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Abstract 

Neuropeptide Y (NPY) is an abundant neuropeptide of the neocortex involved in 

numerous physiological and pathological processes. Due to the large 

electrophysiological, molecular and morphological diversity of NPY-expressing 

neurons their precise identity remains unclear. To define distinct populations of NPY 

neurons we characterized, in acute slices of rat barrel cortex, 200 cortical neurons of 

layers I-IV by means of whole-cell patch-clamp recordings, biocytin labeling and 

single cell Reversed Transcriptase-Polymerase Chain Reaction (scRT-PCR) 

designed to probe for the expression of well established molecular markers for 

cortical neurons. To classify reliably cortical NPY neurons we used and compared 

different unsupervised clustering algorithms based on laminar location, 

electrophysiological and molecular properties. These classification schemes 

confirmed that NPY neurons are nearly exclusively γ-aminobutyric acid (GABA)-ergic 

and consistently disclosed three main types of NPY-expressing interneurons. (1) 

Neurogliaform-like neurons exhibiting a dense axonal arbor, were the most frequent, 

superficial, and substantially expressed the neuronal isoform of nitric oxide synthase 

(NOS-I). (2) Martinotti-like cells characterized by an ascending axon ramifying in 

layer I co-expressed somatostatin (SOM) and were the most excitable type. (3) 

Among fast spiking (FS) and parvalbumin (PV) positive basket cells, NPY expression 

was correlated with pronounced spike latency. By clarifying the diversity of cortical 

NPY neurons, this study establishes a basis for future investigations aiming at 

elucidating their physiological roles. 



Introduction 

The 36 amino acids NPY is one of the most abundantly and widely distributed 

neuropeptides of the central nervous system (Allen et al., 1983). In the cerebral 

cortex it is involved in distinct physiological processes such as synaptic transmission 

(Bacci et al., 2002) or cerebral blood flow regulation (Dacey, Jr. et al., 1988) as well 

as numerous pathological conditions like epilepsy (Baraban et al., 1997), migraine 

(Choudhuri et al., 2002), anxiety (Bannon et al., 2000) or withdrawal behavior 

(Clausen et al., 2001). 

NPY-expressing neurons are widely distributed throughout the depth of the cortex but 

are more frequent in layers II-III and VI (Hendry et al., 1984b;Kubota et al., 

1994;Kuljis and Rakic, 1989a) in which they form two dense plexuses targeting 

neuronal (Abounader and Hamel, 1997;Aoki and Pickel, 1989;Hendry et al., 

1984b;Kuljis and Rakic, 1989a) as well as astrocytic and vascular elements 

(Abounader and Hamel, 1997;Bao et al., 1997;Cauli et al., 2004;Estrada and 

DeFelipe, 1998). NPY neurons are mainly GABAergic (Aoki and Pickel, 

1989;Demeulemeester et al., 1988;Hendry et al., 1984a;Kubota et al., 1994). They 

are morphologically very diverse, being either bipolar, bitufted or multipolar at the 

somatodendritic level (Abounader and Hamel, 1997;Hendry et al., 1984b;Kuljis and 

Rakic, 1989b). In addition, a molecular diversity, reflected by the co-expression of 

NPY with NOS-1, neuropeptides and/or calcium binding proteins defines 

neurochemical subclasses of NPY neurons (Gonchar et al., 2007;Hendry et al., 

1984b;Kubota et al., 1994). Furthermore these neurons are also physiologically 

heterogeneous since they exhibit either adapting, FS or accelerating firing patterns 

(Cauli et al., 1997;Cauli et al., 2000;Cauli et al., 2004;Férézou et al., 2006;Gallopin et 

al., 2006;Toledo-Rodriguez et al., 2005;Wang et al., 2002;Wang et al., 2004). 



Together, the pleiotropic actions, widespread distribution and large morphological, 

molecular and physiological diversity suggest that NPY neurons are composed of 

several functionally diverse neuronal subpopulations which so far have remained 

poorly defined. 

Today's neuroscientists agree that neuronal type definition cannot be considered 

complete until multimodal information regarding physiological, molecular and 

morphological features are considered (Ascoli et al., 2008). This goal was pursued 

here for cortical NPY neurons of superficial layers by combining whole cell current-

clamp recordings, scRT-PCR and biocytin labeling in acute slices of rat 

somatosensory cortex. The scRT-PCR protocol was designed to probe 

simultaneously for the expression of well established neurochemical markers of 

cortical neurons (Bayraktar et al., 1997;Celio, 1986;Celio, 1990;Demeulemeester et 

al., 1991;Estrada and DeFelipe, 1998;Gonchar and Burkhalter, 1997;Hendry et al., 

1984b;Jacobowitz and Winsky, 1991;Kubota et al., 1994;Morrison et al., 

1984;Rogers, 1992;Somogyi et al., 1984). To define distinct subtypes of NPY 

neurons we used and compared different unsupervised clustering algorithms taking 

simultaneously into account the numerous features determined for each neuron. This 

approach allowed the identification of three different main types of NPY neurons with 

distinctive morphological, molecular and physiological properties, thus providing a 

reliable polythetic classification scheme (Tyner, 1975). 

 



Materials and Methods 

Slice preparation 

All experiments were carried out in accordance with the guidelines published in the 

European Communities Council Directive of 24 November 1986 (86/609/EEC). 

Juvenile male Wistar rats (postnatal days 19 ± 2, Charles River, L’Arbresle, France) 

were deeply anesthetized with halothane and decapitated. The brains were quickly 

removed and placed into cold (~4°C) oxygenated artificial cerebrospinal fluid (aCSF) 

(in mM): 126 NaCl, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, 26 NaHCO3, 10 

glucose, 15 sucrose, and 1 kynurenic acid (nonspecific glutamate receptor 

antagonist, Sigma, St Louis, Missouri). Coronal slices (300 µm thick) from rat 

somatosensory cortex containing the barrel cortex were prepared as described 

previously (Schubert et al., 2001). Slices were cut with a vibratome (VT1000S; Leica, 

Nussloch, Germany), transferred to a holding chamber containing aCSF saturated 

with O2/CO2 (95%/5%) and held at room temperature. 

 

Whole-cell recordings 

Individual slices were transferred to a submerged recording chamber and perfused 

(1–2 ml/min) with oxygenated aCSF. Patch pipettes (2.5-8 MΩ) pulled from 

borosilicate glass were filled with 8 µl of autoclaved RT-PCR internal solution (in 

mM): 144 K-gluconate; 3 MgCl2; 0.5 EGTA; 10 HEPES, pH 7.2 (285/295 mOsm), and 

3 mg/ml biocytin (Sigma, St. Louis, MO) for intracellular labeling. Neurons were 

visualized in the slice using infrared videomicroscopy (Stuart et al., 1993) with Dodt 

gradient contrast optics (Luigs and Neumann, Ratingen, Germany, (Dodt and 

Zieglgansberger, 1998)). Whole-cell recordings in current-clamp mode were 



performed at room temperature (24.5 ± 1.5 °C) using a patch-clamp amplifier 

(Axopatch 200A, Molecular Devices, Foster City, CA). Data were filtered at 5 kHz and 

digitized at 50 kHz using an acquisition board (Digidata 1322A, Molecular Devices) 

attached to a personal computer running pCLAMP 9.2 software package (Molecular 

Devices). Electrophysiological properties were recorded using the I-clamp fast mode 

of the amplifier. All membrane potentials were corrected for liquid junction potential (-

11 mV). 

 

Cytoplasm harvest and Single-Cell Reverse Transcription-Polymerase Chain 

reaction 

At the end of the recording, the cytoplasmic content of the cell was aspirated in the 

recording pipette and expelled into a test tube, and reverse transcription (RT) was 

performed in a final volume of 10 µl as previously described (Lambolez et al., 1992). 

After cytoplasm collection the patch pipette was gently withdrawn to allow the closure 

of the cell membrane (Cauli et al., 1997). Slices were then fixed by overnight 

immersion in 4% paraformaldehyde in phosphate buffer (PB 0.1 M, pH 7.4) for 

subsequent biocytin staining (see below). 

The scRT-PCR protocol was designed to detect simultaneously the expression of the 

vesicular glutamate transporter 1 (vGlut1), the two isoforms of glutamic acid 

decarboxylase (GAD65 and GAD67), the neuronal isoform of nitric oxide synthase 

(NOS-1), three calcium binding proteins: calbindin D28k (CB), calretinin (CR), PV, 

and four neuropeptides: NPY, SOM, vasoactive intestinal polypeptide (VIP) and 

cholecystokinin (CCK). Two amplification steps were performed essentially as 

described (Cauli et al., 1997). Briefly, the cDNAs present in 10 µl of the RT reaction 

were first amplified simultaneously by using the primer pairs listed in Table 1 (for 



each pair the sense and antisense primers were intron-overspanning). Taq 

polymerase (2.5 U; Qiagen, Hilden, Germany) and 20 pmol of each primer were 

added to the buffer supplied by the manufacturer (final volume, 100 µl), and 21 

cycles (94°C for 30 sec, 60°C for 30 sec, and 72°C for 35 sec) of PCR were run. 

Second rounds of amplification were performed using 1 µl of the first PCR product as 

template. In this second round, each cDNA was amplified individually with a second 

set of a primer pair internal to the pair used in the first PCR (nested primers, see 

Table 1). Thirty-five PCR cycles were performed as described earlier (Cauli et al., 

1997). Then 10 µl of each individual PCR product was run on a 2% agarose gel using 

φX174 digested by HaeIII as molecular weight maker and stained with ethidium 

bromide. All the transcripts were detected from 500 pg of neocortical RNA using this 

protocol (data not shown). The sizes of the PCR-generated fragments were as 

predicted by the mRNA sequences (see Table 1). 

 

Electrophysiological analysis 

In order to describe different electrophysiological behaviors observed in cortical 

neurons 32 electrophysiological parameters adopting Petilla terminology (Ascoli et 

al., 2008) were determined for each cell. (1) Resting membrane potential was 

measured just after passing in whole-cell configuration, and only cells with a resting 

membrane potential more negative than -61 mV were analyzed further. (2) Input 

resistance (Rm) and (3) membrane time constant (τm) were determined on responses 

to hyperpolarizing current pulses (duration, 800 ms) eliciting voltage shifts of 10-15 

mV negative to rest (Kawaguchi, 1993;Kawaguchi, 1995). Time constant was 

determined by fitting this voltage response to a single exponential. (4) Membrane 

capacitance (Cm) was calculated according to Cm = τm / Rm. In some neurons, 



injection of hyperpolarizing current pulses induced pronounced “sag”, indicative of a 

hyperpolarization-activated cationic current (Ih), that followed the initial 

hyperpolarization peak. Thus, whole-cell conductance was measured when the sag 

conductance was inactive (Ghyp) or active (Gsag). Gsag was measured as the slope of 

the linear portion of a current–voltage (I–V) plot, where V was determined at the end 

of 800 ms hyperpolarizing current pulses (-100 to 0 pA) and Ghyp as the slope of the 

linear portion of an I–V plot, where V was determined as the maximal negative 

potential during the 800 ms hyperpolarizing pulses. (5) Sag index was quantified as a 

relative decrease in membrane conductance according to (Gsag-Ghyp)/Gsag. (Halabisky 

et al., 2006). (6) Rheobase, a measure of electrical excitability, was quantified as the 

minimal depolarizing current pulse intensity (800 ms duration, 10 pA increments) 

generating at least one action potential. A pronounced (7) first spike latency or 

delayed firing (Ascoli et al., 2008;Gupta et al., 2000), previously referred as "late 

spiking" (Kawaguchi, 1995;Tamas et al., 2003), has been reported to be a distinctive 

feature of neurons of the morphological neurogliaform class. This property was 

measured at rheobase as the time needed to elicit the first action potential. Firing 

behavior near threshold is also very informative about the electrophysiological 

diversity of cortical neurons. For instance, when depolarized just above threshold 

neurons can exhibit: "continuous firing" (Ascoli et al., 2008;Kawaguchi, 

1995;McCormick et al., 1985) that corresponds to "type 1 neurons" (Hodgkin, 1948) 

defined by a low minimal frequency increasing with stimulus intensity, "burst firing" 

(Cauli et al., 1997;Kawaguchi and Kubota, 1996;McCormick et al., 1985;Porter et al., 

1998) defined by their inability to fire below a minimal frequency at the onset of firing 

(type 2 neurons) or an "accelerating firing" (Simon et al., 2005). To describe these 

different behaviors, spike frequency was determined near spike threshold on the first 



trace in which at least three spikes were triggered. Under these conditions, 

instantaneous discharge frequencies were measured and fitted to a straight line 

according to Fthreshold = mthreshold.t + Fmin., where mthreshold is the slope termed (8) 

adaptation, t the time and Fmin, the (9) minimal steady state frequency. This 

parametric description of the firing pattern allows to differentiate the three different 

firing classes described above: bursting neurons are characterized by a high Fmin and 

a pronounced adaptation, accelerating neuron exhibit a negative adaptation, and a 

low Fmin, whereas continuous firing neurons exhibit intermediate Fmin and adaptation. 

