 \times \mathbb{Z}/16\).

References
7. N. Karamanov, À propos de la cohomologie du deuxième groupe stabilisateur de Morava; application aux calculs de \(\pi_\ast L_{K(2)}V(0)\) et du groupe \(\text{pic}_2\) de Hopkins, http://130.79.4.117:8080/Record.htm?dlist=1record=19385121124911033039.