Stabilization of walls for nano-wires of finite length
Gilles Carbou, Stéphane Labbé

To cite this version:

HAL Id: hal-00369556
https://hal.archives-ouvertes.fr/hal-00369556v2
Submitted on 24 Mar 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
STABILIZATION OF WALLS FOR NANO-WIRES OF FINITE LENGTH

Gilles Carbou
MAB, UMR 5466, CNRS, Université Bordeaux 1,
351 cours de la Libération, 33405 Talence cedex, France.

Stéphane Labbé
Université Joseph Fourier, Laboratoire Jean Kuntzmann, CNRS, UMR 5224,
51 rue des Mathématiques, B.P. 53, 38041 Grenoble Cedex 9, France.

Abstract. In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.

1. Introduction

This paper is concerned with stabilization of wall configurations in a mono-dimensional model of finite length nanowire. This kind of object can be found in nano electronic devices. The three dimensional model is the following (see [2], [11] and [18]). We denote by \(m : \mathbb{R}_+^+ \times \Omega \rightarrow \mathbb{R}^3 \) the magnetic moment, defined on the ferromagnetic domain \(\Omega \). We assume that the material is saturated, so that \(m \) satisfies the constraint:

\[\text{for almost every } (t,x) \in \mathbb{R}_+^+ \times \Omega, |m(t,x)| = 1. \]

The magnetic moment links the magnetic induction \(B \) with the magnetic field \(H \) by the relation \(B = H + \bar{m} \), where \(\bar{m} \) is the extension of \(m \) by zero outside \(\Omega \). The behavior of \(m \) is governed by the Landau-Lifschitz equation:

\[
\begin{aligned}
\frac{\partial m}{\partial t} &= -m \wedge H_e - m \wedge (m \wedge H_e),
H_e &= A^2 \Delta m + H_d(m) + H_a,
\frac{\partial m}{\partial n} &= 0 \text{ on } \partial \Omega,
\end{aligned}
\]

where

- \(A^2 \) is the exchange constant, depending on the material,

1991 Mathematics Subject Classification. Primary: 35B35; Secondary: 35K55.
Key words and phrases. Landau-Lifschitz equation, control, stabilization.
The authors were partially supported by the ANR project SICOMAF ("Simulation et CONtrôle des MAtériaux Ferromagnétiques").
• the demagnetizing field \(H_d(m) \) is characterized by

\[
\text{curl } H_d(m) = 0 \quad \text{and div } (H_d(m) + \bar{m}) = 0 \quad \text{in } \mathbb{R}^3.
\]

We remark that \(-H_d\) is the orthogonal projection (for the \(L^2\) inner product) onto the curl free vector fields, so that

\[
\|H_d(m)\|_{L^2(\mathbb{R}^3)} \leq \|m\|_{L^2(\Omega)}.
\]

• \(H_a \) is an applied magnetic field,
• \(n \) is the outward unit normal on \(\partial \Omega \).

The effective field is derived from the micromagnetism energy:

\[
H_e = -\partial m \mathcal{E}_{mic}
\]

with

\[
\mathcal{E}_{mic}(m) = \frac{A^2}{2} \int_{\Omega} |\nabla m|^2 \, d\omega + \frac{1}{2} \int_{\mathbb{R}^3} |H_d(m)|^2 \, d\omega - \int_{\Omega} H_a \cdot m \, d\omega.
\]

Existence of weak solutions for (1) is established in [5], [13] and [17]. Existence of strong solutions is proved in [6] and [7]. Numerical simulations are performed in [14]. For thin domains, equivalent 2-d models are justified in [1], [4], [15]. For nanowires, 1-d models are discussed in [8], [9] and [16].

In this paper we deal with ferromagnetic nanowires. We assume that the wire is a cylinder of length \(2L \) and radius \(\eta \). Taking the limit by Gamma convergence arguments when \(\eta \) tends to zero, we obtain an asymptotic one dimensional model (see Section 2).

After renormalization, the one dimensional wire is assimilated to the segment \([-L/A\sqrt{2}, L/A\sqrt{2}]\), where \((e_1, e_2, e_3)\) is the canonical basis of \(\mathbb{R}^3 \). The magnetic moment \(m \) is then defined on \(\mathbb{R}^+ \times [-L/A\sqrt{2}, L/A\sqrt{2}] \). The equivalent demagnetizing field (after renormalization) is given by

\[
h_d(m) = -m_2 e_2 - m_3 e_3,
\]

i.e. \(-h_d\) is the orthogonal projection onto the plane orthogonal to the wire. In addition we assume that we apply a magnetic field in the direction of the wire axis, and we denote by \(h_a \) its renormalized intensity. Therefore we deal with the following system:

\[
\begin{cases}
\frac{\partial m}{\partial t} = -m \wedge H_e - m \wedge (m \wedge H_e), \\
H_e = \frac{\partial^2 m}{\partial x^2} - m_2 e_2 - m_3 e_3 + h_a e_1, \\
\frac{\partial m}{\partial x}(t, -\frac{L}{A\sqrt{2}}) = \frac{\partial m}{\partial x}(t, \frac{L}{A\sqrt{2}}) = 0,
\end{cases}
\]

with \(m : \mathbb{R}^+ \times [-\frac{L}{A\sqrt{2}}, \frac{L}{A\sqrt{2}}] \rightarrow \mathbb{R}^3, \ |m| = 1, \)

associated to the energy

\[
\mathcal{E}(m) = \int_{-L/A\sqrt{2}}^{L/A\sqrt{2}} \left(\frac{1}{2} |\partial_x m|^2 + \frac{1}{2} (|m_2|^2 + |m_3|^2) - h_a m_1 \right) \, dx.
\]
In [8] and [9], we studied a similar model of infinite nanowire. After renormalization, the model was the following: the wire is assimilated to the real axis $\mathbb{R} e_1$, and the one dimensional Landau-Lifschitz equation is in this case:

\[
\begin{align*}
\frac{\partial m}{\partial t} &= -m \wedge H_e - m \wedge (m \wedge H_e), \\
H_e &= \frac{\partial^2 m}{\partial x^2} - m_2 e_2 - m_3 e_3 + h_a e_1,
\end{align*}
\]

with $m : \mathbb{R}^*_+ \times \mathbb{R}_x \rightarrow \mathbb{R}^3$, $|m| = 1$.

This system is invariant by translation in the x variable and by rotation around the wire axis, that is, if m is a solution of (4), then for σ and τ in \mathbb{R}, $(t, x) \mapsto \rho_\tau(m(t, x-\sigma))$ is another solution of (4), where ρ_τ is the rotation of angle τ around the e_1 axis:

\[
\rho_\tau = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \tau & -\sin \tau \\ 0 & \sin \tau & \cos \tau \end{pmatrix}.
\]

We dealt with wall configurations for this model, that is solutions separating a left hand side domain where the magnetization is closed to $-e_1$ to a right hand side domain where the magnetization is closed to $+e_1$. Such solutions are described by rotations and translations of the canonical profile $x \mapsto (\text{th} \ x, 1/\text{ch} \ x, 0)$. In [8] and [9], we proved the asymptotic stability and the controlability for these configurations.

Here, in the case of a finite wire, the situation is quite different.

Definition 1.1. We call canonical wall profile a static solution for (3) of the form $M_0 = (\sin \theta_0, \cos \theta_0, 0)$ such that $\theta_0 : [\frac{-L A}{\sqrt{2}}, \frac{L A}{\sqrt{2}}] \rightarrow [-\pi/2, \pi/2]$ is a non decreasing map satisfying $\theta_0(-\pi/2) < 0 < \theta_0(\pi/2)$.