(10). A complex spike amplitude accommodation during a train of action potentials, 

consisting in a transient decrease of spikes amplitude, preeminent in some cortical 

neurons was measured as the difference between the peak of the smallest action 

potential and the peak of the following biggest action potential (Cauli et al., 2000). At 

the highest stimulation intensities, a high firing rate is characteristic of FS class 

neurons (Cauli et al., 1997;Kawaguchi, 1993;McCormick et al., 1985). Maximal firing 

rate was defined as the last trace before prominent reduction of action potentials 

amplitude indicative of a saturated discharge. To take into account the biphasic spike 

frequency adaptation (early and late) occurring at high firing rates (Cauli et al., 

1997;Cauli et al., 2000;Gallopin et al., 2006), instantaneous firing frequency was 

fitted to a single exponential (Halabisky et al., 2006) with a sloping baseline, 

according to maxsat
-t/

sat Fm..eA. sat ++= tFSaturation
τ . Where Asat corresponds to the (11) 

amplitude of early frequency adaptation, τsat to (12) time constant of early adaptation, 

msat to the (13) slope of late adaptation and Fmax to the (14) maximal steady state 

frequency. Under these conditions, FS class neurons are typically characterized by a 

high steady state frequency with little or no frequency adaptation (Cauli et al., 

1997;Cauli et al., 2000). Analysis of the action potentials waveforms was done on the 



first two spikes. Their (15, 16) amplitude (A1 and A2) was measured from threshold 

to the positive peak of the spike. Their (17, 18) duration (D1 and D2) was measured 

at half amplitude (Cauli et al., 1997;Kawaguchi, 1993), short duration of action 

potentials being also a characteristic feature of FS class neurons (Kawaguchi, 

1993;Kawaguchi and Kubota, 1993;McCormick et al., 1985). Their (19) amplitude 

reduction and the (20) duration increase were calculated according to (A1-A2)/A1 

and (D2-D1)/D1 respectively (Cauli et al., 1997;Cauli et al., 2000). In some cortical 

neurons a complex waveform of afterpotential has been reported in some cortical 

neurons (Beierlein et al., 2003;Povysheva et al., 2007). Therefore the amplitude (21-

24) and the latency (25-28) of the first and second components of 

afterhyperpolarization (AHPf and AHPs) was measured for the first two action 

potentials as the difference between spike threshold and the negative peak of the 

AHP (Kawaguchi, 1993). In some cortical neurons (Haj-Dahmane and Andrade, 

1997) this complex repolarization is accompanied by a fast afterdepolarization (ADP). 

Its (29, 30) amplitude and (31, 32) latency were measured as the difference between 

the negative peak of the AHPf and the positive peak of the ADP and between the 

spike threshold and the peak of the ADP, respectively. When neurons did not exhibit 

AHPs or ADP, amplitude and latency were arbitrarily set to 0. 

 

Visualization and imaging of the intracellular biocytin-filled neurons 

The slices were basically processed as described previously (Staiger et al., 2002). In 

brief, the 300 µm thick slices were cut to 100 µm thick sections on a vibratome 

(Microm HM650 V, Walldorf, Germany), on the one hand to facilitate the penetration 

of the reagents and on the other hand to create sections that can be scanned with 

confocal microscopy throughout the whole thickness. 



For the fluorescent staining the sections were washed in 0.05 M Tris-buffered saline 

(TBS, pH 7.4) containing 0.3% Triton to permeabilize the tissue by removing 

membrane lipids. The sections were incubated with Alexa-488 coupled streptavidin 

(Molecular Probes, Leiden, The Netherlands) for 6 hours. 

For brightfield staining the sections were washed several times with PB and 

incubated with cryoprotectant (25% saccharose, 10% glycerol in 0.01 M PB) until the 

sections sank. The sections were frozen three times over liquid nitrogen. The 

cryoprotectant was washed out with PB and the sections were stored in PB 

containing 0.05% sodium azide until further processing. The intrinsic peroxidase 

activity was blocked by incubating the sections in 1% H2O2 diluted in PB for 10 

minutes. Afterwards the sections were washed in PB until the bubble formation 

stopped. Then the buffer was exchanged to TBS (pH 7.6). Avidin-biotinylated 

peroxidase-complex (ABC, Vector Laboratories, Burlingame, CA) was diluted 1:400 

in TBS and added to the sections overnight. For visualization the sections were 

preincubated with 0.5% 3,3'-diaminobenzidine-hydrochloride (DAB; Sigma) for 10 

minutes, then 0.01% hydrogen peroxide was added to start the reaction. After 

reaching optimal color intensity the reaction was stopped by washing with TB. The 

DAB reaction product was intensified by a modified silver impregnation technique 

(Dávid et al., 2007;Gorcs et al., 1986) resulting in a dark brown to black staining of 

the biocytin filled cells and their processes. 

The cells visualized by fluorescent dye were automatically imaged by an LSM510 

laser scanning microscope (Zeiss, Oberkochen, Germany). The acquired image 

stacks were reconstructed in 3D using the confocal module of the software 

Neurolucida (MBF Bioscience Europe, Magdeburg, Germany). The brightfield 



sections were reconstructed with a standard Neurolucida set-up based on an Eclipse 

80i (Nikon, Ratingen, Germany). 

 

Morphological analysis 

Somatic features were measured from infrared Dodt Gradient contrast pictures of the 

recorded neurons. Briefly, the soma was manually delineated using Image-Pro 5.1 

software (Media Cybernetics Inc., San Diego CA) and length of major and minor 

axes, perimeter and area were extracted. The soma elongation was calculated as the 

ratio between major and minor axis. Somata exhibiting an elongation larger than 2 

were defined as fusiform (Cauli et al., 2000). Roundness was calculated according to 

: 
area

perimeter
×π4

2

; a value close to 1 is indicative of round somata. 

From the labeled and reconstructed neurons, the following parameters were 

extracted: orientation of major axis relative to the radial axis, number of primary 

dendrites, vertical and horizontal span of the dendritic tree. Two further features of 

the cells were calculated from the basic data: “verticality” and “multipolarity” (see 

supplementary materials). Verticality was defined as the ratio between vertical and 

horizontal spans of the dendritic tree. Radially oriented cells displayed a verticality 

larger than 1. For the calculation of multipolarity, the centroid of the cell was used as 

a point of origin, from which the angle of each dendrite was measured relative to the 

closest pole of the cell, defined by the crossing point of the major axis of the cell and 

the cell membrane. Multipolarity was defined as the ratio between the dendrite-

containing sectors and the dendrite-free lateral sectors. High multipolarity values 

indicate a homogeneous distribution of dendrites in space whereas values close to 0 

describe polarized cells. 



Cells were classified according to their somatodendritic morphology as: (i) Bipolar 

cells (n=28 of 68) if they possessed two dendrites emerging from the upward and 

downward poles of the soma. Similar neurons exhibiting a third very short, non-

branching and thin dendrite were considered as modified bipolar cells (n=4). (ii) 

Tufted cells (n=19) were basically similar to bipolar neurons, but displayed at least 

one (single tufted) or two (bitufted) dendritic tufts (i.e., at least 2 separate primary 

dendrites) emanating from the pole(s), single and bitufted cells were not 

differentiated. (iii) Multipolar cells (n=32) displayed at least 4 dendrites distributed 

around the perimeter of the cell. 

 

Unsupervised clustering 

To classify cells unsupervised clustering was performed using 32 electrophysiological 

parameters (see above), 10 molecular parameters (Vlgut1, GAD65 and/or GAD67, 

NOS-1, CB, PV, CR, NPY, VIP, SOM and CCK) and the laminar location determined 

by infrared videomicroscopy and confirmed after biocytin labeling (see above). For 

neurons located at the border of layers I-II and III-IV, the laminar location was 

digitized by 1.5 and 3.5, respectively. Neurons positive for GAD65 and/or GAD67 

were denoted as GAD positive and these mRNAs were considered as a single 

molecular variable as previously described (Gallopin et al., 2006). Parameters were 

standardized by centering and reducing all of the values. Cluster analysis was run on 

Statistica 6 software (Statsoft, Tulsa, OK) and within the MATLAB environment (The 

Mathworks, Boston, MA). 

In Ward's method (Ward, 1963) individual cells are first linked to their nearest 

neighbor and combined two-by-two into objects of a superior hierarchic order. This 

linkage procedure is repeated on these objects until when the top hierarchic level is 



reached. The final number of clusters was established by hierarchically subdividing 

the clustering tree into higher order clusters to achieve a relative enrichment of NPY-

expressing neurons. Comparison of the occurrence of a given molecular marker 

between populations of cortical neurons was done according to: 

ba

ba

n
pq

n
pq

pp

+

−
=ε  

where pa, pb, represent the percentage of occurrence and na, nb, the number of 

individuals in populations a and b. The variable p denotes the percentage of 

occurrence in the overall population with q=1-p. This quantity |ε| was tested against a 

normal distribution to determine statistical significance of the difference of expression 

(Fisher and Yates, 1963). Comparison of electrophysiological and morphological 

properties between populations was performed using a Mann-Whitney U-test. All 

reported values are means ± s.d. unless otherwise stated.  

 

Clustering validation 

The obtained Ward's classification was first validated by comparing it with an 

alternative clustering of the same data performed with the K-means algorithm 

(McQueen, 1964;Hartigan and Wong, 1979). This method generates clusters, for a 

given pre-imposed number of K clusters, in a top-down manner. The positions of the 

K clusters centroids are initially randomly generated and are iteratively optimized until 

when the cluster centroid positions converge to a stable position. This method 

potentially achieves a more statistically significant discrimination between cellular 

classes, since suboptimal attributions of cells to specific clusters can be dynamically 

corrected across the iterations, unlike the Ward’s method. However, the number of K 

clusters has to be set according to a substantially arbitrary criterion. Clusters were 



therefore generated for several increasing values of K. For each K, the K-means 

algorithm was run starting from 1000 different random initial positions of the K cluster 

centroids, with a cutoff number of iterations per run equal to 1000. In the case of the 

present validation analysis, the best value of K was determined by comparison with 

the reference Ward's clustering. A cluster Ak-means generated by K-means clustering 

was considered to match a cluster AWard generated by Ward's clustering if a 

sufficiently large fraction of its elements belonged as well to the cluster AWard. K was 

then fixed by taking its smallest value for which all the K-means clusters of NPY 

neurons matched a Ward's cluster.  

