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Abstract

We consider in this paper the statistical linear inverse problem Y = Af + εξ where A
denotes a compact operator, ε a noise level and ξ a stochastic noise. The unknown function
f has to be recovered from the indirect measurement Y . We are interested in the following
approach: given a family of estimators, we want to select the best possible one. In this context,
the unbiased risk estimation (URE) method is rather popular. Nevertheless, it is also very
unstable. Recently, Cavalier and Golubev (2006) introduced the risk hull minimization (RHM)
method. It significantly improves the performances of the standard URE procedure. However,
it only concerns projection rules. Using recent developments on ordered processes, we prove
in this paper that it can be extended to a large class of linear estimators.

1 Introduction

This paper is devoted to statistical linear inverse problems. We want to recover an unknown
function f from noisy and indirect measurements. Formally, consider H and K two Hilbert spaces
and A : H → K a compact operator. We observe:

Y = Af + εξ, (1.1)

where f belongs to H and εξ denotes some noise. This representation arises in many mathematical
and physical domains. In the numerical literature, the noise εξ is deterministic. For such a model,
many recovering methods have been proposed. For a survey, we mention for instance [13], [17], [14]
or [25]. In the statistical literature, one deals instead with stochastic perturbations. The Gaussian
white noise model is the most used. The representation (1.1) is equivalent to:

〈Y, g〉 = 〈Af, g〉+ ε〈ξ, g〉, ∀g ∈ K, (1.2)

where 〈ξ, g〉 ∼ N (0, ‖g‖2) and ε > 0. Given g1, g2 ∈ K, E〈ξ, g1〉〈ξ, g2〉 = 〈g1, g2〉. We refer to [18]
for more details concerning the Gaussian white noise. We assume throughout this paper that the
noise level ε is known.

The singular value decomposition (SVD) setting provides a better understanding of the model
(1.1). The operator A?A is compact and selfadjoint. We denote by (b2k)k∈N the associated sequence
of eigenvalues. The set of eigenfunctions (φk)k∈N is assumed to be orthonormal. Then define
ψk = b−1

k Aφk, ∀k ∈ N. For all integer k, the following equality holds:{
Aφk = bkψk,
A?ψk = bkφk.

(1.3)

The triple (bk, φk, ψk)k∈N is called the singular system for the operator A?A. The associated
representation matrix is diagonal. For all k ∈ N, set g = ψk in (1.2) and use (1.3) in order to
obtain the sequence space model:

yk = bkθk + εξk, ∀k ∈ N, (1.4)
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where θk = 〈f, φk〉. The ξk are i.i.d. standard Gaussian random variables since the set (ψk)k∈N is
also orthonormal. In the L2 sense, the function f and θ = (θk)k∈N represent the same mathemat-
ical object. The sequence θ has to be recovered from the noisy observations (yk)k∈N. Since A?A
is compact, bk → 0 as k → +∞. When k is large, the estimation of θk is quite difficult: there is
mainly noise in the observation yk. The SVD can explicitly computed for a large class of inverse
problems, e.g. tomography (see [19]) or Biophotonic imaging (see [4]).

In some sense, the best approximate solution f̂ minimizes the distance between the observation
and the image of the operator A. It corresponds to the least square solution and verifies f̂ =
(A?A)−1A?Y . Since A?A is compact, it is not continuously invertible. The solution f̂ will not be
convenient: it does not necessarily converge to f as ε → 0. In order to solve (1.1), one may use
instead:

f̂t = Φt(A?A)A?Y,

where Φt approximates the function x 7→ x−1 on the spectrum of A?A. This is a regularization
method. The parameter t is a regularization parameter. The performances of f̂t are related to
the choice of t which is crucial for both numerical and statistical approaches. Some examples are
presented in Sections 2.1 and 3.2.

In the SVD setting, a regularization method Φt corresponds to a filter λ(t) = (λk(t))k∈N. It is
a real sequence with values in [0, 1]. The associated estimator is:

f̂t =
+∞∑
k=1

λk(t)b−1
k ykφk.

The quality of f̂t is measured via its quadratic risk:

R(θ, λ(t)) = Eθ‖f̂t − f‖2 =
+∞∑
k=1

(1− λk(t))2θ2k + ε2
+∞∑
k=1

λ2
k(t)b−2

k . (1.5)

The behavior of R(θ, λ(t)) depends on both the function f and the regularization approach, i.e. the
filter λ and the parameter t. For more details and some examples, we mention [15], [19], [11] or [12].

In this context, the unbiased risk estimation (URE) method is rather popular for choosing t
since it does not require a priori informations on the solution f . It has been studied for instance
in [8]. However, this method is rather unstable due to the ill-posedness of the problem. The risk
hull minimization (RHM) method initiated in [9] proposes to take into account the variability of
the problem through the constrution of a risk hull. The definition is detailed below.

Definition 1 Let Λ a family of filters. A deterministic term V (θ, λ) such that:

Eθ sup
λ∈Λ

[
‖f̂t − f‖2 − V (θ, λ)

]
≤ 0,

is called a risk hull for Λ.