In the following theorem, we claim that the wall profiles exist if and only if the wire is long enough compared to the exchange length:

Theorem 1.2. There exists a wall profile if and only if $\frac{L A}{\sqrt{2}} > \pi$. This profile is unique and is centered in the middle of the wire, that is $\theta_0(0) = 0$.

Remark 1. In the infinite wire case, the corresponding canonical profiles are obtained taking $\theta_0(x) = \text{Arcsin} \text{th}(x/2)$, and all its translation in the x variable (because of he invariance of (4) by translation). In the finite wire case, we only have invariance by rotation, and we lose the invariance by translation, so we have only one canonical profile.

Concerning the stability, we obtained in [8] the stability of the wall profile. In that case, the invariance by rotation-translation induces that 0 is a double eigenvalue of the linearized version of (4) around the wall profile. In the finite wire case, the lack of invariance by translation induces that the linearized version of (3) around the canonical profile has one negative eigenvalue, and therefore we can prove that the wall profile given by Theorem 1.2 is unstable.

Theorem 1.3. Assume that $\frac{L A}{\sqrt{2}} > \pi$. Let θ_0 given by Theorem 1.2. The static solution $M_0 = (\sin \theta_0, \cos \theta_0, 0)$ is linearly unstable for the Landau-Lifschitz equation (3) with $h_a = 0$.

Remark 2. This phenomenon was expected. Let us consider a small translation of the centered wall. Without energetic cost, the Landau-Lifschitz equation induces then a displacement of the wall and pushes it outside the wire. Then the magnetic moment tends to $+\pi/2$ or $-\pi/2$ (i.e. the minimizers of the ferromagnetism energy \mathcal{E}). In the case of an infinite wire, obviously, this translation cannot make the wall disappear, and we have stability.

We prove now a stabilization result. We control the system by an applied field parallel to the wire axis.

Theorem 1.4. Let L and A as in Theorem 1.2, and let $M_0 = (\sin \theta_0, \cos \theta_0, 0)$ be the canonical profile given by this theorem. We consider the following control:

$$h(m(t, \cdot)) = \left[-\frac{A}{\sqrt{2}L} \int_{\frac{L}{\sqrt{2}}}^{\frac{L}{\sqrt{2}}} m_1(t, s) ds\right].$$

Then M_0 is stable for the Landau Lifschitz equation controled with the applied field $h_a = h(m)$.

Remark 3. The control given here is quite natural: for example when the wall is translated to the right hand side, then the average of the profile first component is negative and our applied field he_1 (with $h > 0$) pushes the wall to the left hand side.

The paper is organized as follows. In Section 2 we justify the one dimensional model by Gamma convergence arguments. In Section 3 we prove the existence of a canonical wall profile. We address the unstability of this profile in Section 4 by linearization of the Landau-Lifschitz equation. The last section is devoted to the stabilization of the wall by a convenient applied magnetic field.

2. Modelization

In this section, we address the justification of the one dimensional model by Γ convergence arguments.

At the beginning we deal with the three-dimensional static case. The finite 3d wire is the cylinder $\Omega_\eta = [-L, L] \times B_2(0, \eta)$, where $B_d(x, r)$ is the ball of radius r.

![Figure 1. Domain Ω_η.](image-url)
and center \(x \) in \(\mathbb{R}^d \). We assume that we apply on the wire a magnetic field in the direction \(e_1 : H_a = h_a e_1 \), where \(h_a \in \mathbb{R} \).

The micromagnetism energy on \(\Omega_\eta \) is given by

\[
\mathcal{E}_\eta(v) = \frac{A^2}{2} \int_{\Omega_\eta} |\nabla v|^2 \, d\omega + \frac{1}{2} \int_{\mathbb{R}^3} |H_d(v)|^2 \, d\omega - h_a \int_{\Omega_\eta} v \cdot e_1 \, d\omega \text{ for } v \in H^1(\Omega_\eta; S^2).
\]

The static configurations satisfy the minimization problem:

\[
\begin{cases}
\text{find } u \text{ in } H^1(\Omega_\eta, S^2) \text{ such that } \\
\mathcal{E}_\eta(u) = \min_{v \in H^1(\Omega_\eta, S^2)} \mathcal{E}_\eta(v),
\end{cases}
\]

(5)

In order to work with a fixed domain, we introduce the following rescaling: for \(v \in H^1(\Omega_\eta; S^2) \), we define \(\overline{v} \in H^1(\Omega_1; S^2) \) by

\[
\overline{v}(x, y, z) = v(x, \eta y, \eta z).
\]

In addition, for \(\overline{v} \in H^1(\Omega_1; S^2) \), we denote by \(H^\eta_d(\overline{v}) \) the rescaled demagnetizing field:

\[
H^\eta_d(\overline{v})(x, y, z) = H_d(v)(x, \eta y, \eta z),
\]

where \(v \in H^1(\Omega_\eta; S^2) \) is deduced from \(\overline{v} \) by \(v(x, y, z) = \overline{v}(x, y/\eta, z/\eta) \).

We deal with the rescaled energy defined for \(\overline{v} \in H^1(\Omega_1; S^2) \) by \(\mathcal{E}(\overline{v}) = \frac{1}{\eta^2} \mathcal{E}_\eta(v) \):

\[
\mathcal{E}(\overline{v}) = \frac{A^2}{2} \int_{\Omega_1} (|\partial_x \overline{v}|^2 + \frac{1}{\eta^2} |\partial_y \overline{v}|^2 + \frac{1}{\eta^2} |\partial_z \overline{v}|^2) \, d\omega + \frac{1}{2} \int_{\mathbb{R}^3} |H^\eta_d(\overline{v})|^2 \, d\omega - h_a \int_{\Omega_1} \overline{v} \cdot e_1 \, d\omega,
\]

and the problem (5) is rescaled in the following equivalent problem:

\[
\begin{cases}
\text{find } \overline{u} \text{ in } H^1(\Omega_1, S^2) \text{ such that } \\
\mathcal{E}(\overline{u}) = \min_{\overline{v} \in H^1(\Omega_1, S^2)} \mathcal{E}(\overline{v}),
\end{cases}
\]

(6)

Proposition 1. For all \((\overline{v}_\eta)_{\eta \in \mathbb{R}^+}\) in \(H^1(\Omega_1, S^2) \), sequence of minimizers of (5), \((\mathcal{E}(\overline{v}_\eta))_{\eta \in \mathbb{R}^+}\) is a bounded sequence of \(\mathbb{R} \).

Proof. Let \((\overline{v}_\eta)_{\eta \in \mathbb{R}^+}\) be a sequence of minimizers of (5) in \(H^1(\Omega_1, S^2) \). We denote by \(v_\eta \) the rescaled of \(\overline{v}_\eta \): \(v_\eta(x, y, z) = \overline{v}_\eta(x, y/\eta, z/\eta) \).