The significance of the classification obtained by unsupervised clustering was further 

validated by comparison with randomized databases. To perform the randomization, 

the experimental dataset was represented as a matrix whose 43 columns 

corresponded to the different measured features (i.e. laminar location, the 32 

electrophysiological parameters and the 10 molecular parameters) and whose rows 

corresponded to different neurons. A randomized database was then built by 

permuting randomly and independently the order of entries within each column. This 

scrambling did not alter the mean values and the standard deviations of the 

randomized parameters but disrupted the structured correlations between the 

measurements of the different features. Clustering of the randomized databases was 

performed using the same parameters as for the K-means clustering of the original 

database. The quality of different clustering was quantitatively assessed by means of 

silhouette analysis (Rousseeuw, 1987). Given a data-point i in a cluster A, let a(i) 

denote the average Euclidean distance between i and other data-points in the cluster 

A; let b(i)  denote the average Euclidean distance between i and points in the second 

closest cluster. The silhouette value S(i) was then computed using the following 



formula: S(i) = b(i) − a(i)
max[a(i),b(i)]

. The inequality −1≤ S(i) ≤1 holds. A silhouette value 

about zero means that the data-point lies equally far away from more than one 

cluster. Large negative silhouette values indicate on the other hand a potential 

misclassification. The overall silhouette width S(A) for a given clustering A is defined 

as the average of the S(i) over the whole dataset and is used as global measure of 

quality of a possible clustering. The silhouette widths of the clusterings of different 

randomized databases were computed and compared with the silhouette width of the 

K-means clustering of the original, non-randomized database. A significant reduction 

of the clustering quality was expected to arise after randomization, whenever the 

clustering quality of the original clustering is “meaningful”, i.e., not just generated by 

accidental random correlations between the measurements. Silhouette widths were 

computed for 2000 independently randomized databases and the effective loss of 

quality assessed by averaging the quantity  [S(scrambled) − S(original)]/S(original)  

over all these realizations. 

 

Unsupervised clustering inclusive of morphological properties 

For a subset of n=68 morphologically recovered GABAergic interneurons, an 

additional clustering was performed considering also the measurements of 12 

somatodendritic morphological properties, in addition to laminar location, 

electrophysiological and molecular properties. Unsupervised clustering was 

performed using the K-means method. 

In order to evaluate the relevance for classification of the different classes of 

properties, comparison was performed with randomized databases. A first 

randomized database was obtained by scrambling laminar location and the 12 



morphological properties; a second database was built by scrambling the 32 

electrophysiological properties; and a third by scrambling the 10 molecular 

properties. Losses in the clustering quality were once again quantified by comparing 

silhouette widths before and after the randomization. 



Results 

Two hundred cortical neurons of superficial layers (I-IV) were first selected according 

to their laminar location and the shape of their soma as seen by infrared 

videomicroscopy (Stuart et al., 1993). In order to increase the probability of recording 

NPY neurons, cells exhibiting at least one vertically oriented process, a 

morphological feature frequently observed for NPY neurons (Hendry et al., 1984b), 

were preferentially selected. Neurons from layers I (n=8), II-III (n=133) and IV (n=59) 

were then characterized by combining patch-clamp recordings, scRT-PCR and 

biocytin labeling (Cauli et al., 1997) for physiological, molecular and morphological 

identification, respectively. To take into account the electrophysiological diversity of 

cortical neurons, 32 electrophysiological features adopting Petilla terminology (Ascoli 

et al., 2008) were determined for each cell (see Materials and Methods). The scRT-

PCR protocol was designed to detect mRNAs encoding 10 molecular markers 

commonly used to define subpopulations of cortical neurons: VGluT1, GAD, NOS-1, 

CB, PV, CR, NPY, VIP, SOM and CCK (see Materials and Methods). The 

somatodendritic morphology of physiologically and molecularly characterized 

neurons was successfully revealed for n=96 out of 200 neurons and basic 

morphometric analysis of the soma and dendritic arbor were determined for n=68 

interneurons. As expected from our sampling procedure and in accordance with the 

literature (Jin et al., 2001) neurons were mostly radially oriented (Fig. 1B and Table 

8). 

 

Identification and classification of NPY neuron subtypes 



To identify and define NPY neuron subtypes with similar, but not necessarily identical 

properties, we used a polythetic classification scheme (Tyner, 1975) defined 

according to: (i) neurons of a group must share a large number of common features 

(ii) each feature must be possessed by a large but unstated number of individuals in 

the group and (iii) no feature is necessarily possessed by all members of the group. 

Ward's clustering (Ward, 1963), which group together individuals with large 

similarities, meets these prerequisites and has been extensively used for neuronal 

classes definition based on multiple electrophysiological, molecular and/or 

morphological features (Andjelic et al., 2008;Cauli et al., 2000;Dávid et al., 

2007;Dumitriu et al., 2006;Gallopin et al., 2006;Halabisky et al., 2006;Helmstaedter et 

al., 2008;Karube et al., 2004;Tamas et al., 1997). This algorithm works by grouping 

together cells with the largest overall similarity into clusters and then by grouping 

these high-order clusters into new clusters of increasingly lower order. A clustering 

tree (dendrogram) is then built, starting from its leaves (individual cells), and grouping 

them into branched ramifications up to a common root (Fig. 1A). 

The hierarchic clustering tree generated by the Ward’s method showed that cortical 

neurons are first segregated into two clusters (Fig. 1A. All neurons of cluster 1 (n=46) 

expressed VGluT1 but not GAD (Table 3) and thus are glutamatergic neurons. Since 

NPY was rarely expressed in glutamatergic cluster neurons (1 out of 46 (2%), Fig. 1A 

and table 3), this group was not considered for further subdivision. In contrast, all 

neurons of cluster 2 (n=154) expressed GAD with (23%) or without VGluT1 (77%) 

and corresponded to GABAergic neurons. In good agreement with previous 

observations (Cauli et al., 2000;Gallopin et al., 2006) glutamatergic neurons were 

perfectly segregated from GABAergic interneurons. These GABAergic neurons 

exhibited a much higher proportion of NPY-expressing cells (40%, p<0.001, Fig. 1A). 



This cluster was further divided into 2 second order branches (Fig. 1A). Cluster 2.1 

(n=34 neurons), in which 29% of the neurons expressed NPY (Fig. 1A), was 

otherwise exclusively composed of PV-expressing neurons displaying brief spikes 

and high and sustained firing rates characteristic of the FS neurons (Kawaguchi, 

1993;Kawaguchi and Kubota, 1993;McCormick et al., 1985), and was termed FS-PV 

cluster (Kawaguchi and Kubota, 1993). The molecular diversity of cluster 2.2 neurons 

was much larger since all used molecular markers of GABAergic neurons, including 

NPY in a high proportion (43%), were detected in different combinations (n=120, data 

not shown), suggesting that it contained different neuronal populations in its higher 

order branches. Cluster 2.2 neurons exhibited indeed different firing behaviors: 

continuous adapting (n=95), bursting (n=17) and delayed (n=8) and different 

morphologies (Fig. 1B). Its two branches revealed heterogeneous molecular, 

electrophysiological and morphological features as well (Fig. 1A and B). In addition, 

cluster 2.2.1 contained the majority of adapting neurons (61%) whereas cluster 2.2.2 

contained the large majority of bursting neurons (88%) and all delayed neurons 

suggesting that both clusters are composed of different populations and can be 

further subdivided (Fig. 1A). Almost all cluster 2.2.1.1 neurons expressed SOM (94%) 

in addition to NPY (70%, Fig. 1A and Table 3). At high firing rates, these cells also 

displayed a marked frequency adaptation characteristic of adapting (n=16) and burst 

firing (n=1) neurons and were therefore termed adapting SOM neurons. Cluster 

2.2.1.2 neurons rarely expressed NPY (16%, Fig. 1A and Table 3) but frequently VIP 

(74%, Table 3). All neurons of this cluster (but one) were adapting cells and were 

termed adapting VIP neurons. Similarly cluster 2.2.2.1 neurons rarely expressed NPY 

(18%, Fig. 1A) as compared to VIP (77%, Table 3). The majority of these cells (n=17 

out of 22) displayed a burst firing behavior and were termed bursting VIP neurons. 



NPY was frequently expressed (76%, Fig. 1A) in cluster 2.2.2.2 neurons which 

mainly contained adapting neurons (n=30) and all delayed neurons (n=8). Since at 

high firing rates, both spiking behaviors exhibit a marked frequency adaptation 

(Kawaguchi, 1995) these cells were termed adapting NPY neurons. In summary, this 

Ward's clustering allowed to discriminate 3 different clusters of neurons for which 

NPY was detected with a relatively high occurrence: 29, 70 and 76% for FS-PV, 

adapting SOM and adapting NPY neurons.  

 

Three main classes of NPY-expressing neurons 

FS-PV cells, absent from layer I, were among the deepest neurons of our sample 

(Table 2) and generally displayed large fusiform somata (Fig. 2A, E and Table 2). In 

good agreement with previous reports (Cauli et al., 1997;Cauli et al., 

2000;Fuentealba et al., 2008;Gallopin et al., 2006;Gonchar et al., 2007;Kubota et al., 

1994;Wang et al., 2002), PV was frequently co-expressed with CB and to a lesser 

extent NPY (Fig. 2B and D and Table 3). These cells were characterized by low input 

resistance, short membrane time constant (Fig. 2A and C, Table 4) and the highest 

rheobase (Fig. 2A and C and Table 5) of our sample. They also typically (Kawaguchi, 

1993;Kawaguchi and Kubota, 1993) fired action potentials of short duration and small 

amplitude (Table 7) with sharp and monophasic (n=25 out 34 neurons) fast AHP (Fig. 

2A and C, Table 7). However, in some FS-PV neurons (n=9 out of 34) action 

potential repolarization consisted of a first fast AHP component followed by a fast 

ADP and a second late AHP component (data not shown). The majority (56%) of FS-

PV neurons exhibited an acceleration of their firing rate when depolarized just above 

threshold (Table 5). Interestingly, NPY-expressing FS-PV neurons (n=10) fired action 

potentials with a longer latency (512.8 ± 242.9 ms, Fig. 2A, B and E) than other FS-



PV neurons (264.1 ± 231.1 ms, p<0.05, Fig. 2C, D and E). However, no other 

statistically significant difference in electrophysiological, molecular or morphological 

features could be observed between these two classes of FS-PV neurons (data not 

shown). At higher stimulation intensities FS-PV neurons were distinctly able to 

sustain a high firing rate resulting in a high steady state frequency with little or no 

frequency adaptation (Fig. 2A and C and Table 6). 

FS-PV neurons contained a high number of primary dendrites emanating in all 

directions which results in a high multipolarity value (Table 8). The majority of FS-PV 

cells (n=11 out of 15) displayed a multipolar dendritic morphology (Fig. 1B a4-5, 

Table 8), the remaining FS-PV neurons being either tufted (n=2) or bipolar (n=2). The 

axon of the multipolar FS-PV cells was basically restricted to their home layer with an 

overall configuration being compatible with basket cells (Fig. 1B a4-5; (Kawaguchi, 

1995;Wang et al., 2002)) but not with chandelier cells (Kawaguchi, 1995). The FS-PV 

cells with the most vertically biased dendritic trees tended to project into the 

neighboring layers, too. 

Similarly to FS-PV neurons, adapting SOM neurons were absent from layer I and 

exhibited large fusiform somata (Fig. 3A and Table 2). SOM was detected in all (but 

one) neurons (n=17) of this cluster and was frequently co-expressed with CB and 

NPY (Fig. 1A and 3B and Table 3), two molecular markers classically associated with 

SOM. (Gonchar et al., 2007;Gonchar and Burkhalter, 1997;Kubota et al., 1994). A 

very low proportion of SOM neurons (n=1 out of 17) expressed NOS-1 (Fig. 1A). 

Remarkably, adapting SOM neurons exhibited a depolarized resting membrane 

potential (Table 4) and, as indicated by their low rheobase (Table 5), were electrically 

more excitable than any other neuronal type of the present study, in marked contrast 

to the FS-PV type. Another highly distinctive feature of adapting SOM neurons was 



the pronounced voltage sag induced by hyperpolarizing current pulses (Fig 3A, Table 

4). Typically, at high stimulation intensities, the pronounced frequency adaptation of 

these neurons developed slowly resulting in a slow time constant of early frequency 

adaptation (Table 6). These neurons fired action potentials of a duration intermediate 

between FS-PV neurons and glutamatergic neurons (Table 7) making difficult their 

identification based on spike width. 