The principle of the RHM scheme is to minimize the hull, through an appropriate estimator,
instead of the quadratic risk. Specific phenomena are related to the Gaussian white noise model.
They require particular approaches that may not be useful in numerical areas. The RHM method
is a good example of such a procedure. It provides answers to specific problems of the statistical
model (1.2) and improves the standard URE approach. The risk hull method has been developed
for projection estimators. As proved in this paper, it can be extended to a large class of linear
estimators. This class contains for instance Tikhonov estimators or Landweber iterative methods.

This paper is organized as follows. In Section 2, we present the RHM method and recall the
main problems related to the choice of the regularization parameter t through some well-known
properties of Tikhonov estimators. A risk hull for a wide family of spectral regularization schemes
is constructed in Section 3. Section 4 contains the main results and the proofs are gathered in
Section 5. Finally, Section 6 is devoted to ordered processes. A reader not familiar with this topic
is advised to read this part before being interested in the proofs.
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2 The risk hull principle

Consider the following problem: given a function f and a set of estimators Λ, we want to select
the best possible one, i.e. that minimizes the quadratic risk. In most cases, the family Λ may be
identified with a regularization operator Φt indexed by t and a collection of parameters T . This
collection may be finite or not. We want to select the parameter t in an adaptive way, i.e. without
using some unknown information on the function f .

2.1 The Tikhonov estimator

In order to shed some light on this framework, we recall briefly some properties of the Tikhonov
estimators. Obviously, these estimators are well-known. However, some steps may be useful in the
sequel. For a survey on this procedure, both in the numerical and statistical domains, we mention
for instance [14], [24], [6] or [5] for non-linear inverse problems.

The Tikhonov estimation is rather intuitive. One wants to control both the regularity of our
estimator f̃ and the fitting of Af̃ with the data Y . Therefore, resolve the following optimization
problem:

f̃t = arg min
f∈H

{‖Af − Y ‖2 + t−1‖f‖2a}, (2.1)

where t is a regularization parameter. For all f ∈ H and a ∈ R, ‖f‖a = ‖(AA?)−af‖. In some
sense, (AA?)−a is a differential operator. The parameter a is chosen a priori. It is related to the
expected regularity of the function f . In the literature, one often uses α instead of t−1. However,
the notation (2.1) is consistent with Sections 3-6.

The solution of (2.1) is:

f̃t = Φt(A?A)A?Y, with Φt(A?A) = (A?A+ t−1(La)?La)−1, and La = (AA?)−a. (2.2)

In the SVD representation, the Tikhonov estimator becomes:

f̃t =
+∞∑
k=1

λk(t)b−1
k ykφk, with λk(t) =

1
1 + t−1(b−2

k )1+2a
, ∀k ∈ N. (2.3)

The choice of t is crucial and has a real impact on the performances of f̃t. It is a trade-off between
the two sums in the right hand side of (1.5). Assume for instance that the function f belongs to
a ball Hµ

Q of radius Q:

f ∈ Hµ
Q =

{
g ∈ H : ‖(A?A)−µg‖2 ≤ Q

}
⇔ θ ∈ Θ(s,Q) =

{
ϑ :

+∞∑
k=1

b−4µ
k ϑ2

k ≤ Q

}
, (2.4)

for some µ > 0. In what follows, we note b1 . b2 when there exists C > 0 such that b1 ≤ Cb2.
Using simple algebra:

+∞∑
k=1

(1− λk(t))2θ2k . t−
2µ

(1+2a) , (2.5)

provided µ < 1 + 2a. For µ larger than 1 + 2a, gα cannot be optimally bounded. The Tikhonov
estimator does not attain the minimax rate of convergence on Hµ

Q. It is said to be underqualified.
For the special case a = 0, we obtain the well-known condition µ < 1. The term 1 + 2a is called
qualification of the Tikhonov regularization (see [14] or [6] for more details).

Now consider the second sum. Assume that the sequence of eigenvalues possesses a polynomial
behavior: (bk)k∈N ∼ (k−β)k∈N for some β > 0. The problem is said to be mildly ill-posed. Let
n = nt ∈ N which will be chosen later:

ε2
+∞∑
k=1

λk(t)2b−2
k = ε2

nt∑
k=1

λk(t)2b−2
k + ε2

∑
k>nt

λk(t)2b−2
k . ε2n2β+1

t + ε2t−2n−8βa−2β+1
t .
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Using simple algebra, we obtain the following bound:

ε2
+∞∑
k=1

λk(t)2b−2
k . ε2t

2β+1
2β(1+2a) , setting nt = t

1
2β(1+2a) . (2.6)

Consider the parameter t0 that make the trade-off between (2.5) and (2.6). The associated esti-
mator attains the minimax rate of convergence on Hµ

Q for µ < 1+2a. The parameter t0 can easily
be constructed with the a priori knowledge of µ and Q. If it is not the case, it is necessary to use
a data-driven parameter choice rule.

2.2 The risk hull method

In a minimax sense, the optimal regularization parameter depends essentially on the regularity and
on the norm of f . Since these informations are in most cases unknown, the choice of t is somewhat
difficult.