In order to exhibit an upper bound for \(\mathcal{E}(\overline{v}_\eta) \), we write:

\[
\forall \eta \in \mathbb{R}^+, \mathcal{E}_\eta(v_\eta) \leq \mathcal{E}_\eta(e_1),
\]

then

\[
\mathcal{E}_\eta(v_\eta) \leq -2h_a \eta^2 \pi L + \frac{1}{2} \int_{\mathbb{R}^3} \left| H_d(e_1) \right|^2 \, d\omega
\]

\[
\leq 2\eta^2 L \pi (1 - h_a).
\]

Then, the lower bound is obtained by canceling the positive contributions of the energy and maximizing the external contribution:

\[
-\eta^2 2h_a \pi L \leq \mathcal{E}_\eta(v_\eta).
\]

So, we can conclude

\[
-2h_a \pi L \leq \mathcal{E}_\eta(v_\eta) \leq 2\pi L (1 - h_a).
\]

\(\square \)
We introduce the limit energy: we define $H^1(\Omega_1; S^2)$ by

$$H^1(\Omega_1; S^2) = \{ u \in H^1(\Omega_1; S^2), \partial_y u = \partial_z u = 0 \}. $$

For $v \in H^1(\Omega_1; S^2)$, we set:

$$\mathcal{E}(v) = \frac{A^2}{2} \int_{\Omega_1} |\partial_x v|^2 \, d\omega + \frac{1}{4} \int_{\Omega_1} \left(|\mathbf{e}_2|^2 + |\mathbf{e}_3|^2 \right) \, d\omega - h_a \int_{\Omega_1} v \cdot e_1 \, d\omega$$

$$= \frac{A^2 \pi}{2} \int_{[-L,L]} |\partial_x v|^2 \, dx + \frac{\pi}{4} \int_{[-L,L]} \left(|\mathbf{e}_2|^2 + |\mathbf{e}_3|^2 \right) \, dx - \pi h_a \int_{[-L,L]} v \cdot e_1 \, dx.$$

The limit minimization problem is given by:

$$\text{(7)} \quad \left\{ \begin{align*}
\text{find } u \text{ in } H^1(\Omega_1, S^2) \text{ such that} \\
\mathcal{E}(u) = \min_{v \in H^1(\Omega_1, S^2)} \mathcal{E}(v),
\end{align*} \right.$$

The main result of this section is the following:

Theorem 2.1. \mathcal{E}_η gamma-converges to \mathcal{E} in sense of $H^1(\Omega_1, \mathbb{R}^3)$, it is to say:

(i) (lower semi continuity) for all sequence $(\mathbf{v}_\eta)_{\eta \in \mathbb{R}^+}$ of $H^1(\Omega_1, S^2)$ such that

$$\lim_{\eta \to 0} \mathbf{v}_\eta = \mathbf{v}_0 \text{ and } (\mathcal{E}_\eta(\mathbf{v}_\eta))_{\eta \in \mathbb{R}^+} \text{ bounded},$$

the limit \mathbf{v}_0 is an element of $H^1(\Omega_1, S^2)$ such that:

$$\lim_{\eta \to 0} \mathcal{E}_\eta(\mathbf{v}_\eta) \geq \mathcal{E}(\mathbf{v}_0),$$

(ii) (construction) for all $\mathbf{v}_0 \in H^1(\Omega_1, S^2)$, there exists $(\mathbf{v}_\eta)_{\eta \in \mathbb{R}^+}$, sequence of $H^1(\Omega_1, S^2)$, such that:

$$\lim_{\eta \to 0} \mathbf{v}_\eta = \mathbf{v}_0,$$

and

$$\limsup_{\eta \to 0} \mathcal{E}_\eta(\mathbf{v}_\eta) \leq \mathcal{E}(\mathbf{v}_0).$$

Proof. (i) **Lower semi-continuity:** let $(\mathbf{v}_\eta)_{\eta}$ be a sequence in $H^1(\Omega_1; S^2)$ such that \mathbf{v}_η tends to \mathbf{v} in $H^1(\Omega_1)$ and such that there exists c such that for all η

$$\mathcal{E}_\eta(\mathbf{v}_\eta) \leq c.$$

(8)

Extracting a subsequence, we can assume that \mathbf{v}_η tends to \mathbf{v} almost everywhere, so $|\mathbf{v}| = 1$ a.e.

Using (8), we remark that since $|\int_{\Omega_1} \omega_{x1} e_1| \leq \text{meas}(\Omega_1)$,

$$||\partial_y \mathbf{v}_\eta||^2_{L^2(\Omega_1)} + ||\partial_z \mathbf{v}_\eta||^2_{L^2(\Omega_1)} \leq C \eta^2,$$

so $\partial_y \mathbf{v} = \partial_z \mathbf{v} = 0$, that is

$$\mathbf{v} \in H^1(\Omega_1; S^2).$$

From straightforward arguments,

$$\frac{A^2}{2} \int_{\Omega_1} |\partial_x v|^2 \, d\omega - h \int_{\Omega_1} v \cdot e_1 \, d\omega$$

$$\leq \liminf \left(\frac{A^2}{2} \int_{\Omega_1} (|\partial_x \mathbf{v}|^2 + \frac{1}{\eta^2} |\partial_y \mathbf{v}|^2 + \frac{1}{\eta^2} |\partial_z \mathbf{v}|^2) \, d\omega - h_a \int_{\Omega_1} \mathbf{v}_\eta \cdot e_1 \, d\omega \right).$$
Concerning the demagnetizing field, the sequence \((H^\eta_d(v_\eta))_\eta \) is bounded in \(L^2(\mathbb{R}^3) \). Indeed, we denote by \(v_\eta \) the rescaled of \(v_\eta \):
\[
v_\eta(x,y,z) = v_\eta(x,y/\eta,z/\eta).
\]
We have
\[
\|H^\eta_d(v_\eta)\|_{L^2(\mathbb{R}^3)} = \frac{1}{\eta} \|H_d(v_\eta)\|_{L^2(\mathbb{R}^3)} \quad \text{(by change of variable in the integral)}
\]
\[
\leq \frac{1}{\eta} \|v_\eta\|_{L^2(\mathbb{R}^3)} \quad \text{(since \(-H_d\) is an orthogonal projection in \(L^2\))}
\]
\[
\leq \frac{1}{\eta} (L\pi \eta^2)^{\frac{1}{2}} \quad \text{(since \(|v_\eta| = 1\))}
\]
\[
\leq \sqrt{2\pi L}.
\]
So, up to the extraction of a subsequence, we can assume that \(H^\eta_d(v_\eta) \rightharpoonup H \) for the weak topology in \(L^2(\mathbb{R}^3) \).

We denote the coordinates of \(H^\eta_d(v_\eta) \) and those of \(H \) by:
\[
H^\eta_d(v_\eta) = \begin{pmatrix} h_1^\eta \\ h_2^\eta \\ h_3^\eta \end{pmatrix} \quad \text{and} \quad H = \begin{pmatrix} h^1 \\ h^2 \\ h^3 \end{pmatrix}.
\]
Writing (2) in the rescaled coordinates, we obtain first that
\[
\eta \partial_x (h_1^\eta + v^1_\eta) + \partial_y (h_2^\eta + v^2_\eta) + \partial_z (h_3^\eta + v^3_\eta) = 0,
\]
so taking the weak limit, we have:
\[
\partial_y (h^2 + v^2) + \partial_z (h^3 + v^3) = 0.
\]
In addition, from the curl free condition, we obtain that
\[
\begin{cases}
\partial_y h_3^\eta - \partial_z h_2^\eta = 0 \\
\eta \partial_x h_2^\eta - \partial_y h_1^\eta = 0 \\
\eta \partial_x h_3^\eta - \partial_z h_1^\eta = 0,
\end{cases}
\]
so, taking the weak limit we get
\[
\partial_y h^1 = \partial_z h^1 = 0 \quad \text{so} \quad h^1 = 0,
\]
and
\[
\partial_y h^3 - \partial_z h^2 = 0.
\]
So \(H \) is deduced from \(v \) by the relations:
\[
\begin{cases}
\partial_y (h^2 + v^2) + \partial_z (h^3 + v^3) = 0, \\
\partial_y h^3 - \partial_z h^2 = 0 \\
h^1 = 0,
\end{cases}
\]
that is for a fixed \(x \), \(H(x, \cdot) \) is defined from \(v(x, \cdot) \) by the 2-d demagnetizing field.
In the following lemma we calculate the 2-d demagnetizing field induced by a constantly magnetized 2-d disk.
Lemma 2.2. Let \(\xi = (\xi_2, \xi_3) \in \mathbb{R}^2 \) be a fixed vector. Let \(V = (V^2, V^3) \in L^2(\mathbb{R}^2; \mathbb{R}^2) \) such that