Morphologically recovered adapting SOM neurons (n=11) displayed a radially 

oriented dendritic arbor (Fig. 1B a6 and Table 8) and were either bipolar (n=3), tufted 

(n=4) or multipolar (n=4). Basic inspection of their axonal arbor revealed an axon 

ascending (n=8 out of 11) into and arborizing in layer I (n=5 out of 11; Fig. 1B a6), a 

morphological feature of SOM-expressing Martinotti cells of rats (Cauli et al., 

1997;Kawaguchi and Kubota, 1996;Wang et al., 2004) and transgenic mice (Dumitriu 

et al., 2006;Halabisky et al., 2006;Ma et al., 2006). 

In contrast to other types of NPY-expressing neurons, adapting NPY cells were the 

most superficial neuronal class (Table 2) and the majority of layer I neurons (n= 7 out 

of 8) fall into this cell population. The adapting NPY cluster contained the largest 

proportion of NPY-expressing neurons (n=29 out of 38, Fig. 1A, 4B and D and Table 

3) and NOS-1 was more frequently detected in these neurons than in any other cell 

class (Fig. 1A, 4B and Table 3). Adapting NPY neurons exhibited the lowest minimal 

frequency of our study (Table 5) indicative of a slow spiking behavior near threshold. 

In addition, adapting NPY neurons fired action potentials with a biphasic 

afterpotential consisting of early and late component AHP (n=28 out of 38) with little 

or no fast ADP (n=17 out of 34, Fig. 4A, C and Table 7) being in marked contrast with 

other clusters of GABAergic neurons (Table 7) which exhibited either monophasic 

(FS-PV neurons) or complex afterpotential waveforms (adapting SOM, VIP and 



bursting VIP). Despite these considerations it was difficult to find other discriminative 

electrophysiological features for adapting NPY neurons. Indeed, these cells shared 

some properties with other neuronal classes. For instance and similarly to FS-PV 

neurons, some (n=11 out of 38) adapting NPY cluster neurons displayed an 

acceleration of their firing rate including 2 neurons that could be clearly identified as 

delayed cells (data not shown). On the other hand, high stimulation intensity resulted 

in a marked frequency adaptation and a pronounced amplitude accommodation (Fig. 

4A, C and Table 6), two physiological behaviors also observed in VIP-expressing 

neurons (Cauli et al., 2000) but not in other GABAergic neuronal classes. 

Similarly to FS-PV neurons, morphologically examined adapting NPY neurons (n=21) 

displayed a large number of primary dendrites emanating in all direction (Fig. 1B a9-

10). The dendritic arbor was most evenly distributed resulting in a relatively high 

multipolarity value (Table 8). In addition the compact dendritic arbors exhibited a 

small vertical span and verticality (Table 8). Adapting NPY neurons were either 

multipolar (n=13), tufted (n=5) or bipolar (n=3) at the somatodendritic level. Basic 

examination of the axon of adapting NPY neurons revealed, in most instance (n=7 

out of 8), a very thin and dense axon ramifying in all directions (Fig. 1B a9-10) 

resembling those of neurogliaform neurons (Hestrin and Armstrong, 

1996;Kawaguchi, 1995;Povysheva et al., 2007;Tamas et al., 2003;Zhou and Hablitz, 

1996). 

 

Classes of infrequently NPY-expressing cortical neurons 

In addition to the three types of NPY-expressing cells described above, Ward's 

clustering retrieved three other neuronal groups (i.e. glutamatergic, adapting VIP and 

bursting VIP) corresponding to previously described populations (Cauli et al., 



1997;Cauli et al., 2000;Connors and Gutnick, 1990;Kawaguchi and Kubota, 

1996;McCormick et al., 1985;Staiger et al., 2004). 

Glutamatergic neurons, absent from layer I, were among the deepest neurons of our 

study and exhibited small somata (Fig. 5A and C and Table 2), These cells displayed 

either adapting (originally referred as "regular spiking", n= 33, Fig. 5A, (Connors and 

Gutnick, 1990;McCormick et al., 1985;Mountcastle et al., 1969)) or intrinsically 

bursting (n= 13, Fig. 5C) firing behaviors. Adapting cells were found in layers II to IV 

whereas, and in good agreement with previous reports (Connors and Gutnick, 

1990;McCormick et al., 1985;Schubert et al., 2003;Staiger et al., 2004), bursting cells 

were almost exclusively found in layer IV, except for one neuron located in layer III 

(cf. (de Kock and Sakmann, 2008)). Glutamatergic neurons were characterized by a 

hyperpolarized resting membrane potential (Table 4) and a relatively pronounced 

voltage sag (Fig. 5A, 5C and Table 4). Remarkably, and in good agreement with 

previous observations (Cauli et al., 1997;Cauli et al., 2000;Connors and Gutnick, 

1990;Kawaguchi, 1993;McCormick et al., 1985), glutamatergic neurons fired long 

duration action potentials with marked amplitude reduction and duration increase 

(Fig. 5A, 5C and Table 7). Their first AHP components were distinctly long lasting 

and of small amplitude (Fig. 5A, 5C and Table 7). At high stimulation intensities 

glutamatergic neurons also exhibited a marked spike amplitude accommodation, a 

pronounced early frequency adaptation (Fig. 5A, 5C and Table 6) and a low maximal 

steady state frequency (Table 6) which were also distinctive features. 

Glutamatergic neurons were relatively homogeneous at the electrophysiological and 

molecular levels but they revealed heterogeneous morphologies (Fig. 1B a1-3) 

supporting the idea that glutamatergic neurons are composed of more than one 

neuronal type (Connors and Gutnick, 1990;McCormick et al., 1985;Nelson et al., 



2006;Sugino et al., 2006). The same characteristics were used to distinguish three 

types of morphology as in (Staiger et al., 2004). Briefly, spiny neurons in layer IV 

without an apical dendrite extending out of the barrel into supragranular layers were 

categorized as (i) spiny stellate cells. Spiny neurons with a prominent apical dendrite 

were divided into two further classes: if the other primary dendrites were distributed 

around the whole perimeter of the cell body then the cell was classified as (ii) star 

pyramidal cell, and if the other (non-apical) dendrites were clustered in a zone around 

the basal pole of the cell body the cell was classified as pyramidal cell. Glutamatergic 

neurons exhibited either spiny stellate (n=10, Fig. 1B a2), star pyramidal (n=2, Fig. 

1B a3) or pyramidal cell (n=16, Fig. 1B a1), morphologies that could not be correlated 

with either adapting or bursting behaviors (Connors and Gutnick, 1990;McCormick et 

al., 1985;Staiger et al., 2004). 

Although, Ward's method defined two different classes of VIP-expressing neurons 

(i.e. adapting VIP and bursting VIP), these two neuronal groups possessed 

numerous common properties. Both classes were virtually (n=64 out of 65) absent 

from layer I, as previously described (Bayraktar et al., 2000;Gonchar et al., 

2007;Uematsu et al., 2008). However, in contrast with adapting VIP neurons, bursting 

VIP neurons exhibited smaller and rounder somata which could not generally be 

categorized as fusiform (Table 2). 

Adapting and bursting VIP cells were characterized by a high occurrence of VIP and 

CR to a lesser extent (Table 3) and exhibited the highest input resistance (Fig. 6A 

and C and Table 4) and the lowest membrane capacitance (Table 4) of our sample. 

This suggests that adapting and bursting VIP neurons might correspond to a single 

neuronal type whose bursting behavior can be viewed as an "uncommon" feature 

(Tyner, 1975). The Ward subdivision of VIP neurons in two clusters is presumably 



reflected by electrophysiological features affected by the high firing rate that occurs in 

bursts of action potentials. Indeed, bursting behavior being defined by high frequency 

at the onset of firing followed by a strong adaptation (Ascoli et al., 2008), this results 

in higher minimal steady state frequency and a more pronounced adaptation in 

bursting VIP than in adapting VIP neurons (Fig. 6C, Table 5). Bursting VIP neurons 

also fired action potentials (Fig. 6C) with shorter spike latency (Table 5) and 

displayed a more pronounced amplitude reduction and a larger duration increase 

(Fig. 6C, Table 7). On the other hand, adapting VIP neurons typically (n=40 out 43) 

displayed complex repolarization phase of their first two action potentials consisting 

of a first component AHP, followed by a pronounced ADP and a late AHP component 

(Fig. 6A). In bursting VIP neurons this repolarization behavior was almost never 

observed (n=1 out of 22, p<0.001) for the first spike (Fig. 6C) and rarely for the 

second one (n= 9 out of 22). 

In good agreement with previous reports (Cauli et al., 1997;Porter et al., 1998) both 

adapting VIP and bursting VIP neurons displayed the lowest and the most polarized 

number of primary dendrites which formed a slender vertical dendritic tree (Fig. 1B 

a7-8, Table 8) spanning at least layers I to IV (some of them reaching layer Vb or VI). 

VIP cells were indeed dominated by bipolar (n= 11 out of 23) and tufted (n=9) 

somatodendritic morphology, the remaining neurons (n=3) being multipolar. As 

previously observed for both adapting and bursting VIP neurons (Cauli et al., 

1997;Kawaguchi and Kubota, 1996;Porter et al., 1998), their axonal arbor was mainly 

descending (Fig. 1B a7-8) and, in some cases, reached the border of the white 

matter (Fig. 1B a7). The VIP cells with multipolar morphology (n=3 out of 23; not 

shown) could belong to the small basket cell population (Kawaguchi and Kubota, 

1996;Wang et al., 2002). The difference in firing pattern of VIP neurons was not 



found to correlate with other differences of either connectivity (Porter et al., 1998), 

pharmacological profile (Cauli et al., 2000;Férézou et al., 2002;Férézou et al., 

2006;Porter et al., 1999) or morphology (Cauli et al., 1997;Kawaguchi and Kubota, 

1996;Porter et al., 1998;Wang et al., 2002). This strongly argues in favor of adapting 

VIP and bursting VIP neurons as being a single neuronal type that can exhibit an 

"uncommon" feature (burst of action potential) in a polythetic classification scheme 

(Tyner, 1975). 

 

Validation of Ward's clustering 

The bottom-up approach of Ward's clustering provides a hierarchic classification but 

can constitute as well a limitation. Indeed, single cells are early assigned to a branch 

of the tree without the possibility to correct this initial assignment. This can result in a 

relatively poor accuracy of clusters, especially at higher levels of clustering. In 

contrast, K-means clustering (Hartigan and Wong, 1979;MacQueen, 1967), 

generates clusters for a given pre-imposed number of K clusters (see Materials and 

Methods), in a top-down manner. Suboptimal attributions of cells to specific clusters 

can be detected and corrected dynamically across the algorithm iterations. Therefore, 

this method potentially achieves a more statistically significant discrimination 

between cellular clusters, the major difficulty being to determine the optimal number 

of clusters K. 

The reliability of Ward's clustering was then assessed by comparing it with the 

clusters generated by the K-means method (see Materials and Methods). The lowest 

K value generating clusters matching all the three Ward’s clusters of NPY neurons 

was obtained for K=7 (Fig. 7A). For this value, 94, 82 and 95% of FS-PV, adapting 

SOM and adapting NPY neurons respectively were matching the corresponding 



Ward's clusters (Fig. 7A). In addition, K-means clustering also generated 3 

glutamatergic clusters, strictly included within the Ward’s glutamatergic cluster, and 

were merged into a single glutamatergic cluster for the sake of simplicity. Finally, a 

single cluster of VIP neurons containing the Ward's adapting and bursting VIP 

clusters was generated (Fig. 7A and B; see also supplementary Tables S1-5). 

Interestingly, K-means could not generate a separated cluster matching the Ward's 

bursting VIP cluster. This further indicates that adapting VIP and bursting VIP 

neurons share important similarities (see above). The smaller K value matching all 

the clusters of the reference Ward clustering, including the bursting VIP cluster, was 

K=12. Interestingly, for this value, additional subdivisions of the Ward adapting VIP 

and adapting NPY clusters were also generated (see Supplementary Fig. S1 and 

tables S6 to S10). One of the adapting NPY subclusters (n=26, adapting NPY 2 

subcluster) was characterized by a higher occurrence of NOS-1 associated with a 

higher rheobase (see Supplementary tables S6 and S8) and larger spike amplitudes. 