Several data driven regularization methods have been proposed. The unbiased risk estimation
procedure is rather popular. The principle is intuitive: given f and a set of estimators Λ (or
equivalently a collection T of regularization parameters), we want to select the best possible one,
i.e. that minimizes the quadratic risk R(θ, λ(t)) (see (1.5)). Since this quantity depends on the
unknown function f , this estimator is not available. It is called the oracle. However, we can
construct an estimator U(y, λ(t)) of R(θ, λ(t)) and then, minimize U(y, λ(t)) instead of R(θ, λ(t)).
A natural estimator for R(θ, λ(t)) is:

U(y, λ(t)) =
+∞∑
k=1

{λ2
k(t)− 2λk(t)}(b−2

k y2
k − ε2b−2

k ) + ε2
+∞∑
k=1

λ2
k(t)b−2

k .

This method has been applied by [10] on the set of blockwise monotone estimator. In a model
selection context, [8] dealt with finite families of estimators. Sharp oracle inequalities have been
obtained. However, numerical simulations are somewhat disappointing. This has been illustrated
in [9] for the projection regularization. The same phenomenon occurs for Tikhonov estimators.
For ill-posed inverse problems, the URE algorithm selects large regularization parameters when
the oracle is typically small.

The instability of the URE procedure has already been discussed in the literature. In the last
decades, some authors were interested in the criterion U(y, λ(t)) + pen(t) where pen(t) → +∞ as
t→ +∞. A penalty is introduced in the estimator of R(θ, λ(t)). This penalty is chosen in order to
control the variability of the problem. We expect that smaller parameters will be selected. Several
penalizations have been proposed for both direct and inverse problems. We mention for instance
[1], [3], [16] or [21].

Other approaches leading to oracle inequalities in a more general context have been proposed.
For instance, concerning the Lepski balancing principle we may mention [2], [23] or [5].

The risk hull minimization method (also denoted RHM) initiated by [9] provides an interesting
alternative. Consider the simple example of projection filter (also called spectral cut-off): λk(t) =
1{k≤t}, for all k ∈ N. Denote by θ̂t the related estimator. The loss is:

l(θ, λ(t)) = ‖θ̂t − θ‖2 =
∑
k>t

θ2k + ε2
t∑

k=1

b−2
k ξ2k.

Due to the ill-posedness of the problem, the variance of l(θ, t) is very large and explodes with t.
However, this variability is neglected in the URE procedure. Indeed, we deal with R(θ, λ(t)) =
Eθl(θ, λ(t)). In order to take account of this variability, one may look after a risk hull, i.e. a
deterministic quantity V (θ, λ(t)) verifying:

Eθ sup
t
{l(θ, λ(t))− V (θ, λ(t))} ≤ 0.
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Then, we estimate and minimize V (θ, λ(t)) instead of R(θ, λ(t)). The challenge is to find an ex-
plicit hull. It should not be too large in order to provide a good quality of estimation although a
small hull will not be sufficiently stable. The hull V (θ, λ(t)) of [9] can be explicitly constructed.
It is easily computable using for instance Monte-Carlo approximations. The related performances
are significantly better than the standard URE procedure, both from a theoretical and numerical
point of view. Note that the risk hull method leads in fact to a penalized URE criterion where the
penalty is explicitly computable.

However, the projection estimation is rather rough. There exist several regularization methods
with better performances. We may mention for instance the Tikhonov estimators presented in
this section. The generalization of the RHM algorithm to a wide family of linear estimators may
produce interesting results but is not obvious. It requires in particular the control of the process:

η(t) = ε2
+∞∑
k=1

λ2
k(t)b−2

k (ξ2k − 1), t ≥ 0.

When dealing with projection procedures, η(t), t ≥ 0 can be controled as a Wiener process. These
objects have been intensively studied and many results are available. In this paper, the assumptions
concerning the sequence (λk(t))k∈N are rather weak. In such a situation, we will see that the process
η(t), t ≥ 0 is said to be ordered. Some interesting properties have been established in [20] and [7].
It presents a different behavior compared to the well-known Wiener process. The generalization of
the RHM algorithm requires advanced probabilistic tools, gathered in Section 6.

3 Risk hull

3.1 Assumptions and construction

Here and in the sequel, assume that Λ is a family of monotones filters indexed by a positive pa-
rameter t, i.e. Λ = (λ(t))t∈T , where T ⊆ R+. Each filter λ(t) may be noted λ or identified with
the regularization parameter t. The meaning will be clear following the context. The associated
linear estimator is denoted by θ̂t. For all k ∈ N, the function t→ λk(t) is assumed to be monotone
non-decreasing. We require some additional assumptions on the family Λ.