\[
\begin{align*}
\text{curl}_{2D} V &:= \partial_y V^3 - \partial_z V^2 = 0, \\
\text{div}_{2D} (V + \bar{\xi}) &:= \partial_y (V^2 + \bar{\xi}_2) + \partial_z (V^3 + \bar{\xi}_3) = 0,
\end{align*}
\]

where \(\bar{\xi}(y, z) = \xi \chi_{B(0, 1)}(y, z) \) (we denote by \(\chi_{B(0, 1)} \) the indicatrix function of \(B(0, 1) \)). Then

\[
V(y, z) = \begin{cases}
-\frac{1}{2} \xi & \text{if } (y, z) \in B_2(0, 1), \\
\frac{1}{2} \left(\frac{x_2(y^2 - z^2) - 2x_3yz}{(y^2 + z^2)^2} \right) & \text{if } (y, z) \notin B_2(0, 1),
\end{cases}
\]

and

\[
\int_{\mathbb{R}^2} |V|^2 \, dydz = \frac{\pi}{2} |\xi|^2.
\]

Proof. We have (see [3] or [13]), for \(X = (y, z) \in \mathbb{R}^2 \):

\[
V(X) = \frac{1}{2\pi} \int_{\partial B(0, 1)} \frac{X - Y}{|X - Y|^2} \xi : \nu(Y) \, d\sigma(Y),
\]

where \(\nu \) is the unit normal on \(\partial B_2(0, 1) \).

Using complex notations, we write \(V(X) = V^2(X) + iV^3(X) \), \(X = y + iz \), \(\xi = \xi_2 + i\xi_3 \) and we have:

\[
V(X) = \frac{1}{2i\pi} \int_{z \in \mathbb{C}, |z| < 1} \frac{\xi + w^2\bar{\xi}}{2Xw(w - \frac{1}{X})} \, dw.
\]

If \(|X| < 1 \), the only pole is 0, and by the residu formula, \(V(X) = -\frac{1}{2} \xi \). If \(|X| > 1 \), there are two poles, 0 and \(1/X \), and we obtain \(V(X) = \frac{1}{2} \frac{\xi}{X} \) which is equivalent to (10).

In addition, by a direct calculation, we obtain that:

\[
\int_{\mathbb{R}^2} |V(X)|^2 \, dydz = \frac{\pi}{2} |\xi|^2.
\]

We apply the previous lemma to calculate the weak limit \(H \):

\[
H(x, y, z) = \begin{cases}
-\frac{1}{2} \left(\frac{\varphi^2(x)}{\varphi^3(x)} \right) & \text{if } (y, z) \in B_2(0, 1), \\
\frac{1}{2} \left(\frac{x_2(y^2 - z^2) - 2x_3yz}{(y^2 + z^2)^2} \right) & \text{if } (y, z) \notin B_2(0, 1),
\end{cases}
\]

and by a direct calculation,

\[
\int_{\mathbb{R}^3} |H(x, y, z)|^2 \, dxdydz = \frac{\pi}{2} \int_{\mathbb{R}} (|\varphi^2(x)|^2 + |\varphi^3(x)|^2) \, dx.
\]
We remark now that since $-H_d$ is an orthogonal projection for the L^2 inner product,
\[
\int_{\mathbb{R}^3} |H^0_d(\psi_\eta)|^2 \, d\omega = -\int_{\Omega_1} H^0_d(\psi_\eta) \cdot \psi_\eta \, d\omega.
\]
Thus we can take the limit in this integral, and we obtain that:
\[
\int_{\mathbb{R}^3} |H^0_d(\psi_\eta)|^2 \, d\omega \longrightarrow \int_{\Omega_1} H \cdot \psi \, d\omega = \int_{\mathbb{R}^3} |H|^2 \, d\omega.
\]
So, in fact, $H^0_d(\psi_\eta)$ tends to H strongly in $L^2(\mathbb{R}^3)$, and we obtain that
\[
\frac{\pi}{4} \int_{\mathbb{R}} (|v^2(x)|^2 + |v^3(x)|^2) \, dx = \lim_{\eta \to 0} \frac{1}{2} \int_{\mathbb{R}^3} |H^0_d(\psi_\eta)|^2 \, d\omega.
\]
Therefore,
\[
\mathcal{E}(u) \leq \lim_{\eta \to 0} \mathcal{E}_\eta(u_\eta).
\]
\textbf{(ii) Reconstruction.} Let $u_0 \in H^1(\Omega_1; S^2)$. For $\eta > 0$, we define $u_\eta = u_0$.

Then,
\[
\mathcal{E}_\eta(u_\eta) = \frac{A^2}{2} \int_{\Omega_1} |\partial_x u_\eta|^2 \, d\omega + \frac{1}{2} \int_{\mathbb{R}^3} |H^0_d(u_0)|^2 \, d\omega - h_a \int_{\Omega_1} u_0 \cdot e_1 \, d\omega.
\]
As in the previous step, we have:
\[
\int_{\mathbb{R}^3} |H^0_d(u_0)|^2 \, d\omega \longrightarrow \frac{1}{4} \int_{\Omega_1} (|u_0|^2 + |u_0|^2) \, d\omega,
\]
that is
\[
\mathcal{E}_\eta(u_\eta) \longrightarrow \mathcal{E}(u_0).
\]

This theorem gives the behavior of minimizers for the one dimensional limit case: the limit energy, for $u \in H^1([-L, L]; S^2)$ is then $\mathcal{E}(u) = \mathcal{E}(u \cdot \chi_{B^2(0, 1)})$:
\[
\mathcal{E}(u) = \pi A^2 \int_{-L, L} \frac{du}{dx} |u_x|^2 \, dx + \frac{\pi}{4} \int_{-L, L} (|u_2|^2 + |u_3|^2) \, dx - h\pi \int_{-L, L} u \cdot e_1 \, dx,
\]
then, in order to find out the effective field, we write (see [11]):
\[
H_e = -\frac{d\mathcal{E}}{du},
\]
it is to say
\[
H_e = \pi A^2 \frac{\partial^2 u}{\partial x^2} - \frac{\pi}{2} (u_2 e_2 + u_3 e_3) + \pi h e_1.
\]
The boundary conditions for the minimizers are:
\[
\frac{\partial u}{\partial x} = 0 \text{ at } x = -L \text{ and } x = L,
\]
since we minimize the energy without Dirichlet boundary conditions.

Then, the limit dynamic system is obtain using the Landau Lifchitz combined with the new effective field H_e.