Interestingly, also all neurons of the left branch of the Ward adapting NPY cluster 

(n=8, Fig. 1A) expressed NOS-1. It was however difficult, for both Ward and K-means 

clustering, to find striking distinctive electrophysiological feature(s) allowing a clear 

cut discrimination of adapting NPY (and VIP) neurons into robust subclasses.  

Similarly, K-means clustering restricted to the sample of NPY-positive neurons 

(n=63) also reliably reproduced the three classes of NPY neurons for a K value as 

small as K=3. For this value, 80, 100, and 93% of FS-PV, adapting SOM and 

adapting NPY neurons respectively were matching the reference Ward’s cluster of 

frequently NPY-expressing neurons (see Supplementary Fig. S2 A). The remaining 

NPY cells, corresponding mainly to adapting and bursting VIP neurons, were 

grouped with adapting NPY neurons. A K value of K=4, for which the matching of the 



three types of frequently expressing NPY neurons was maintained, was necessary to 

segregate adapting/bursting VIP neurons from adapting NPY neurons (see 

Supplementary Fig. S2 B). Interestingly, for K=5 K-means algorithm also reproduced 

the subdivision of adapting NPY cells in adapting NPY 1 and NPY 2 neurons while 

preserving the matching of FS-PV and adapting SOM neurons (see Supplementary 

Fig. S2 C). These observations indicate that unsupervised clustering limited to NPY-

expressing neurons did not improve the discrimination between NPY neuron 

subtypes, but notably matched the cluster subdivision obtained by K-means over the 

whole sample.  

The overall quality of the reference Ward's clustering and of the K-means clustering 

was evaluated by computing their silhouette width (see Materials and Methods). The 

silhouette width of the Ward's clustering was S(Ward) = 0.26 and the silhouette width 

of the retained K-means clustering (i.e., K=7 with merged glutamatergic clusters) was 

S(K-means) = 0.30 (Fig. 7C). K-means method provided therefore a refined quality 

unsupervised classification of the analyzed cells, in substantial agreement with the 

Ward’s method, as shown by the elevated degree of matching between the two 

clusterings (Fig. 7A). 

In order to assess the statistical significance of these unsupervised classifications, 

comparisons were also performed with clusterings of randomized databases (see 

Materials and Methods). The average silhouette width of a K-means clustering of a 

fully randomized database (for K=7) was S(fully randomized) = 0.034 ± 0.004, which 

is noteworthy smaller than for the original non-randomized database (overall quality 

reduction of 89%, Fig. 7C). This large decrease in the quality of clustering after global 

randomization of the database attests that non-trivial structured correlations between 



the measurements of the different features do exist, leading to the possibility of a 

significant and robust unsupervised classification. 

 

Relevance of the different groups of properties for the classification 

For a subset of n=68 morphologically recovered GABAergic interneurons 

unsupervised clustering was also performed taking into account the 12 

somatodendritic morphological features in addition to the previously used properties 

(n=43). Interestingly, the introduction of morphological descriptors did not modify 

significantly the obtained classification, since, starting from a value of K=7, most of 

the obtained clusters matched the Ward’s reference classification (Fig. S3 A and B). 

Once again, K-means uncovered the potential existence of multiple adapting NPY 

subclusters. For instance, for K=7, the adapting NPY cluster broke into two 

subclusters and few NPY neurons belonging to other Ward’s clusters grouped to form 

a further adapting NPY subcluster (adapting NPY a,b and c subclusters; see 

Supplementary Information, Tables S11 to S16). This multiplicity of NPY clusters 

reflected however the over-representation of NPY neurons into the small database 

used for the full polythetic clustering (NPY expressed by n=35 out of 68 cells, i.e.  

51% of cells in the database, against 31% in the full database of 200 cells). The 

limited number of morphologically reconstructed cells prevented to give an 

unambiguous simple description of the specificities of the different adapting NPY 

subtypes. 

The full polythetic clustering over 68 GABAergic interneurons had an overall 

silhouette width of S=0.27 (Fig. 8). Databases in which only layer location and 

morphological properties were randomized beared clusterings with an average 

silhouette width of S(morphological scrambled) = 0.22 ± 0.01. When only 



electrophysiological properties were randomized, the average silhouette width was 

S(electrophysiological scrambled) = 0.09 ± 0.01. Finally, when only molecular 

properties were randomized, the average silhouette width was S(molecular 

scrambled) = 0.18 ± 0.01. 13 morphological properties (including laminar location), 

10 molecular properties, and 32 electrophysiological properties were considered in 

full polythetic clustering. The loss of clustering quality had therefore to be weighted 

by the different numbers of scrambled properties (Fig. 8). The scrambling of a single 

morphological property produced an average quality reduction of the (1.5 ± 0.3%); 

the scrambling of a single electrophysiological property produced an average quality 

reduction of the (2.0 ± 0.1%); and the scrambling of a single molecular property 

produced an average quality reduction of the (3.3 ± 0.4%). This analysis suggests 

that the measurement of molecular properties is more informative than the 

measurement of, in the order, electrophysiological and morphological properties for 

the correct classification of a specific cell. 



Discussion 

The aim of the present study was the identification and characterization of different 

subpopulations of NPY-expressing neurons. Electrophysiological, molecular and 

morphological features of recorded neurons were determined by combining whole-

cell current clamp recordings, single-cell RT-mPCR and biocytin labeling. Neuronal 

types were defined by using two different unsupervised clustering algorithms taking 

simultaneously into account, laminar location, as well as physiological and molecular 

properties. Remarkably, this classification scheme clearly disclosed an abundant 

population of interneurons co-expressing NPY and NOS-I with distinctive 

electrophysiological, molecular and morphological properties. In addition, it 

consistently retrieved two other types of NPY-expressing neurons (adapting SOM 

and FS-PV). 

 

Polythetic classification schemes of cortical neurons 

Our classification of cortical neurons was based on laminar location, 

electrophysiological and molecular features (see Materials and Methods) chosen to 

describe physiological and molecular phenotypes described in the literature (Ascoli et 

al., 2008). In order to (i) avoid an arbitrary choice of features considered to be 

"essential" for membership and (ii) restrict the number of generated neuronal classes 

we used a polythetic classification scheme (Tyner, 1975), which intrinsically tolerates 

a certain degree of variability within cell classes. 

For this same reason, it is not surprising that the clusterings obtained by the Ward’s 

and the K-means methods are slightly different. A small number of individual cells are 

assigned to different clusters by the two methods, but matching clusters continue to 

share similar average features, thus corresponding to completely equivalent 



polythetic classifications. The robustness of such a classification is made manifest by 

the fact that it is consistently generated by multiple methods belonging to qualitatively 

different algorithmic families. Although Ward’s clustering achieves a statistically 

lesser significant discrimination between cellular classes than K-means clustering, 

this algorithm offers the advantage that it does not require any preliminary 

assumption about the number of cell classes. 

 

Functional diversity of NPY-expressing interneurons types 

The relevance of our classification of NPY-expressing interneurons into three main 

types is further supported by functional evidence. Indeed, specific function is 

considered to be the ultimate criterion for neuronal type definition (Ascoli et al., 

2008). The well established FS-PV type (Cauli et al., 1997;Kawaguchi and Kubota, 

1993) was mainly composed of basket cells (Kawaguchi and Kubota, 1993;Wang et 

al., 2002). These interneurons exert perisomatic inhibition (Freund and Katona, 

2007;Reyes et al., 1998;Tamas et al., 2004) and form an electrically coupled network 

(Galarreta and Hestrin, 1999;Gibson et al., 1999). In good agreement with previous 

studies, about one third of cortical FS-PV neurons co-expressed NPY at the mRNA 

(Cauli et al., 1997;Cauli et al., 2000;Gallopin et al., 2006;Wang et al., 2002) and 

protein levels (Fuentealba et al., 2008), a molecular feature that correlates with the 

first spike latency (present study). These electrophysiological behavior is due to an 

ID-type K+ current mediated by channels composed of Kv1.1 subunits as indicated by 

modeling (Golomb et al., 2007), pharmacological and immunocytochemical evidence 

(Goldberg et al., 2008;Povysheva et al., 2008). Based on their axon, and to a lesser 

extent dendrites, FS-PV basket cells can be subdivided in two subclasses : large and 

nest basket cells that also exhibit different firing properties : large basket cells being 



delayed whereas nest basket cells can be either delayed or continuous (Wang et al., 

2002). However, and presumably due to the harvesting procedure, the axon of most 

of our FS-PV cells was not sufficiently stained to determine precisely their 

morphological subclass. Similarly, no statistically significant differences in the 

somatodendritic features of NPY-positive and -negative FS-PV neurons could be 

determined. 

Adapting SOM type interneurons corresponded mainly to Martinotti cells 

characterized by an ascending axon (Cauli et al., 1997;Kawaguchi and Kubota, 

1996;Wang et al., 2004). Adapting SOM interneurons receive facilitating excitatory 

postsynaptic potentials from pyramidal cells (Reyes et al., 1998) that result in strong 

recurrent inhibition (Kapfer et al., 2007). Similarly to FS-PV neurons, adapting SOM 

cells also form a network of electrically coupled interneurons (Gibson et al., 1999) 

whose rhythmic activity is synchronized by group I metabotropic glutamate agonists 

(Beierlein et al., 2000) through the activation of the mGluR1α receptors they express 

(Baude et al., 1993;Cauli et al., 2000). 

Remarkably, adapting NPY neurons exhibited electrophysiological and morphological 

properties very similar to those of neurogliaform cells (Ascoli et al., 2008;Chu et al., 

2003;Kawaguchi, 1995;Simon et al., 2005) known to express α-actinin 2 (Price et al., 

2005;Uematsu et al., 2008), NPY and NOS-1 (Cauli et al., 2004;Estrada and 

DeFelipe, 1998;Price et al., 2005;Zaitsev et al., 2008). Neurogliaform cells, 

responsible for the slow GABAergic inhibition of pyramidal cells (Szabadics et al., 

2007;Tamas et al., 2003) and interneurons (Olah et al., 2007), occupy a particular 

place in the cortical circuit. Indeed and in contrast to FS-PV and adapting SOM 

interneurons, their electrical coupling is much more complex as neurogliaform cells 

are not only coupled with other neurogliaform cells (Chu et al., 2003) but also with 



FS-PV and putative adapting SOM neurons (Simon et al., 2005). Adapting NPY 

neurons might orchestrate a complex network composed of the three main types of 

NPY-expressing cells. Furthermore these neurons exhibit pharmacological profiles 

distinct form other NPY-expressing interneurons but, interestingly, similar to VIP 

neurons since they are responsive to nicotinic (Christophe et al., 2002;Gulledge et 

al., 2006;Porter et al., 1999), µ-opioids (Férézou et al., 2006) and presumably 5-HT3 

agonists (Férézou et al., 2002;Zhou and Hablitz, 1999).  

Taken together their differential connectivity and pharmacological profile indicate that 

FS-PV, adapting SOM and adapting NPY neurons constitute three functionally 

distinct populations of NPY interneurons that now can be easily identified in acute 

slices within a few minutes of whole-cell recording. 