Polynomial hypotheses. There exist C1, C2, C3, C4 positive constants and d > 0 independent of
t and ε such that:

maxk ε
2λ2

k(t)b−2
k√

σ2(t)
≤ C1t

−d/2, where σ2(t) = ε4
+∞∑
k=1

λ4
k(t)b−4

k , (3.1)

exp

[
−1

4

+∞∑
p=1

log

(
1 +

2s2ε4λ4
p(t)b

−4
p

σ2(t)

)]
≤
(

1 +
C2s

2

td

)−td

, ∀s ∈ R, (3.2)

and for all l ∈ N,

(C3t
d)−l/2+1 ≤

∣∣∣∣∣σ2(t)−l/2ε2l
+∞∑
p=1

λ2l
p (t)b−2l

p

∣∣∣∣∣ ≤ (C4t
d)−l/2+1. (3.3)

In some sense, the inequalities (3.1)-(3.3) generalize the polynomial hypotheses of [9]. Some
examples of regularization method satisfying (3.1)-(3.3) are presented in Section 3.2.

For all λ ∈ Λ, i.e. for all t ∈ T , introduce:

U0(t) = inf{u > 0 : Eη(t)1{η(t)>u} ≤ ε2}, with η(t) = ε2
+∞∑
k=1

λ2
k(t)b−2

k (ξ2k − 1). (3.4)

The term σ2(t) denotes the variance of the process η(t), t ≥ 0 up to some constant. This process is
ordered: see Section 6 for more details. In particular, the function σ2 is monotone non-decreasing.
The following lemma provides a lower bound for U0(t). This quantity will be useful in the following.
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Lemma 1 Assume that (3.1)-(3.3) hold. There exists T0 > 0 independent of ε such that for all
t > T0,

U0(λ(t)) = U0(t) ≥

√
2σ2(t) log

(
σ2(t)
2πε4

)
,

where σ2(t) is defined in (3.1).

A proof of this lemma is available in Section 5. We are now able to propose a risk hull. First
introduce:

λ(t0) = λ0 = arg inf
λ∈Λ

R(θ, λ), (3.5)

where R(θ, λ) is the quadratic risk defined in (1.5). Hence, λ0 corresponds to the oracle filter for
the family Λ. For all x ∈ R+, define also:

ω(x) = sup
t∈T

sup
k
λ2

k(t)b−2
k 1{P+∞

l=1 λ2
l (t)b−2

l ≤x supl λ2
l (t)b−2

l }, (3.6)

and,

LT = log2 S, with S =
maxt∈T supk b

−2
k λ2

k(t)
mint∈T supk b

−2
k λ2

k(t)
. (3.7)

These terms have been introduced in [8]. The function ω is explicitly computed in Section 3.2 for
some particular families of estimators. The quantity S provides an information on the homogeneity
of T . For S < +∞, the collection T may be identified with an interval [t1, tmax] and S is linked to
the ratio tmax/t1.

Theorem 1 Assume that (3.1)-(3.3) hold. Then, there exist C?, C̄ > 0 such that, for all θ and
α, γ > 0,

Vα(θ, λ(t)) = (1 + γ)

{
+∞∑
k=1

(1− λk(t))2θ2k + ε2
+∞∑
k=1

λ2
k(t)b−2

k + (1 + α)U0(λ(t))

}

+
C?ε2

α
+ C̄ε2γ−1LTω(γ−2LT ) + γR(θ, λ(t0)), (3.8)

is a risk hull, i.e.:
Eθ sup

t∈T

{
‖θ̂t − θ‖2 − Vα(θ, λ(t))

}
≤ 0.

The hull of [9] is constructed for projection estimators. Here, the main difference is contained in
the residual term C̄ε2γ−1LTω(γ−2LT ). The hull is somewhat less precise. This can be explained by
the structure of the stochastic processes involved in the loss. Indeed, when considering projection
estimators, one essentially deals with Wiener processes. These processes are well-known and may
be easily controlled. In particular:

P

(
max
t≥0

[W (t)− γt] ≥ x

)
≤ exp(−2γx), ∀γ > 0 and x ∈ R+,

where W (t), t ≥ 0 denotes a Wiener process. The proof of Theorem 1 is based on the theory of
ordered processes summarized in Section 6 (see also [20] or [7]). These objects are well understood
but more difficult to control. At best, it is (at the moment) possible to prove that for all p ∈ N:

P

(
max
t≥0

[
ρ(t)− γΣ2(t)

]
≥ x

)
≤ Cpp

(γx)p
, ∀γ > 0 and x ∈ R+, (3.9)

for a given ordered process ρ(t), t ≥ 0 of variance Σ2(t). Here, C denotes a positive constant
independent of x. In light of the proofs of Theorem 3.2, it seems difficult to improve (3.9) in order
to obtain an exponential inequality as for the Wiener process.
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3.2 Examples

In this section, we illustrate the polynomial hypotheses (3.1)-(3.3). Assume that the sequence
(bk)k∈N possesses a polynomial behavior, i.e. (bk)k∈N ∼ (k−β)k∈N for some positive parameter β.
The degree of ill-posedness β is assumed to be known.

We consider three different procedures: projection, Tikhonov and Landweber iterative methods.

EXAMPLE 1. (Projection estimators)
Obviously, Assumption (3.1)-(3.3) are satisfied for projection filters since the aim of this paper is
to generalize [9]. Consider the set:

ΛProj =
{
λ = (λk(t))k∈N : ∀k ∈ N, λk = 1{k≤t}, t ∈ N

}
.