We perform the following rescaling in time $t' = \frac{t}{2}$ and in space $x' = x/\sqrt{2}$, we denote by $h'_a = 2h_a$ the rescaled applied field. The resulting rescaled system is then given by (3) as we expected.
3. Existence of particular equilibrium states: the walls

In this section we are interested in characterizing equilibrium states of the magnetization in a finite nano-wire when $h = 0$, it is to say when there is no external magnetic field. In this case, we look for solutions which can be written as follows:

$$M_0(x) = \begin{pmatrix} \sin \theta_0 \\ \cos \theta_0 \\ 0 \end{pmatrix}, \quad \forall x \in [-L_A \sqrt{2}, L_A \sqrt{2}],$$

where θ_0 is a non decreasing map from $[-L_A \sqrt{2}, L_A \sqrt{2}]$ into \mathbb{R} satisfying $\theta_0(-L_A \sqrt{2}) < 0 < \theta_0(L_A \sqrt{2})$, and such that M_0 is a stationary solution to (3). In fact, we want M_0 to verify:

$$-M_0 \wedge H_e - M_0 \wedge (M_0 \wedge H_e) = 0, \quad \forall x \in [-L_A \sqrt{2}, L_A \sqrt{2}],$$

with

$$H_e = \frac{\partial^2 M_0}{\partial x^2} - \cos \theta_0 \ e_2,$$

then, one has the following relation

$$-\theta''_0 - \sin \theta_0 \cos \theta_0 = 0, \quad \forall x \in [-L_A \sqrt{2}, L_A \sqrt{2}],$$

with, on the boundary

$$\theta'_0(-L_A \sqrt{2}) = \theta'_0(L_A \sqrt{2}) = 0.$$

Setting $\gamma_0 = \theta_0(L_A \sqrt{2})$ (γ_0 is supposed to be non negative, that is we look for a non decreasing solution θ_0), we have, integrating the equation (11) and using (12):

$$\theta''_0(L_A \sqrt{2}) = 0,$$

The length of the nano-wire has to be such that the function θ_0 goes from $-\gamma_0$ to γ_0. From formula (13), we deduce the length:

$$\ell(\gamma_0) = \int_{-\gamma_0}^{\gamma_0} \frac{d\theta}{\sqrt{\sin^2 \gamma_0 - \sin^2 \theta}}.$$

Using the length expression computed above, we prove now Theorem 1.2:

Proof. In order to ensure the existence of an equilibrium state as defined above, we must verify that there exists $\gamma_0 > 0$ such that $\ell(\gamma_0) = 2L_A \sqrt{2}$. First of all, one has

$$\ell(\gamma_0) = \int_{-1}^{1} \frac{\gamma_0}{\sin \gamma_0} \frac{d\theta}{\sqrt{1 - \frac{\sin^2 \theta}{\sin^2 \gamma_0}}},$$

we then see that

$$\lim_{\gamma_0 \to \frac{\pi}{2}} \ell(\gamma_0) = +\infty.$$

The first remark is that γ_0 is in the interval $]0, \frac{\pi}{2}[$. Now, computing the derivative of $\ell(\gamma_0)$ with respect to γ_0, we conclude that ℓ is strictly increasing on $]0, \frac{\pi}{2}[$. Then,
the comparison could be done at the limit $\gamma_0 = 0$:

$$
\lim_{\gamma_0 \to 0} \ell(\gamma_0) = \lim_{\gamma_0 \to 0} \int_{-1}^{1} \frac{\gamma_0}{\sin \gamma_0} \sqrt{1 - \frac{\sin^2(u \gamma_0)}{\sin^2 \gamma_0}} \, du = \int_{-1}^{1} \frac{du}{\sqrt{1 - u^2}} = 2\pi,
$$

then, we require that $2\frac{L}{A\sqrt{2}} > 2\pi$.

\[\square \]

4. Unstability of walls without applied field

Let us consider L, A and $\gamma_0 > 0$ given by Theorem 1.2. We denote by M_0 the wall profile

$$
M_0(x) = \begin{pmatrix}
\sin \theta_0(x) \\
\cos \theta_0(x) \\
0
\end{pmatrix}.
$$

This profile is a static solution to (3) with $h_a = 0$. We aim to calculate the linearized equation of (3) around M_0. In order to calculate this linearization taking into account that we are only interested in the perturbations of M_0 satisfying the constraint $|m| = 1$, we describe the small perturbations of M_0 as follows:

$$
m(t, x) = r_1 M_1 + r_2 M_2 + \sqrt{1 - r_1^2 - r_2^2} M_0,
$$

where the mobile frame $(M_0(x), M_1(x), M_2)$ is given by

$$
(14) \quad M_0(x) = \begin{pmatrix}
\sin \theta_0(x) \\
\cos \theta_0(x) \\
0
\end{pmatrix}, \quad M_1(x) = \begin{pmatrix}
-\cos \theta_0(x) \\
\sin \theta_0(x) \\
0
\end{pmatrix}, \quad M_2(x) = \begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix},
$$

for $x \in [-\frac{L}{A\sqrt{2}}, \frac{L}{A\sqrt{2}}]$.

The new unknown is now $r = (r_1, r_2)$ taking its values into \mathbb{R}^2. The profile M_0 corresponds to $r = 0$, so the linearized of (3) around M_0 in the variable r is the following equation:

$$
\partial_t r = J \begin{pmatrix}
(L - \cos^2 \gamma_0) r_1 \\
L r_2
\end{pmatrix},
$$

with

- $J = \begin{pmatrix}
-1 & -1 \\
1 & -1
\end{pmatrix}$,

- $\gamma_0 = \theta_0(L/A\sqrt{2})$,

- $\mathcal{L} r = -\partial_{xx} r_2 + g_0 r_2$, where $g_0(x) = \sin^2 \theta_0 - (\theta'_0)^2$.

The linear unstability of the wall structure computed in the previous section is given by the study of the operator \mathcal{L}.

Proposition 2. \mathcal{L} is a linear, positive operator. Its first eigenvalue, 0, is associated to the eigenfunction $\cos \theta_0$ and its second eigenvalue, 1, is associated to the eigenfunction $\sin \theta_0$.

Proof. We set: \(f = \theta'_0 \tan \theta_0 \), then
\[
\mathcal{L} = \ell \ast \ell, \quad \text{where} \quad \ell = \partial_x + f,
\]
then, we can conclude that \(\mathcal{L} \) is a positive operator and that \(\cos \theta_0 \) is in the kernel of \(\mathcal{L} \). Thus 0 is the first eigenvalue of \(\mathcal{L}_2 \).
Furthermore, we have:
\[
\mathcal{L}(\sin \theta_0) = \sin \theta_0,
\]
it is to say that 1 is an eigenvalue of \(\mathcal{L} \) associated to the eigenfunction \(\sin \theta_0 \). In addition we remark that \(\sin \theta_0 \) vanishes once in the domain, so by Sturm-Louville theorem, 1 is the second eigenvalue of \(\mathcal{L}_2 \).
\(\square \)

We can now prove Theorem 1.3.