 

Diversity of NOS-1 expressing neurons 

Nitrergic neurons are usually classified according to the intensity of NADPH 

diaphorase staining and/or NOS-1 immunoreactivity (Dawson et al., 1991;Gabbott et 

al., 1997;Judas et al., 1999;Lee and Jeon, 2005;Yan et al., 1996;Yan and Garey, 

1997) and to the size of their soma as type I (large and heavily labeled somata) or 

type II neurons (small and lightly stained somata) that differ in areal, laminar 

distribution and density (Bidmon et al., 1997). Immunohistochemical reports have 

shown that nitrergic neurons are one of the rarest neuronal population and co-

express NPY and SOM (Dawson et al., 1991;Estrada and DeFelipe, 1998;Gonchar 

and Burkhalter, 1997;Kubota et al., 1994;Smiley et al., 2000). This is in marked 

contrast with two recent studies which revealed that nitrergic interneurons constitute 

an abundant class of cortical neurons co-expressing NPY but not SOM (Fuentealba 

et al., 2008;Price et al., 2005). It appears that, due to technical considerations 



inherent to the weak staining of type II neurons (Gerashchenko et al., 2008;Lee and 

Jeon, 2005), this neuronal population has been largely neglected leading to an 

inaccurate estimation of the degree of co-expression between NOS-1 and other 

molecular markers. Our study confirmed a high degree of co-expression for NPY 

(80%, 12 out of 15) but not for SOM (13%, 2 out of 15). Neurons co-expressing NOS-

1, NPY and SOM were particularly rare (1.3 % of our sample of GABAergic neurons) 

and presented relatively large somata (Table 2), two features shared by type I 

neurons. In contrast the other nitrergic neurons were much more frequent and 

displayed relatively small somata (Table 2), indicating that they correspond to type II 

neurons. Interestingly, nitrergic adapting NPY neurons do not express SOM and 

exhibit electrophysiological and molecular features distinct from those of adapting 

SOM neurons. These observations indicate that type I and type II neurons constitute 

two functionally different neuronal populations differentially recruited within the 

cortical network as suggested by their difference in electrical excitability. Interestingly 

type I nitrergic neurons constitute a population of projecting GABAergic neurons 

(Higo et al., 2007;Tomioka et al., 2005;Tomioka and Rockland, 2007) and were 

recently found to be activated during sleep states (Gerashchenko et al., 2008). The 

puzzling co-expression of a vasodilator (NO) and a vasoconstrictor (NPY) of diving 

arterioles (Cauli et al., 2004) suggest that nitrergic neurons, either adapting SOM 

and/or adapting NPY might actively participate in the center/surround pattern of 

vasodilations/vasoconstrictions that occurs in vivo under sensory stimulations (Devor 

et al., 2007). The valuable identification of distinctive morphological, 

electrophysiological and molecular features for type I and type II nitrergic neurons will 

help to uncover their respective role(s) in this complex physiological process. 



Table 1. PCR primers 

 

Genes 
Accession # 

 
First PCR primers 
 

Size
(bp) Second PCR nested primers Size

(bp)
VGluT1 
NM_053859.1 
 

Sense, 361 GGCTCCTTTTTCTGGGGGTAC 
Antisense, 600: CCAGCCGACTCCGTTCTAAG 259 Sense, 373: TGGGGGTACATTGTCACTCAGA 

Antisense, 553: ATGGCAAGCAGGGTATGTGAC 201 
GAD65 
NM_012563.1 
 

Sense, 99: CCAAAAGTTCACGGGCGG 
Antisense, 454: TCCTCCAGATTTTGCGGTTG 375 Sense, 156: TGAGAAGCCAGCAGAGAGCG 

Antisense, 392:TGGGGTAATGGAAATCAATCACTT 260 

GAD67 
NM_017007.1 
| 

Sense, 83: ATGATACTTGGTGTGGCGTAGC 
Antisense, 314: GTTTGCTCCTCCCCGTTCTTAG 253 Sense, 159: CAATAGCCTGGAAGAGAAGAGTCG 

Antisense, 314: GTTTGCTCCTCCCCGTTCTTAG 177 
NOS-1 
NM_052799.1 
 

Sense, 1668: CCTGGGGCTCAAATGGTATG 
Antisense, 2021: CACAATCCACACCCAGTCGG 373 Sense, 1689: CCTCCCCGCTGTGTCCAA 

Antisense, 1937: GAGTGGTGGTCAACGATGGTCA 270 
CB  
NM_031984.2 
 

Sense, 139: GAAAGAAGGCTGGATTGGAG 
Antisense, 544: CCCACACATTTTGATTCCCTG 426 Sense, 194: ATGGGCAGAGAGATGATGGG 

Antisense, 400: TATCATCCACGGTCTTGTTTGC 228 

PV 
NM_022499.2 
 

Sense, 104: GCCTGAAGAAAAAGAGTGCGG 
Antisense, 266: GTCCCCGTCCTTGTCTCCAG  181 Sense, 121: GCGGATGATGTGAAGAAGGTG 

Antisense, 246 : CAGCCATCAGCGTCTTTGTT 145 

CR  
NM_053988.1 
 

Sense, 83: TTGATGCTGACGGAAATGGGTA 
Antisense, 327: CAAGCCTCCATAAACTCAGCG 265 Sense, 141: GCTGGAGAAGGCAAGGAAAGG 

Antisense, 272: ATTCTCTTCGGTTGGCAGGA 151 
NPY 
NM_012614.1  
 

Sense, 18: CGAATGGGGCTGTGTGGA; 
Antisense, 289: AGTTTCATTTCCCATCACCACAT 295 Sense, 41: CCCTCGCTCTATCCCTGCTC 

Antisense, 249: GTTCTGGGGGCATTTTCTGTG 229 
VIP 
XM_217838.4 
 

Sense, 216: TTATGATGTGTCCAGAAATGCGAG 
Antisense, 616: TTTTATTTGGTTTTGCTATGGAAG 424 Sense, 321: TGGCAAACGAATCAGCAGTAGC 

Antisense, 461: GAATCTCCCTCACTGCTCCTCT 162 

SOM  
NM_012659.1 
 

Sense, 1: ATGCTGTCCTGCCGTCTCCA 
Antisense, 231: GCCTCATCTCGTCCTGCTCA 250 Sense, 41: GCATCGTCCTGGCTTTGGG 

Antisense, 191: AGGCTCCAGGGCATCGTTCT 
170 

 
CCK 
NM_012829.1 
 

Sense, 16: TGTCTGTGCGTGGTGATGGC 
Antisense, 546 GCATAGCAACATTAGGTCTGGGAG 

554 
 

Sense, 192 : ATACATCCAGCAGGTCCGCAA 
Antisense, 391 : GGTCGTGTGCGTGGTTGTTT 

219 
 

 
Note: Position 1, first base of the start codon. 



Table 2. Somatic properties of different cortical neurons 

Glutamatergic FS-PV Adapt. 
SOM 

Adapt.  
VIP 

Burst. 
VIP 

Adapt. 
NPY 

 

(n= 46) (n= 34) (n= 17) (n= 43) (n= 22) (n= 38) 

3.4 ± 0.8 3.2 ± 0.7 2.8 ± 0.7 2.5 ± 0.6 2.6 ± 0.6 2.1 ± 0.7 Layer 
 Adapt. NPY < Adapt. VIP Burst. VIP, Adapt. SOM < FS-PV, Glutamatergic 

17.1 ± 3.8 21.3 ± 4.3 22.4 ± 6.3 18.8 ± 3.3 16.4 ± 3.1 20.4 ± 7.7 
Major axis (µm) 

Burst. VIP, Glutamatergic < Adapt. VIP, Adapt. NPY, FS-PV, Adapt. SOM 

9.4 ± 1.5 9.4 ± 1.1 8.6 ± 1.1 8.3 ± 0.9 8.8 ± 1.2 9.0 ± 1.5 
Minor axis (µm) 

Adapt. VIP, Adapt. SOM < FS-PV, Glutamatergic 

1.9 ± 0.6 2.3 ± 0.5 2.6 ± 0.7 2.3 ± 0.4 1.9 ± 0.4 2.3 ± 0.8 
Elongation 

Burst. VIP, Glutamatergic < Adapt. VIP, FS-PV, Adapt. NPY, Adapt. SOM  

119.4 ± 29.1 152.3 ± 31.4 147.7 ± 45.9 115.2 ± 22.1 107.2 ± 28.4 139.9 ± 56.7 
Area (µm2) 

Burst. VIP, Adapt. VIP, Glutamatergic < Adapt. SOM, FS-PV 

45.4 ± 7.5 52.1 ± 7.6 52.9 ± 12.5 45.9 ± 6.5 42.1 ± 6.9 50.5 ± 14.9 
Perimeter (µm) 

Burst. VIP < glutamatergic, Adapt. VIP < FS-PV, Adapt. SOM and Burst. VIP < Adapt. NPY 

1.4 ± 0.3 1.4 ± 0.2 1.5 ± 0.3 1.6 ± 1.0 1.3 ± 0.2 1.5 ± 0.3 
Roundness 

Burst. VIP < FS-PV, Adapt. SOM, Adapt. NPY, Adapt. VIP 

n, number of cells; < significantly smaller with P ≤ 0.05; << significantly smaller with P 
≤ 0.01; <<< significantly smaller with P ≤ 0.001 
 



Table 3. Occurrence of molecular markers in different neuronal types 

n, number of cells; > significantly larger with P ≤ 0.05; >> significantly larger with P ≤ 

0.01; >>> significantly larger with P ≤ 0.001 

 

Glutamatergic FS-PV Adapt. SOM Adapt. VIP Burst. VIP Adapt. NPY  
n = 46 n = 34 n = 17 n = 43 n = 22 n = 38 

       
100 % 29 % 18 % 12 % 32 % 29 % VGluT1 

Glutamatergic >>>  FS-PV, Adapt. SOM, Adapt. VIP, Burst. VIP, Adapt. NPY  
  

0 % 100 % 100 % 100 % 100 % 100 % GAD 
FS-PV, Adapt. SOM, Adapt. VIP, Burst. VIP, Adapt. NPY >>> Glutamatergic  

       
0 % 9 % 6 % 2 % 0 % 26 % NOS-1 

Adapt. NPY >> Glutamatergic, Adapt. VIP, Burst. VIP  
       

44 % 59 % 88 % 9 % 5 % 3 % CB 
Adapt. SOM > Glutamatergic, FS-PV >> Adapt. VIP, Burst. VIP, Adapt. NPY 

       
33 % 100 % 29 % 26 % 14 % 26 % PV 

FS-PV >>> Glutamatergic, Adapt. SOM, Adapt. VIP, Burst. VIP, Adapt. NPY  
       

0 % 3 % 18 % 30 % 32 % 13 % CR 
Adapt. VIP, Burst. VIP >> Glutamatergic, FS-PV 

       
2 % 29 % 70 % 16 % 18 % 76 % NPY 

Adapt. NPY, Adapt. SOM >> Adapt. VIP, Burst. VIP, FS-PV > Glutamatergic  
       

0 % 3 % 0 % 74 % 77 % 8 % VIP 
Adapt. VIP, Burst. VIP >>> Glutamatergic, Adapt. SOM, FS-PV, Adapt. NPY  

       
2 % 9 % 94 % 5 % 14 % 0 % SOM 

Adapt. SOM >>> Glutamatergic, FS-PV, Adapt. VIP, Burst. VIP, Adapt. NPY  
       

7 % 0 % 0 % 19 % 9 % 8 % CCK 
Adapt. VIP >> FS-PV 

  
0 % 0-20 % 21-40 % 41-60 % 61-80 % 80-99 % 100 % 



Table 4. Subthreshold properties of different neuronal types 

Glutamatergic FS-PV Adapt.  
SOM 

Adapt.  
VIP 

Burst.  
VIP 

Adapt.  
NPY 

 

(n= 46) (n= 34) (n= 17) (n= 43) (n= 22) (n= 38) 

-74.2 ± 4.6 -72.2 ± 4.1 -65.3 ± 4.3 -70.3 ± 5.4 -69.5 ± 6.3 -72.4 ± 3.8 
(1) Resting potential (mV) 

Glutamatergic < Adapt. NPY, FS-PV, Adapt. VIP, Burst. VIP, < Adapt. SOM 

370 ± 132 206 ± 79 256 ± 65 481 ± 153 623 ± 328 354 ± 134 
(2) Input resistance (MΩ) 

FS-PV << Adapt. SOM < Adapt. NPY, Glutamatergic << Adapt. VIP, Burst. VIP 

35.3 ± 9.9 16.1 ± 6.0 23.6 ± 8.6 24.7 ± 10.3 32.5 ± 15.7 24.5 ± 8.4 
(3) Time constant  (ms) 

FS-PV <<< Adapt. SOM, Adapt. NPY, Adapt. VIP, Burst. VIP, Glutamatergic 

104.8 ± 33.9 81.4 ± 22.9 91.8 ± 20.8 52.7 ± 20.7 55.9 ± 20.3 74.2 ± 23.1 (4) Membrane capacitance 
(pF) Adapt. VIP, Burst. VIP << Adapt. NPY, FS-PV, Adapt. SOM, Glutamatergic  