The projection estimator is also called spectral cut-off in the literature.
Assumption (3.2) is verified in the proof of Lemma 1 of [9] with d = 1. Since (bk)k∈N ∼

(k−β)k∈N:

σ2(t) =
t∑

k=1

b−4
k ' t4β+1, and

+∞∑
p=1

λ2l
p (t)b−2l

p =
t∑

p=1

b−2l
p ' t2βl+1, ∀l ∈ N,

uniformly in t ∈ N. Therefore, (3.3) holds with d = 1. Then, remark that:

maxk λ
2
k(t)b−2

k√
σ2(t)

' t2β

t2β+1/2
= t−1/2.

[8] proved that ω(x) ' x2β for all x ∈ R+ and for some C > 0. This concludes Example 1.

EXAMPLE 2. (Tikhonov estimators)
We use the same notations of Section 2.1. Consider the family:

ΛTikh =
{
λ = (λk(t))k∈N : ∀k ∈ N, λk =

1
1 + t−1(b−2

k )(1+2a)
, t ∈ R+

}
.

It is possible to show:

σ2(t) = ε4
+∞∑
k=1

λ4
k(t)b−4

k ' ε4(td)4β+1 and
+∞∑
p=1

λl
p(t)b

−l
p ' (td)2βl+1,∀l ∈ N.

with d = 1/(2β(1 + 2a)) (see (2.6)). Hence, (3.3) holds. For all t, let nt defined in (2.6). For all
k ∈ {nt/2, . . . , nt}:

λ2
kb
−2
k =

b−2
k

[1 + t−1(b−2
k )(1+a)]2

≥ Ck2β ≥ C
n2β

t

22β
.

Therefore, for all t ∈ R+ and s ∈ R,

exp

[
−1

4

+∞∑
l=1

log
(

1 +
2s2ε4λ4

l (t)b
−4
l

σ2(t)

)]
≤ exp

−1
4

nt∑
l=nt/2

log
(

1 +
2s2ε4λ4

l (t)b
−4
l

σ2(t)

) ,
≤ exp

−1
4

nt∑
l=nt/2

log

(
1 +

Cs2n4β
t

n4β+1
t

) ,
≤

(
1 +

C1s
2

nt

)−nt/8

=
(

1 +
C1s

2

td

)−td/8

. (3.10)

This prove (3.2). Finally, remark that:

maxk λ
2
k(t)b−2

k√
σ2(t)

'
λ2

nt
(t)b−2

nt√
σ2(t)

' n2β
t

n
2β+1/2
t

= t−d/2. (3.11)
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Moreover, we can prove, using for instance (3.11), that ω(x) ≤ Cx2β for all x ∈ R+ and for some
C > 0.

EXAMPLE 3. (Iterated Tikhonov regularization)
This method presents an interesting alternative to the previous one. The qualification of the
standard Tikhonov estimator is 1 if we set a = 0 in (2.1). This can be enhanced using iterations.
In the following, we refer to f̂j as the iterated Tikhonov estimator of order j. Set f̂0 = 0. Given
j ∈ N and f̂j−1, f̂j is defined as the unique solution of:

(A?A+ t−1I)f̂j = A?T + t−1f̂j−1,

where I denotes the identity operator. In the SVD setting, the following representation arises:

f̂j =
+∞∑
k=1

λk(t)b−1
k ykφk, with λk(t) =

(t−1 + b2k)j − t−j

(t−1 + b2k)j
,∀k ∈ N.

The qualification corresponds to the number of iterations. It is possible to prove that maxk λ
2
k(t)b−2

k .
n2β

t and σ2(t) ≥ n4β+1
t , with nt = t−1/2β . Hence, (3.1) holds. Then, for all k ∈ {nt/2, . . . , nt},

λ2
k(t)b−2

k ≥
[
(1 + t−1b−2

k )j − t−jb−2j
k

]
b−2
k ≥ Cn2β

t ,

for some C > 0. Using the same algebra as in (3.10), one obtain (3.2). The proof of (3.3) and the
bound of ω essentially follows the same lines.

EXAMPLE 4. (Landweber iterative method)
This procedure is rather interesting from a numerical point of view since it does not require the
inversion of an operator. Consider the equation g = Af for some g ∈ K. It can be rewritten as
follows:

f = f +A?(g −Af). (3.12)

The Landweber iterative method is constructed in the following way. Define f̂0 = 0. Then, for all
t ∈ N, t ≥ 1, set:

f̂t = f̂t−1 +A?(g −Af̂t−1). (3.13)

The number t of iterations plays the role of the regularization parameter. With the model (1.1),
replace g by Y . In the SVD setting, the Landweber iterative estimator is:

f̂t =
+∞∑
k=1

λk(t)b−1
k ykφk, with λk(t) = (1− (1− b2k)t), ∀k ∈ N.

The estimator f̂t is defined only if ‖A‖ ≤ 1 (i.e. maxk bk ≤ 1). Otherwise, the method can easily
be modified via the introduction of a relaxation parameter in (3.12). The qualification of the
Landweber method is ∞, i.e. there is no restriction on the regularity µ.

