Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result

Abstract : We study two equations of Lotka-Volterra type that describe the Darwinian evolution of a population density. In the first model a Laplace term represents the mutations. In the second one we model the mutations by an integral kernel. In both cases, we use a nonlinear birth-death term that corresponds to the competition between the traits leading to selection. In the limit of rare or small mutations, we prove that the solution converges to a sum of moving Dirac masses. This limit is described by a constrained Hamilton-Jacobi equation. This was already proved by B. Perthame and G. Barles for the case with a Laplace term. Here we generalize the assumptions on the initial data and prove the same result for the integro-differential equation.
Type de document :
Article dans une revue
Methods and Applications of Analysis, 2009, 16 (3), pp.321-340. 〈10.4310/MAA.2009.v16.n3.a4〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00371416
Contributeur : Sepideh Mirrahimi <>
Soumis le : mercredi 20 septembre 2017 - 10:06:41
Dernière modification le : vendredi 4 janvier 2019 - 17:32:32

Fichiers

BMP_2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Guy Barles, Sepideh Mirrahimi, Benoît Perthame. Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result. Methods and Applications of Analysis, 2009, 16 (3), pp.321-340. 〈10.4310/MAA.2009.v16.n3.a4〉. 〈hal-00371416v2〉

Partager

Métriques

Consultations de la notice

197

Téléchargements de fichiers

66