19.8 ± 9.2 9.8 ± 5.5 28.9 ± 12.0 10.0 ± 5.4 8.1 ± 5.2 7.6 ± 4.3 
(5) Sag index (%) 

Adapt. NPY, Burst. VIP, FS-PV, Adapt. VIP <<< Glutamatergic << Adapt. SOM  

n, number of cells, < significantly smaller with P ≤ 0.05; << significantly smaller with P 
≤ 0.01; <<< significantly smaller with P ≤ 0.001 

 

Table 5. Just above threshold properties of different neuronal types 

Glutamatergic FS-PV Adapt. 
SOM 

Adapt. 
VIP 

Burst. 
VIP 

Adapt. 
NPY 

 

(n= 46) (n= 34) (n= 17) (n= 43) (n= 22) (n= 38) 

35.4 ± 27.8 100.7 ± 48.0 -5.8 ± 30.4 15.3 ± 17.3 24.4 ± 18.6 50.9 ± 29.2 
(6) Rheobase (pA) 

Adapt. SOM << Adapt. VIP, Burst. VIP, Glutamatergic << Adapt. NPY <<< FS-PV 

124.8 ± 44.9 337.2 ± 258.0 145.0 ± 126.2 139.5 ± 127.9 83.2 ± 95.8 217.8 ± 209.7 
(7) First spike latency (ms) 

Burst. VIP < Glutamatergic, Adapt. VIP, Adapt. SOM, Adapt. NPY, FS-PV  

-43.4 ± 74.8 2.9 ± 18.4 -22.3 ± 25.1 -4.4 ± 17.5 -61.5 ± 45.4 -0.8 ± 5.0 
(8) Adaptation (Hz/s) 

Burst. VIP << Glutamatergic, Adapt. SOM < Adapt. VIP < Adapt. NPY, FS-PV  

24.8 ± 30.4 14.6 ± 12.3 16.9 ± 13.3 10.7 ± 8.9 68.4 ± 88.9 6.5 ± 4.3 (9) Minimal steady state 
frequency (Hz) Adapt. NPY < Adapt. VIP, FS-PV, Adapt. SOM, Glutamatergic <<< Burst. VIP  

n, number of cells; < significantly smaller with P ≤ 0.05; << significantly smaller with P 
≤ 0.01; <<< significantly smaller with P ≤ 0.001 

 



Table 6. Firing properties of different neuronal types 

Glutamatergic FS-PV Adapt. 
SOM Adapt. VIP Burst. VIP Adapt. NPY  

(n= 46) (n= 34) (n= 17) (n= 43) (n= 22) (n= 38) 

24.2 ± 8.9 1.2 ± 1.2 3.6 ± 3.3 6.9 ± 5.8 9.1 ± 7.1 9.4 ± 7.0 (10) Amplitude 
accommodation (mV) FS-PV << Adapt. SOM < Adapt. VIP, Burst. VIP, Adapt. NPY <<< Glutamatergic 

155.7 ± 62.6 55.7 ± 25.4 91.3 ± 24.1 111.0 ± 42.8 115.6 ± 41.0 124.1 ± 37.0 (11) Amplitude of early 
adaptation (Hz) FS-PV <<< Adapt. SOM < Adapt. VIP, Burst. VIP, Adapt. NPY < Glutamatergic  

25.7 ± 11.6 21.5 ± 17.3 39.0 ± 7.0 25.8 ± 11.3 27.2 ± 9.0 25.7 ± 6.0 (12) Time constant of early 
adaptation (ms) FS-PV < Glutamatergic, Adapt. NPY, Adapt. VIP, Burst. VIP <<< Adapt. SOM  

-9.9 ± 7.4 -26.7 ± 13.0 -22.6 ± 11.9 -32.4 ± 11.7 -25.6 ± 16.9 -19.9 ± 9.5 
(13) Late adaptation (Hz/s) 

Adapt. VIP, FS-PV, Burst. VIP, Adapt. SOM, Adapt. NPY <<< Glutamatergic  

30.2 ± 8.6 139.2 ± 32.1 68.4 ± 16.7 74.8 ± 30.5 67.1 ± 27.1 58.8 ± 12.5 (14) Maximal steady state 
frequency (Hz) Glutamatergic <<< Adapt. NPY, Burst. VIP, Adapt. SOM, Adapt. VIP <<< FS-PV  

n, number of cells; < significantly smaller with P ≤ 0.05; << significantly smaller with P 
≤ 0.01; <<< significantly smaller with P ≤ 0.001 

 



Table 7. Action potentials properties of different neuronal types 

Glutamatergic FS-PV Adapt. 
SOM 

Adapt.  
VIP 

Burst. 
VIP 

Adapt. 
NPY 

 

(n= 46) (n= 34) (n= 17) (n= 43) (n= 22) (n= 38) 

93.0 ± 7.2 81.9 ± 7.8 92.6 ± 10.2 95.1 ± 8.5 97.9 ± 10.3 89.4 ± 9.4 (15) First spike amplitude 
(mV) FS-PV <<< Adapt. NPY, Adapt. SOM, Glutamatergic, Adapt. VIP, Burst. VIP  

86.0 ± 11.1 80.2 ± 8.6 88.9 ± 9.4 90.3 ± 8.3 80.2 ± 10.7 85.6 ± 10.1 (16) Second spike amplitude 
(mV) FS-PV, Burst. VIP < Adapt. NPY, Glutamatergic, Adapt. SOM, Adapt. VIP 

1.4 ± 0.2 0.6 ± 0.1 0.9 ± 0.2 0.9 ± 0.3 0.9 ± 0.3 1.0 ± 0.2 
(17) First spike duration (ms) 

FS-PV <<< Adapt. SOM, Adapt. VIP, Burst. VIP, Adapt. NPY <<< Glutamatergic  

1.6 ± 0.3 0.6 ± 0.1 1.0 ± 0.3 1.0 ± 0.3 1.1 ± 0.3 1.1 ± 0.2 (18) Second spike duration 
(ms) FS-PV <<< Adapt. SOM, Adapt. VIP, Adapt. NPY, Burst. VIP <<< Glutamatergic  

7.6 ± 8.9 2.0 ± 6.6 3.9 ± 3.4 5.3 ± 5.6 17.8 ± 8.8 4.2 ± 4.9 
(19) Amplitude Reduction (%) 

FS-PV < Adapt. SOM, Adapt. NPY, Adapt. VIP Glutamatergic <<< Burst. VIP  

9.9 ± 11.6 1.5 ± 5.2 7.1 ± 4.4 4.7 ± 5.6 14.6 ± 9.7 10.3 ± 9.2 
(20) Duration Increase (%) 

FS-PV <<< Adapt. VIP, Adapt. SOM, Glutamatergic, Adapt. NPY < Burst. VIP  

-6.9 ± 4.0 -22.6 ± 3.4 -12.2 ± 4.6 -11.8 ± 4.3 -11.6 ± 3.8 -14.5 ± 3.8 (21) First spike, first 
component AHP (mV) FS-PV <<< Adapt. NPY < Adapt. SOM, Adapt. VIP, Burst. VIP <<< Glutamatergic  

-8.4 ± 6.9 -4.3 ± 7.4 -5.1 ± 4.2 -8.8 ± 2.9 -0.5 ± 2.5 -11.7 ± 7.5 (22) First spike, second 
component AHP (mV) Adapt. NPY < Adapt. VIP, Glutamatergic, Adapt. SOM, FS-PV, Burst. VIP  

-8.8 ± 4.3 -23 ± 3.7 -10.6 ± 7.6 -12.9 ± 4.6 -13.4 ± 3.6 -16.6 ± 4.3 (23) Second spike, first 
component AHP (mV) FS-PV <<< Adapt. NPY << Burst. VIP, Adapt. VIP, Adapt. SOM < Glutamatergic  

-14.8 ± 8.7 -4.4 ± 7.5 -6.1 ± 4.2 -10.1 ± 3.4 -5.3 ± 6.8 -9.2 ± 9.6 (24) Second spike, second 
component AHP (mV) Glutamatergic << Adapt. VIP, Adapt. NPY, Adapt. SOM, Burst. VIP, FS-PV  

14.9 ± 21.7 2.7 ± 1.1 3.4 ± 1.1 3.4 ± 1.1 3.1 ± 1.1 5.3 ± 2.2 (25) First spike, first AHP 
component latency (ms) FS-PV < Burst. VIP, Adapt. SOM, Adapt. VIP <<< Adapt. NPY << Glutamatergic  

47.4 ± 41.8 2.8 ± 5.1 25.6 ± 17.9 31.8 ± 16.4 2.6 ± 12.2 14.8 ± 10.2 (26) First spike, second AHP 
component latency (ms) Burst. VIP, FS-PV <<< Adapt. NPY < Adapt. SOM, Adapt. VIP, Glutamatergic  

19.4 ± 24.1 2.7 ± 1.2 3.5 ± 1.2 3.8 ± 2.0 3.8 ± 1.6 7.8 ± 4.8 (27) Second spike, first AHP 
component latency (ms) FS-PV << Adapt. SOM, Burst. VIP, Adapt. VIP <<< Adapt. NPY < Glutamatergic  

58.8 ± 38.4 3.2 ± 5.7 27.2 ± 19.4 31.3 ± 14.5 18.9 ± 24 10.9 ± 10.1 (28) Second spike, second 
AHP component latency (ms) FS-PV, Adapt. NPY, Burst. VIP, Adapt. SOM, Adapt. VIP << Glutamatergic  

1.3 ± 1.7 1.1 ± 2.0 4.3 ± 3.0 5.8 ± 3.8 0.1 ± 0.5 0.3 ± 0.5 
(29) first spike ADP (mV) 

Burst. VIP, Adapt. NPY, FS-PV, Glutamatergic <<< Adapt. SOM, Adapt. VIP  

0.3 ± 0.5 1.1 ± 2.1 3.3 ± 2.4 4.7 ± 3.5 1.7 ± 3.3 0.1 ± 0.2 
(30) Second spike ADP (mV) 

Adapt. NPY, Glutamatergic, FS-PV, Burst. VIP < Adapt. SOM, Adapt. VIP  

5.8 ± 6.1 1.6 ± 2.7 9.7 ± 6.8 9.7 ± 2.9 0.7 ± 3.2 3.4 ± 3.6 (31) First spike ADP latency 
(ms) Burst. VIP, FS-PV < Adapt. NPY, Glutamatergic, Adapt. SOM, Adapt. VIP  



3.5 ± 4.2 1.5 ± 2.6 7.6 ± 5.1 9.3 ± 3.7 2.5 ± 4.1 1.8 ± 2.9 (32) Second spike ADP 
latency (ms) FS-PV, Adapt. NPY, Burst. VIP, Glutamatergic << Adapt. SOM, Adapt. VIP 

n, number of cells; < significantly smaller with P ≤ 0.05; << significantly smaller with P 
≤ 0.01; <<< significantly smaller with P ≤ 0.001 



Table 8. Dendritic features of cortical interneuron subtypes. 
 

n, number of cells, n.s. non statistically significant, < significantly smaller with P ≤ 

0.05; << significantly smaller with P ≤ 0.01; <<< significantly smaller with P ≤ 0.001 

 

 

Figure Legends 

Figure 1. Unsupervised clustering of neocortical neurons based on laminar location, 

electrophysiological and molecular properties. (A) Ward's clustering applied to a 

sample of 200 neurons. The x-axis represents individual cells, and the y-axis the 

average Euclidian within-cluster linkage distance. Glutamatergic neurons (cluster 1, 

black) and GABAergic neurons (cluster 2) were segregated into two first order 

clusters. GABAergic neurons further subdivide into 5 higher order clusters termed 

FS-PV (red, cluster 2.1), adapting SOM (green, cluster 2.2.1.1), adapting VIP (blue, 

cluster 2.2.1.2), bursting VIP (purple, cluster 2.2.2.1) and adapting NPY (orange, 

cluster 2.2.2.2). Lower pie charts show, in each cluster, the proportion of neurons 

expressing NPY (light gray), NOS-1 (black) and neurons co-expressing NPY and 

NOS-1(dark gray). (B) Examples of Neurolucida reconstructions displaying the 

FS-PV Adapting-SOM Adapting/Bursting-VIP Adapting-NPY 
 

n=15 n=11 n=23 n=21 

8.47 ± 10.15 6.73 ± 7.72 8.18 ± 13.56 15.90 ± 26.16 
Orientation (degree)  

n.s. 