Using simple algebra, it is possible to prove that σ2(t) ' ε4(nt)4β+1 with nt = t1/2β and:

max
k

λ2
k(t)b−2

k = max
x∈(0,1)

(1− (1− x)t)2

x
,

≤ max
x∈(0,1)

s′(x), with s(x) = 1− (1− x)t,

= t

Hence, (3.1) holds with d = 1/2β. The proof of (3.2) and (3.3) follows essentially the same lines.

For the sake of convenience, only four regularization schemes satisfying the polynomial hy-
potheses are presented in this paper. The families of estimators covered by these assumptions is
certainly larger.
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In order to conclude these examples, a few words on the ν-methods and the Pinsker estimators.
These filters are slightly different from the previous one since both the regularization parameter
and the structure of the estimator may depend on the regularity of the function f . For instance, a
Pinsker filter is of the form λP

k = (1− cεak)+ for all k ∈ N, where both cε and (ak)k depend on the
regularity of f . It is easy to prove that assumptions (3.1)-(3.3) hold for a Pinsker type sequence
of the form λk(t) = (1 − t−1ka)+, for some fixed a > 0. It is not so clear for (λP

k )k∈N. The same
observation holds for the ν-methods. Nevertheless, it seems that the behavior of these estimators
is close to the examples presented in this section. Hence, the polynomial hypotheses may certainly
be modified in order to take into account these specificities.

4 Oracle efficiency

Due to the ill-posedness of the problem, the standard URE method is rather unstable. Therefore,
estimate and minimize the hull Vα(θ, λ(t)) (introduced in (3.8)), instead of R(θ, λ(t)). Remark
that:

arg min
λ∈Λ

Vα(θ, λ) = arg min
t∈T

{
+∞∑
k=1

[
λ2

k(t)− 2λk(t)
]2
θ2k + ε2

+∞∑
k=1

λ2
k(t)b−2

k + (1 + α)U0(λ(t))

}
. (4.1)

For all α > 0, the right-hand side of (4.1) can be estimated by

Vα(y, λ(t)) =
+∞∑
k=1

[
λ2

k(t)− 2λk(t)
]
(b−2

k y2
k − ε2b−2

k ) + ε2
+∞∑
k=1

λ2
k(t)b−2

k + (1 + α)U0(λ(t)). (4.2)

Hence consider:
λ? = arg min

λ∈Λ
Vα(y, λ), (4.3)

and denote by θ? the associated estimator. This approach corresponds in fact to a penalized URE
method. The penalty (1 + α)U0(λ(t)) is explicitly computable via Monte-Carlo approximations.
The performances of θ? are summarized in the following theorem.

Theorem 2 Let θ? the estimator defined in (4.3) with α > 1. Assume that there exists a positive
constant CT such that, uniformly in t ∈ T :

+∞∑
k=1

λ2
k(t)b−4

k ≤ CT

+∞∑
k=1

λ4
k(t)b−4

k . (4.4)

Then, there exist B1, D1 and γ1 > 0 independent of ε, such that, for all λ ∈ Λ, (i.e. t ∈ T ) and
0 < γ < γ1,

Eθ‖θ? − θ‖2 ≤ (1 +B1γ)Rα(θ, λ(t)) +D1ε
2γ−1LTω(γ−2LT ) +

D1ε
2

(α− 1)
,

where LT is defined in (3.7) and

Rα(θ, λ(t)) =
+∞∑
k=1

(1− λk(t))2θ2k + ε2
+∞∑
k=1

λ2
k(t)b−2

k + (1 + α)U0(λ(t)). (4.5)

The proof is presented in Section 5. It is based on Theorem 1 and on the theory of ordered
processes (summarized in Section 6). Clearly, inequality (4.4) is verified for projection estimators.
This is also the case for Tikhonov estimators, provided a > 0, Tikhonov iterated procedure (j > 1)
and for the Landweber iterative method. The constant CT has a real impact on the quality of
estimation. Indeed, the penalty controls the stochastic terms in the loss and in Vα(y, λ). For all
λ ∈ Λ, the variance of these terms is of order ε4

∑
k λ

4
kb
−4
k and ε4

∑
k λ

2
kb
−4
k , respectively. If CT

is too large, the penalty is not sufficient for Vα(y, λ). The efficiency of θ? will not necessarily be
improved compared to the standard URE method.
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In Theorem 2, we require α to be greater than 1. It seems that this condition is too restrictive.
Indeed, acceptable bounds for the risk are available for α < 1. This needs more precision in the
proofs. The obtained oracle inequality is not sharp: one cannot consider γ → 0 as ε → 0 in
this case. On the other hand, large choices are related to a poor efficiency since Rα(θ, λ) will be
significantly greater than the quadratic risk R(θ, λ). From the proofs, it is possible to see that α
has a small influence on the quality of estimation. In such a situation, a choice of α close to 2
seems to be reasonnable. We refer to [9] for a complete discussion concerning this choice of α.

Several bounds in the proof of Theorem 2 are derived from the theory of ordered processes.
These results can easily be applied to the unbiased risk estimator, called θ̃ in the following.