Proof. From the previous proposition, since \(-\cos^2 \gamma_0 < 0\), we conclude that \(\mathcal{L} - \cos^2 \gamma_0 \) has one strictly negative eigenvalue, then, zero is unstable for the linearized of (3) around \(M_0 \).
\(\square \)

5. Stabilization of walls

Now, we discuss the stabilization of \(M_0 \) by the command \(H_a \) (the applied field).
We recall that we introduced the following command:
\[
h_a = h_a(m) = \frac{-A}{\sqrt{2L}} \int_{\frac{L}{A\sqrt{2}}}^{\frac{L}{A\sqrt{2}}} m_1(t,s) \, ds.
\]
We want to prove that the profile \(M_0 \) is a stable stationary solution for the following system:
\[
\begin{align*}
\frac{\partial m}{\partial t} &= -m \wedge H_e - m \wedge (m \wedge H_e), \\
\frac{\partial m}{\partial x} \left(-\frac{L}{A\sqrt{2}} \right) &= \frac{\partial m}{\partial x} \left(\frac{L}{A\sqrt{2}} \right) = 0, \\
H_e &= \frac{\partial^2 m}{\partial x^2} - m_2 e_2 - m_3 e_3 + h_a(m) e_1.
\end{align*}
\]
(15)

Proof. To start with, let us introduce \(M_0 = (\sin \theta_0, \cos \theta_0, 0) \) given in Theorem 1.2. We recall that
\[
\theta''_0 + \sin \theta_0 \cos \theta_0 = 0,
\]
\[
\theta' \left(-\frac{L}{A\sqrt{2}} \right) = \theta' \left(\frac{L}{A\sqrt{2}} \right) = 0,
\]
Furthermore, on \([-\frac{L}{A\sqrt{2}}, \frac{L}{A\sqrt{2}}]\),
\[
\cos^2 \theta_0 - (\theta'_0)^2 = \cos^2 \gamma_0,
\]
where \(\gamma_0 = \theta_0 \left(\frac{L}{A\sqrt{2}} \right) \).
Since \(h_a(M_0) = 0 \), we remark that \(M_0 \) is a stationary solution of (15).
5.1. **First step: moving frame.** As in the previous section, in the spirit of [8], we will describe the problem in the moving frame

$$(M_0(x), M_1(x), M_2),$$

given by (14).

We write the solutions to (15) as:

$$m(t, x) = M_0(x) + r_1(t, x) M_1(x) + r_2(t, x) M_2 + \nu(r(t, x)) M_0(x)$$

where $\nu(r) = \sqrt{1 - r_1^2 - r_2^2} - 1$. In this moving frame, we get

$$H_e = (g_0 + a_0) M_0 + (a_1 + \tilde{a}_1) M_1 + a_2 M_2$$

with

$$g_0 = \sin^2 \theta_0 - (\theta_0')^2$$

$$a_0 = 2 \theta_0' r_1 + r_1 \theta_0'' - \cos \theta_0 \sin \theta_0 \ r_1 + \partial_{xx} \nu - \nu(\theta_0')^2 + \nu \sin^2 \theta_0 + h(r) \sin \theta_0,$$

$$a_1 = \partial_{xx} r_1 + \cos^2 \gamma_0 r_1 - S(r_1) \cos \theta_0,$$

$$\tilde{a}_1 = -2 \partial_x \nu \theta_0 - \varphi(r) \cos \theta_0,$$

$$a_2 = \partial_{xx} r_2.$$

where

$$S(r_1) = \frac{A}{\sqrt{2} L} \int_{-\frac{\sqrt{2}}{\lambda \sqrt{2}}}^{\frac{\sqrt{2}}{\lambda \sqrt{2}}} r_1 \cos \theta_0 \ ds, \quad \varphi(r) = -\frac{A}{\sqrt{2} L} \int_{-\frac{\sqrt{2}}{\lambda \sqrt{2}}}^{\frac{\sqrt{2}}{\lambda \sqrt{2}}} \nu(r) \sin \theta_0 \ ds,$$

and $h(r) = S(r_1) + \varphi(r)$.

Using these coordinates in the Landau-Lifchitz equation (12) and projecting on M_1 and M_2 yield:

$$\partial_t r = \Lambda r + F(x, r, \partial_x r, \partial_{xx} r),$$

where

$$\Lambda r = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \tilde{L}_1(r_1) \\ \mathcal{L}(r_2) \end{pmatrix}$$

with

$$\mathcal{L} = -\partial_{xx} + g_0,$$

$$\tilde{L}_1 = \mathcal{L} - \cos^2 \gamma_0 + \cos \theta_0 S,$$

and where the non linear part F is given by

$$F(x, r, \partial_x r, \partial_{xx} r) = F_1(r) \partial_{xx} r + F_2(r)(\partial_x r, \partial_x r) + F_3(x, r) \partial_x r + F_4(r) + F_5(r),$$

with
• $F_1 \in C^\infty(\mathbb{R}^2; \mathcal{M}_2(\mathbb{R}))$:

$$F_1(r) = \begin{pmatrix} (r_2)^2 + (\nu(r))^2 + 2\nu(r) & \nu(r) - r_1r_2 \\ r_1r_2 - \nu(r) & (r_1)^2 + (\nu(r))^2 + 2\nu(r) \end{pmatrix}$$

$$+ \begin{pmatrix} -r_1 - r_2 - \nu(r)r_1 \\ r_1 - r_2 - \nu(r)r_2 \end{pmatrix} \nu'(r),$$

• $F_2 \in C^\infty(\mathbb{R}^2; \mathcal{L}_2(\mathbb{R}^2; \mathbb{R}^2))$:

$$F_2(r)(\partial_x r, \partial_x r) = \begin{pmatrix} -r_1 - r_2 - \nu(r)r_1 \\ r_1 - r_2 - \nu(r)r_2 \end{pmatrix} \nu''(r)(\partial_x r, \partial_x r),$$

• $F_3 \in C^\infty([-\frac{L}{\sqrt{2}}, \frac{L}{\sqrt{2}}] \times \mathbb{R}^2; \mathcal{L}(\mathbb{R}^2; \mathbb{R}^2))$:

$$F_3(x, r)\partial_x r = 2\theta'_0(x) \begin{pmatrix} -r_1 - r_2 - \nu(r)r_1 \\ r_1 - r_2 - \nu(r)r_2 \end{pmatrix} \partial_x r_1$$

$$-2\theta'_0(x) \begin{pmatrix} (r_2)^2 + (\nu(r))^2 + 2\nu(r) + 1 \\ r_1r_2 - \nu(r) - 1 \end{pmatrix} \nu'(r)(\partial_x r),$$

• $F_4(r) \in C^\infty([-\frac{L}{\sqrt{2}}, \frac{L}{\sqrt{2}}] \times \mathbb{R}^2; \mathbb{R}^2)$:

$$F_4(r) = (\cos^2 \gamma_0 r_1) \begin{pmatrix} (r_2)^2 + (\nu(r))^2 + 2\nu(r) \\ r_1r_2 - \nu(r) \end{pmatrix} - g_0 \nu(r) \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}$$

$$+ ((\theta'_0 - \cos \theta_0 \sin \theta_0)r_1 + g_0 \nu(r)) \begin{pmatrix} -r_1 - r_2 - \nu(r)r_1 \\ r_1 - r_2 - \nu(r)r_2 \end{pmatrix}.$$.$$

• F_5 is given by

$$F_5(r) = -h(r) \cos \theta_0 \begin{pmatrix} (r_2)^2 + (\nu(r))^2 + 2\nu(r) \\ r_1r_2 - \nu(r) \end{pmatrix} - \varphi(r) \cos \theta_0 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$+ h(r) \sin \theta_0 \begin{pmatrix} -r_1 - r_2 - \nu(r)r_1 \\ r_1 - r_2 - \nu(r)r_2 \end{pmatrix}.$$.$$

Remark 4. The command h makes the linear part of (16) positive. Indeed, on one hand, we know that $\mathcal{L} \geq 0$ with $\text{Ker} \mathcal{L} = \mathbb{R} \cos \theta_0$. On the other hand, $\mathcal{L}_1 = \mathcal{L} + \cos \theta_0 S - \cos^2 \gamma_0$. On $\mathbb{R} \cos \theta_0$, $\mathcal{L}_1 \cos \theta_0 = \alpha_0 \cos \theta_0$ with

$$\alpha_0 = \frac{A}{\sqrt{2}L} \int_{-L/\sqrt{2}}^{L/\sqrt{2}} \cos^2 \theta_0(x)dx - \cos^2 \gamma_0 > 0$$.
since for \(x \in \left[-\frac{L}{A\sqrt{2}}, \frac{L}{A\sqrt{2}} \right] \), \(\cos^2 \theta_0(x) > \cos^2 \gamma_0 \), and on \((\cos \theta_0)^+ \),
\[
\hat{L}_1|_{(\cos \theta_0)^+} = L - \cos^2 \theta_0 \geq 1 - \cos^2 \theta_0
\]
since \(L \geq 1 \) on \((\cos \theta_0)^+ \) (see Proposition 2).