4.9 ± 2.0 3.6 ± 1.1 3.0 ± 1.0 4.3 ± 1.5 
Number of primary dendrites 

Adapting/Bursting-VIP << FS-PV; Adapting-NPY 

427.8 ± 185.7 491.4 ± 178.5 436.5 ± 170.0 319.6 ± 217.1 Vertical span of dendritic arbor 
(µm) Adapting-NPY < Adapting-SOM; Adapting/Bursting-VIP 

195.7 ± 78.9 215.3 ± 63.9 138.5 ± 68.6 190.7 ± 47.5 Horizontal span of dendritic 
arbor (µm) Adapting/Bursting-VIP < FS-PV; Adapting-SOM; Adapting-NPY 

2.6 ± 2.0 2.6 ± 1.7 4.2 ± 2.9 1.6 ± 1.0 
Verticality 

FS-PV; Adapting-NPY < Adapting/Bursting-VIP 

0.60 ± 0.87 0.27 ± 0.20 0.12 ± 0.14 0.30 ± 0.28 
Multipolarity 

Adapting/Bursting-VIP < FS-PV; Adapting-NPY 



dominant morphologies of each cluster: spiny stellate cell (a1), pyramidal cell (a2) 

and star pyramidal cell (a3) for the glutamatergic cluster; multipolar basket cells (a4-

5), layer I targeting Martinotti-like cell (a6), bipolar cells (a7 and 8), and 

neurogliaform-like cells (a9-10). 

 

Figure 2. Electrophysiological and molecular analysis of FS-PV neurons. (A) Current 

clamp recordings of a FS-PV neuron obtained in response to application of current 

pulses (lower traces) of -100, -80, -60, -40, -20, +120 and +690 pA. Note the very 

long latency of fast action potentials induced by a just above threshold current pulse 

(120 pA, middle trace). Upper inset, IR videomicroscopy picture of the same neuron 

which presented a large and radially oriented soma, pial surface is upward (scale bar 

10 µm); see also Fig. 1B a5. Lower inset, details of the repolarization phase of the 

first spike (scale bars 5 mV and 50 ms). Note the large and fast component AHP. 

Strong depolarizing current (690 pA, upper trace) evoked a high and sustained firing 

rate. (B) Agarose gel analysis of the RT-mPCR products of the same FS-PV neuron 

expressing GAD65, GAD67, PV and NPY. (C) Current clamp recordings of another 

FS-PV neuron obtained in response to application of current pulses (lower traces) of -

100, -80, -60, -40, -20, +110 and +650 pA. Note the short delay of non adapting fast 

action potentials induced by a just above threshold current pulse (110 pA, middle 

trace). Upper inset, IR videomicroscopy picture of the same neuron that presented a 

small and radially oriented soma, pial surface is upward (scale bar 10 µm). Lower 

inset, details of the repolarization phase of the first spike (scale bars 5 mV and 50 

ms). Note the large and fast single component AHP. Large depolarizing current (650 

pA, upper trace) evoked a high and sustained firing rate. (D) Agarose gel analysis of 

the RT-mPCR products of the same FS-PV neuron expressing GAD65, GAD67, CB, 



and PV. (E) The Latency of the first action potential (left panel), but not somatic 

properties (right panel), differentiates NPY-positive (gray bars) from NPY-negative 

(white bars) FS-PV neurons. Values are means ± s.e.m., * statistically significant with 

p<0.05, n.s. not statistically significant. 

 

Figure 3. Electrophysiological and molecular analysis of an adapting SOM neuron. 

(A) Voltage responses induced by injection of current pulses (lower traces) of -100, -

80, -60, -40, -20, +50 and +200 pA. Note the pronounced voltage sag following the 

initial peak response to hyperpolarizing current pulses (lower middle traces, arrow). A 

just above threshold current pulse (50 pA) induced a discharge of 2 action potentials 

(upper middle trace). Upper inset, IR videomicroscopy picture of the same neuron 

that presented a large and radially oriented soma, pial surface is upward (scale bar 

10 µm); see also Fig. 1B a6. Lower inset, details of the repolarization phase of the 

first spike (scale bars 5 mV and 50 ms). Note the complex AHP consisting of a first 

component AHP, an ADP and a second component AHP. Application of a large 

depolarizing current (200 pA) induced a discharge of action potentials with a marked 

frequency adaptation and a monotonous amplitude accommodation (upper trace). (B) 

Molecular analysis of the same neuron expressing GAD65, GAD67, CB, NPY and 

SOM. 

 

Figure 4. Electrophysiological and molecular analysis of two adapting NPY neurons. 

(A) Current clamp recordings obtained in response to application of current pulses 

(lower traces) of -100, -80, -60, -40, -20, +40 and +200 pA. Just above threshold 

current (40 pA) induced the delayed firing of action potentials (middle trace). Upper 

inset, IR videomicroscopy picture of the same neuron that presented a radially 



oriented soma, pial surface is upward (scale bar 10 µm). Lower inset, details of the 

complex repolarization phase of the first action potential (scale bars 5 mV and 50 ms) 

consisting of a first and a second component AHP separated by a small ADP. Larger 

current pulse (200 pA) evoked a pronounced frequency adaptation and amplitude 

accommodation (upper trace, asterisk). (B) RT-mPCR analysis showing expression 

of GAD65, GAD67, NOS-1 and NPY. (C) Voltage responses evoked by injection of 

currents (lower traces) of -100, -80, -60, -40, -20, +40 and +350 pA. Just above 

threshold current (40 pA) induced the firing of action potentials with complex 

repolarization (middle trace). Upper inset, IR videomicroscopy picture of the same 

neuron that presented a small and radially oriented soma, pial surface is upward 

(scale bar 10 µm); see also Fig. 1B a10. Lower inset, details of the complex 

repolarization of the first spike (scale bar 5 mV, and 50 ms) consisting of a fast and a 

slow component separated by a small ADP. Larger current pulse (350 pA) evoked a 

pronounced frequency adaptation and amplitude accommodation (upper trace, 

asterisk). (D) RT-mPCR analysis showing expression of GAD65, GAD67 and NPY in 

the neuron shown in (C). 

 

Figure 5. Electrophysiological and molecular analysis of glutamatergic neurons. (A) 

Current clamp recordings of an adapting cell obtained in response to application of 

current pulses (lower traces) of -100, -80, -60, -40, -20, +40 and +210 pA. In 

response to just above threshold current pulse (40 pA) this adapting neuron fired 

action potentials with little frequency adaptation (middle trace). Upper inset, IR 

videomicroscopy picture of the same neuron that presented a small and round soma, 

pial surface is upward (scale bar 10 µm). Lower inset, details of the repolarization 

phase of the first spike (scale bars 5 mV and 50 ms) disclosing a biphasic AHP 



(dotted line) consisting of a first and second component. Injection of a large 

depolarizing current (210 pA, upper trace) induced a pronounced frequency 

adaptation and a transient reduction of action potentials amplitude (accommodation 

amplitude, asterisk). (B) Agarose gel analysis of the RT-mPCR products of the same 

RS neuron expressing VGluT1. The band migrating above 600 bp corresponds to 

unspecific amplification. (C) Voltage response of a bursting neuron evoked by current 

pulses (lower traces) of -100, -80, -60, -40, -20, +40 and +100 pA. Note the 

pronounced voltage sag following the initial peak response to hyperpolarizing current 

pulses (middle traces, arrow). In response to just above threshold current pulse (40 

pA, upper middle trace) this bursting cell discharged a burst of 2 action potentials on 

a depolarizing hump. Upper inset, IR videomicroscopy picture of the same neuron 

that presented a small and round soma, pial surface is upward (scale bar 10 µm). 

Lower inset, details of the repolarization phase of the two first spikes showing a 

simple and a biphasic AHP (dotted line) for the first and the second spike, 

respectively (scale bars 5 mV and 50 ms). Application of a larger depolarizing current 

(100 pA) induced an initial burst followed by single spikes (upper trace). Note the 

pronounced transient reduction of spikes amplitude (asterisk). (D) RT-mPCR analysis 

showing expression of VGluT1 in the neuron presented in (C). 

 

Figure 6. Electrophysiological and molecular analysis of an adapting VIP and a 

bursting VIP neuron. (A) Current clamp recordings obtained in response to 

application of current pulses (lower traces) of -100, -80, -60, -40, -20, +20 and +80 

pA. Just above threshold current pulse (20 pA) induced discharge of action potential 

with a complex repolarization phase (middle trace) consisting of a sharp first 

component AHP followed by an ADP and a second component AHP. Upper inset, IR 



videomicroscopy picture of the same neuron that presented a radially oriented soma, 

pial surface is upward (scale bar 10 µm). Lower inset, details of the AHP of the first 

spike (scale bars 5 mV and 50 ms). Application of a larger depolarizing current (80 

pA) induced frequency adaptation and amplitude accommodation (upper trace, 

asterisk). (B) Agarose gel analysis of the RT-mPCR products of the same adapting 

VIP neuron expressing GAD67 and VIP. (C) Voltage responses induced by injection 

of current pulses (lower traces) of -100, -80, -60, -40, -20, +30 and +100 pA. Strong 

hyperpolarizing current (-100 pA) triggered the emission of a low threshold spike 

(middle trace, arrow). Just above threshold current pulse (30 pA) induced a burst of 2 

spikes on a depolarizing hump (upper middle trace). Upper inset, IR videomicroscopy 

picture of the same neuron that presented a radially oriented soma, pial surface is 

upward (scale bar 10 µm); see also Fig. 1B a8. Lower inset, details of the 

repolarization phase of the first two spikes (scale bars 5 mV and 50 ms). Note that 

first action potential was followed by a single component AHP contrarily to second 

spike which displayed complex AHP. Application of a larger depolarizing current (100 

pA) induced a marked frequency adaptation with pronounced amplitude 

accommodation (upper trace, asterisk). (D) Molecular analysis of the same bursting 

VIP neuron expressing VGluT1, GAD65, GAD67, CB, PV and VIP. 

 

Figure 7: Comparison of clustering algorithms. (A) The clustering generated by K-

means for K=7 (three glutamatergic clusters merged) is mostly consistent with the 

reference Ward’s clustering, but lacks a distinction between bursting VIP and 

adapting VIP subtypes. This is shown by this matching table, describing the 

intersection relations between K-means and Ward clusters. The labels attached to 

columns and rows display the numbers of cells within the corresponding cluster. 



Entries of the table indicate how many cells of a K-means cluster are contained within 

a given Ward cluster. (B) Silhouette plot of the K-means clustering. Vertical axis: 

within each cluster, cells are ranked in decreasing order of their silhouette values. 

This provides a graphical representation of the compactness of each individual 

cluster. Horizontal axis represents the silhouette values s(i) for each individual data-

point  (large silhouette value, data-point close to its cluster centroid; negative 

silhouette, data-point closer to the centroid of a different cluster; see Materials and 

Methods). (C) Comparison between the silhouette width for the K-means clustering 

and the Ward clustering of the original dataset and the average silhouette width of 

randomized data-bases. Scrambling of the data-set is associated with a consistent 

loss of quality in the clustering. Error bar of the scrambled silhouette width evaluated 

by standard deviation over 1000 independent randomizations. 

 

Figure 8: Full polythetic classification. Unsupervised clusterings of 68 neocortical 

interneurons based on laminar location, morphological, electrophysiological and 

molecular properties. Comparison between the silhouette width for the full polythetic 

K-means clustering and the average silhouette width of randomized databases. 

Absolute and relative quality losses are showed for the cases of scrambling limited to 

morphological properties, to electrophysiological properties or to molecular 

properties. Error bars of the scrambled silhouette width evaluated by standard 

deviation over 1000 independent randomizations. 
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