Theorem 3 Assume that (3.1)-(3.3) and inequality (4.4) hold. Then, there exists B2, D2 and
γ2 > 0 independent of ε, such that, for all λ ∈ Λ, (i.e. t ∈ T ) and 0 < γ < γ2,

Eθ‖θ̃ − θ‖2 ≤ (1 +B2γ)R(θ, λ(t)) +D2ε
2γ−1LTω(γ−2LT ),

where R(θ, λ(t)) and LT are defined in (1.5) and (3.7) respectively.

In the oracle inequality of [8], the term LT is of order logN where N denotes the size of the
family Λ, i.e. the number of considered paramters. Thanks to the theory of ordered processes, the
oracle inequalities of Theorems 4.1 and 4.2 are free of assumptions on the size of Λ. In particu-
lar, there is no theoretical price to pay for considering large collection of estimators. Moreover,
the obtained results concerns continuous intervals for the regularization parameter of the form
T = [tmin; tmax].

We have proved that the RHM method initiated by [9] can be enhanced by using more precise
estimators like Tikhonov or Landweber iterative methods. The principle of risk hull minimization
is not restricted to projection procedures. This generalization is mainly due to recent developments
on ordered processes. Section 6 presents the main lines of this theory. It contains important results
from [20] and [7] and some additional lemmas useful for the proofs of Theorems 1-3.

Comparing different oracle inequalities in a transparent way is always a very difficult task. The
constants and residual terms are derived from successive upper bounds. Nevertheless, the URE
method does not take into account the variability of the problem. Hence, the RHM procedure
may lead to better performances. The differences between the URE and RHM procedures will be
certainly significant for the cases where the variability of the sequence space model is the most
important, e.g. when the signal to noise ratio is small or the degree of ill-posedness increases.

In order to conclude this paper, some words on the numerical implementation of the RHM
method. The term U0(λ(t)) may be approximated by using Monte-Carlo replications. In this
case, the penalty will not be exactly the same than in Theorems 1 and 2. This approximation is
equivalent to a perturbation of α. From proofs of Section 5, it is clear that a small variation in α
does not affect the efficiency of θ?. Therefore, the numerical approximation of (1 + α)U0(λ(t)) is
pertinent from a theoretical point of view. Remark also that the lower bound obtained in Lemma
3.1 and used in the most part of the proofs may be used for a numerical implementation.

From a practical point of view, given a regularization scheme and an interval T for the param-
eter, finding λ? may be a difficult task since (4.3) is a non-convex minimization problem. Remark
that this inconvenience occurs also for the URE method. A possible outcome is then to consider
a finite grid T̃ and to construct λ? on T̃ . From Theorems 4.1 and 4.2, no restriction occurs on
the size of the grid. Hence, the limitations are only due to practical considerations (e.g. computer
performances). In order to deal with continuous intervals, an interesting alternative would be to
develop and use a simulated annealing type algorithm for this setting.

5 Proofs

5.1 Proof of Lemma 1

The proof follows the same lines of [9]. We shall sometimes omit some technical steps since
they have already been developed.
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Let η(t), t ≥ 0, the stochastic process defined in (3.4). For all t ∈ T , introduce:

K(t) =
η(t)√
2σ2(t)

and u1(t) =

√
log
(
σ2(t)
2πε4

)
. (5.1)

For all t ≥ 0, the function x 7→ EθK(t) 1{K(t)≥x} is monotone decreasing. In order to prove Lemma
1, it suffices to show that:

EθK(t)1{K(t)≥u1(t)} ≥
ε2√

2σ2(t)
, (5.2)

at least for sufficiently large t. Using integration by part,

EθK(t)1{K(t)≥u1(t)} ≥ u1(t)P (K(t) ≥ u1(t)) +
∫ u1(t)+1

u1(t)

P (K(t) ≥ x)dx. (5.3)

First, study the characteristic function Υ of the process K(t), t ≥ 0. For all s ∈ R, using (3.2):

|Υt(s)| = |EeisK(t)| ≤ exp

[
−1

4

+∞∑
l=1

log
(

1 +
2s2ε4λ4

l (t)b
−4
l

σ2(t)

)]
≤
(

1 +
C1s

2

td

)−td

.

Setting x =
√
td/C1, we obtain:∫

|s|≥x

|Υs(t)|ds =
∫

x≤|s|≤
√

2C1/td

|Υs(t)|ds+
∫
√

2C1/td≤|s|
|Υs(t)|ds ≤ exp(−Ctd). (5.4)

Now consider the case |s| ≤
√
td/C1. Using a Taylor expansion:

Υt(s) = exp

[
−s

2

2
+

M−1∑
l=3

(−i)l2l/2Rl(t)sl

l
+O

(
CRM (t)2M/2sM

M

)]
,

where M ∈ N and for all l ∈ N:

Rl(t) = (σ2(t))−l/2ε2l
+∞∑
p=1

λ2l
p (t)b−2l

p .