5.2. Second step.

5.2.1. New unknown. The Landau Lifschitz equation (3) is invariant by rotation around the wire axis, so we can build a one parameter family of static solutions for (16).

For \(\tau \in \mathbb{R} \) let us introduce the rotation around the \(x \)-axis given by
\[
\rho_\tau = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \tau & -\sin \tau \\ 0 & \sin \tau & \cos \tau \end{pmatrix}.
\]

We denote \(M_\tau(x) = \rho_\tau M_0(x) \), and \(R_\tau \) its projection on the moving frame:
\[
R_\tau(x) = \begin{pmatrix} M_\tau(x)_1(x) \\ M_\tau(x)_2(x) \end{pmatrix} = \begin{pmatrix} \cos \theta_0(x) \sin \theta_0(x)(\cos \tau - 1) \\ \cos \theta_0(x) \sin \tau \end{pmatrix}.
\]

Since \(M_\tau \) is solution to (15), \(R_\tau \) is a static solution of (16), that is
\[
\Lambda R_\theta + F(x, R_\theta, \partial_x R_\theta, \partial_{xx} R_\theta) = 0.
\]

Now in order to avoid the problems due to the zero eigenvalue of \(\Lambda \), we describe \(r \) in the new coordinates \((\tau, \sigma, W)\) defined by
\[
r(t, x) = R_\tau(t)(x) + \sigma(t) \begin{pmatrix} \cos \theta_0(x) \\ 0 \end{pmatrix} + W(t, x),
\]
where \((\tau, \sigma) \in C^1(\mathbb{R}^+; \mathbb{R}^2)\) and \(W \in C^1(\mathbb{R}^+; H^2)\) such that both coordinates of \(W \) are in \((\cos \theta_0)^+ \).

Indeed, as in [12], we can prove that for a given \(r \in H^2\left(-\frac{L}{A\sqrt{2}}, \frac{L}{A\sqrt{2}}\right) \) in a neighbourhood of 0, there exists a unique \((\tau, \sigma, W) \in \mathbb{R} \times \mathbb{R} \times \mathcal{W}\) such that
\[
\rho = R_\theta + \sigma \begin{pmatrix} \cos \theta_0 \\ 0 \end{pmatrix} + W,
\]
where \(\mathcal{W} \) is the set of the \(W = \begin{pmatrix} W_1 \\ W_2 \end{pmatrix} \in H^2 \) satisfying the homogeneous Neumann Boundary condition
\[
\frac{\partial W}{\partial x}\left(-\frac{L}{A\sqrt{2}}\right) = \frac{\partial W}{\partial x}\left(\frac{L}{A\sqrt{2}}\right) = 0
\]
and the orthogonality condition:
\[
\int_{-\frac{L}{A\sqrt{2}}}^{\frac{L}{A\sqrt{2}}} W_1(x) \cos \theta_0(x) dx = \int_{-\frac{L}{A\sqrt{2}}}^{\frac{L}{A\sqrt{2}}} W_2(x) \cos \theta_0(x) dx = 0.
\]

Remark 5. On \((\cos \theta_0)^+\), the operators \(\mathcal{L} \) and \(\mathcal{L} - \cos^2 \theta_0 \) are non negative, so we introduce the following norms on \(\mathcal{W} \), respectively equivalent to the \(H^2 \) and the \(H^3 \).
norms:

\[\| W \|_{H^2} = \left(\| \mathcal{L}^\frac{1}{2} (\mathcal{L} - \cos^2 \gamma_0)^\frac{1}{2} W_1 \|_{L^2}^2 + \| \mathcal{L} W_2 \|_{L^2}^2 \right)^\frac{1}{2}, \]

\[\| W \|_{H^3} = \left(\| \mathcal{L}^\frac{1}{2} (\mathcal{L} - \cos^2 \gamma_0) W_1 \|_{L^2}^2 + \| \mathcal{L}^\frac{3}{2} W_2 \|_{L^2}^2 \right)^\frac{1}{2}. \]

5.2.2. Equation (16) with these unknowns. Plugging the decomposition (19) in (16) and using (18) yield the following equivalent form for the Landau-Lifschitz equation in the coordinates \((\tau, \sigma, W)\), valid for small perturbations of \(M_0\):

\[
\begin{aligned}
&\frac{d\tau}{dt} R'_\tau + \frac{d\sigma}{dt} \left(\begin{array}{c} \cos \theta_0 \\ 0 \end{array} \right) + \partial_\tau W = \sigma \left(-\frac{\alpha_0 \cos \theta_0}{\alpha_0 \cos \theta_0} \right) + \Lambda W + G(x, \tau, \sigma, W, \partial_\tau W, \partial_{xx} W).
\end{aligned}
\]

Let us describe the different terms in this equation:

Concerning the time derivatives, we have

\[\partial_\tau r = \frac{d\tau}{dt} R'_\tau (x) + \frac{d\sigma}{dt} \left(\begin{array}{c} \cos \theta_0 \\ 0 \end{array} \right) + \partial_\tau W, \]

where

\[R'_\tau (x) = \left(\begin{array}{c} -\sin \tau \cos \theta_0 \sin \theta_0 \\ \cos \tau \cos \theta_0 \end{array} \right). \]

Concerning the linear part, we have

\[\Lambda r = \Lambda R_\tau + \left(-\frac{\alpha_0 \cos \theta_0}{\alpha_0 \cos \theta_0} \right) \sigma + \Lambda(W) \]

(see Remark 2 for the definition of \(\alpha_0\)).

Concerning the non linear part, we have

\[F(x, r, \partial_x r, \partial_{xx} r) = F(x, R_\tau, \partial_x R_\tau, \partial_{xx} R_\tau) + G(x, \tau, \sigma, W, \partial_\tau W, \partial_{xx} W). \]

The last term \(G\) is obtained from \(F\) with the Taylor formula around \(R_\tau\):

\[G(x, \tau, \sigma, W, \partial_\tau W, \partial_{xx} W) = F_1(r)(\partial_{xx} w) + \tilde{F}_1(r)(w)(\partial_{xx} R_\tau) + 2F_2(r)(\partial_x w, \partial_x R_\tau) + F_2(r)(\partial_x w, \partial_x w) + \tilde{F}_2(r)(w)(\partial_x R_\tau, \partial_x R_\tau) + F_3(x, r)(\partial_x w) + \tilde{F}_3(x, r)(w)\partial_x R_\tau + \tilde{F}_4(r)(w) + F_5(r), \]

where

- \(w = W + \left(\begin{array}{c} \cos \theta_0 \\ 0 \end{array} \right) \sigma, \)

- for \(i = 1..4, \tilde{F}_i (r) \in \mathcal{L}(\mathbb{R}^2; \mathbb{R}^2) \) is given by

\[\tilde{F}_i (r) = \int_0^1 F'_i (R_\tau + sw) ds. \]
From straightforward calculations, we see that:
\[F_1(r) = \mathcal{O}(|r|^2), \quad \tilde{F}_1(r) = \mathcal{O}(|r|^2) \]
\[F_2(r) = \mathcal{O}(|r|), \quad \tilde{F}_2(r) = \mathcal{O}(1) \]
\[F_3(x, r) = \mathcal{O}(|r|), \quad \tilde{F}_3(x, r) = \mathcal{O}(1) \]
\[\tilde{F}_4(r) = \mathcal{O}(|r|). \]

- Concerning \(F_5 \), on one hand we remark that
\[S(r_1) = S(W_1) + \sigma S(\cos \theta_0) \]
(since \(S(R_\tau) = 0 \)).

On the other hand, \(\varphi(R_\tau) = 0 \) and
\[
\varphi(r) = -\varepsilon \int_{-L}^{L} \tilde{\nu}(r)(w) \sin \theta_0, \\
\text{where} \\
\tilde{\nu}(r) = \int_{0}^{1} \nu'(R_\tau + sw) ds = \mathcal{O}(|r|).
\]

Therefore with all these estimates, if \(\|r\|_{H^2} \) is sufficiently small, we have
\[
\|G\|_{L^2} \leq K \|r\|_{L^\infty} [\|\sigma\| + \|W\|_{H^2}], \tag{21}
\]
\[
\|\partial_x G\|_{L^2} \leq K \|r\|_{L^\infty} [\|\sigma\| + \|W\|_{H^2}]
\]
(see Remark 5.)

5.2.3. \textit{Separation of the unknowns.} In order to separate the unknowns \(\tau, \sigma \) and \(W \), we first take the inner product of (20) with \(\left(\cos \theta_0 \right) \) and with \(\left(\begin{smallmatrix} 0 \\ \cos \theta_0 \end{smallmatrix} \right) \). We remark that both \(\partial_t W \) and \(\Lambda W \) are orthogonal to these vectors, so that we obtain:
\[
\rho_0 \sigma' = -\alpha_0 \rho_0 \sigma + \overline{G}_1, \\
g_\tau \tau' = \alpha_0 \rho_0 \sigma + \overline{G}_2,
\]
where
\[
\rho_0 = \int_{-L}^{L} \frac{1}{\sqrt{2}} \cos^2 \theta_0, \\
\overline{G}_1 = \int_{-L}^{L} G(x, \tau, \sigma, W, \partial_x W, \partial_{xx} W) \cdot \left(\begin{smallmatrix} \cos \theta_0 \\ 0 \end{smallmatrix} \right) dx, \\
g_\tau = \int_{-L}^{L} R'_\tau(x) \cdot \left(\begin{smallmatrix} 0 \\ \cos \theta_0 \end{smallmatrix} \right) dx, \\
\overline{G}_2 = \int_{-L}^{L} G(x, \tau, \sigma, W, \partial_x W) \cdot \left(\begin{smallmatrix} 0 \\ \cos \theta_0 \end{smallmatrix} \right) dx.
\]
By subtraction, we have:
\[\partial_t W = \Lambda W + \tilde{G} \]
with
\[\tilde{G} = G - \frac{G_2}{g_r} R'_r - \frac{G_1}{\rho_0} \left(\cos \theta_0 \right) + \sigma_0 \sigma \left[\left(\frac{\rho_0}{g_r} - \frac{\rho_0}{g_r} R'_r \right) \right]. \]

5.2.4. equivalent formulation. We are then led to study the following equation
\[\tau' = \alpha \rho_0 g_r + 1 \frac{\rho_0 G_2}{g_r}, \]
with the system coupling:
\[\sigma' = -\alpha \sigma + \frac{1}{\rho_0} G_1, \]
with
\[\partial_t W = \left(- (L - \cos^2 \gamma_0) W_1 - L W_2 \right) + \tilde{G}. \]

From (21), with Remark 5 we have
\[\left| \frac{1}{\rho_0} G_1 \right| (t) \leq K \| r \|_{L^\infty} \left[\| \sigma(t) \| + \| W(t) \|_{H^\gamma} \right]. \]

In addition, since \(g_r = \rho_0 + O(\tau^2) \), since \(R'_r = \left(\frac{0}{\cos \theta_0} \right) + O(\tau) \), we get:
\[\| \tilde{G} \|_{H^1} \leq K \| r \|_{L^\infty} \left[\| \sigma(t) \| + \| W(t) \|_{H^\gamma} \right]. \]

5.3. Last step: Variational estimates. Taking the inner product of (24) with \(\left(L (L - \cos^2 \gamma_0) W_1 \right) / L^2 W_2 \), we obtain using (26) that
\[\frac{d}{dt} \left[\| W \|_{H^\gamma}^2 \right] + \| W \|_{H^\gamma}^2 \leq K \| r \|_{L^\infty} \left[\| \sigma(t) \| + \| W(t) \|_{H^\gamma} \right]. \]

Remark 6. In order to avoid the boundary terms when we integrate by part, we perform the previous estimates on the Galerkin approximation of (24) built on the eigenvectors of \(L \) with the homogeneous Neumann boundary condition.

Multiplying (23) by \(\sigma \), (25) yields:
\[\frac{d}{dt} \sigma^2 + \alpha \sigma^2 \leq K \| r \|_{L^\infty} \left[\| \sigma(t) \|^2 + \| W(t) \|_{H^\gamma}^2 \right]. \]

Summing up the previous estimates, we have:
\[\frac{d}{dt} \left[\| \sigma(t) \|^2 + \| W(t) \|^2_{H^\gamma} \right] + \alpha \left[\| \sigma(t) \|^2 + \| W(t) \|^2_{H^\gamma} \right] \left[1 - K \| r \|_{L^\infty} \right] \leq 0. \]

So there exists \(\delta > 0 \) such that while \(\| r \|_{L^\infty} \leq \frac{1}{2K} \),
\[\frac{d}{dt} \left[\| \sigma(t) \|^2 + \| W(t) \|^2_{H^\gamma} \right] + \delta \left[\| \sigma(t) \|^2 + \| W(t) \|^2_{H^\gamma} \right] \leq 0, \]
that is
\[\left[\| \sigma(t) \|^2 + \| W(t) \|^2_{H^\gamma} \right] \leq \left[\| \sigma_0 \|^2 + \| W_0 \|^2_{H^\gamma} \right] e^{-\delta t}. \]
Now, with equation (22), we have
\[|\tau'| \leq K |\sigma| + K \left[|\sigma(t)| + \|W(t)\|_{H^2} \right] \]
so while \(\|r\|_{L^\infty} \leq \frac{1}{2K} \),
\[|\tau| \leq |\tau_0| + K \left[|\sigma_0| + \|W_0\|_{H^2} \right] e^{-\delta t/2} . \]

Therefore, if \(\tau_0, \sigma_0 \) and \(\|W_0\|_{H^2} \) are small enough, we remain in the domain \(\{ \|r\|_{L^\infty} \leq \frac{1}{2K} \} \) and all the previous estimates remain valid for all times. This concludes the proof of Theorem 1.4.

\[\Box \]

References

E-mail address: carbou@math.u-bordeaux1.fr
E-mail address: stephane.labbe@imag.fr