The behavior of Rl(t), l ∈ N is controlled by (3.3). Expending Υt(s) exp(s2/2) into a Taylor series,
construct the following approximation of Υt(s):

ΥM
t (s) = exp

(
− t

2

2

)[
1 + td

M−1∑
l=3

QM (l, t)
(
is√
td

)p
]
,

where QM (l, t), l = 3 . . .M are function uniformly bounded in l and t. Therefore, the probability
P (K(t) > x) can be approximated by:

PM
t (x) = φ(x)− k√

2π

M−1∑
s=3

(−1)sQM (s, k)k−s/2 d
s−1

dxs−1
exp

(
−x

2

2

)
, (5.5)

where φ(x) denotes the repartition function of a standard Gaussian random variable at the point
x. Using Parseval identity, (5.4) and (5.5), we prove that:

|P (K(t) > x)− PM
t (x)| ≤ C

(td)M/2
, (5.6)
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for some positive constant C: see [9] for more details. Then, using (5.1)-(5.6), integration by part
and choosing M large enough:

EK(t)1{K(t)≥u1(t)} ≥ u1(t)φ(u1(t)) +
∫ +∞

u1(t)

φ(x)dx

−
∫ +∞

u1(t)+1

φ(x)dx− (1 + u1(t)) max
u1(t)≤x≤u1(t)+1

|PM
t (x)− φ(x)| − Cu1(t)

(td)M/2
,

≥ 1√
2π
e−u1(t)

2/2−Ce−(u1(t)+1)2/2 − (1 + u1(t)) max
u1(t)≤x≤u1(t)+1

|PM
t (x)− φ(x)|− Cu1(t)

(td)M/2
,

≥ ε2√
σ2(t)

+ o

(
ε2√

2σ2(t)

)
, as t→ +∞.

Indeed, (3.1) and (5.1) provide u1(t) ' C
√

log(t) for some positive constant C > 0. Hence, (5.1)
is satisfied. This concludes the proof of Lemma 1.

2

5.2 Proof of Theorem 3.2

Remark that:

Eθ sup
λ∈Λ

{
‖θ̂λ − θ‖2 − Vα(θ, λ)

}
= Eθ sup

λ∈Λ

[
+∞∑
k=1

(λkb
−1
k yk − θk)2 − Vα(θ, λ)

]
,

= Eθ

[
+∞∑
k=1

(1− λ̄k)2θ2k + ε2
+∞∑
k=1

λ̄2
kb
−2
k ξ2k + 2

+∞∑
k=1

(λ̄k − 1)λ̄kθkεb
−1
k ξk − Vα(θ, λ)

]
,

with,
λ̄ = λ(t̄) = arg sup

λ∈Λ

{
‖θ̂λ − θ‖2 − Vα(θ, λ)

}
.

Use the following decomposition:

2Eθ

+∞∑
k=1

(λ̄k − 1)λ̄kθkεb
−1
k ξk = 2Eθ

+∞∑
k=1

{
λ̄2

k − λ̄k

}
θkεb

−1
k ξk,

= Eθ

+∞∑
k=1

λ̄2
kθkεb

−1
k ξk + Eθ

+∞∑
k=1

{λ̄2
k − 2λ̄k}θkεb

−1
k ξk,

= Eθ

+∞∑
k=1

λ̄2
kθkεb

−1
k ξk + Eθ

+∞∑
k=1

(1− λ̄k)2θkεb
−1
k ξk.

Corollary 1 in Section 6 provides, for all γ > 0:

2Eθ

+∞∑
k=1

(λ̄k − 1)λ̄kθkεb
−1
k ξk ≤ γEθR(θ, λ̄) + γR(θ, λ0) + Cε2γ−1LTω(γ−2LT ),

12



for some positive constant C > 0. Therefore,

Eθ sup
λ∈Λ

{‖θ̂λ − θ‖2 − Vα(θ, λ)}

≤ Eθ sup
λ∈Λ

[
(1 + γ)

+∞∑
k=1

(1− λ2
k)θ2k + ε2

+∞∑
k=1

λ2
kb
−2
k ξ2k + γε2

+∞∑
k=1

λ2
kb
−2
k

+Cγ−1ε2LTω(γ−2LT ) + γR(θ, λ0)− Vα(θ, λ)
]
, (5.7)

≤ E sup
λ∈Λ

[
ε2

+∞∑
k=1

λ2
kb
−2
k (ξ2k − 1)− (1 + γ)(1 + α)U0(λ)− C?ε2

α

]
,

≤ E sup
λ∈Λ

[
ε2

+∞∑
k=1

λ2
kb
−2
k (ξ2k − 1)− (1 + α)U0(λ)

]
− C?ε2

α
. (5.8)

Let σ2(t) and η(t), t > 0 the quantities defined in (3.1) and (3.4), respectively. Recall that the
function t 7→ σ2(t) is monotone non-decreasing since it denotes the variance of the ordered process
η(t), t ≥ 0 up to some constant. Without loss of generality, we consider that T =]0;+∞[ and
σ2(t) → +∞ as t→ +∞. Let (ts)s∈N be a grid in R which will be chosen later. Using Lemma 1,
it is easy to see that:

E sup
λ∈Λ

[
ε2

+∞∑
k=1

λ2
kb
−2
k (ξ2k − 1)− (1 + α)U0(λ)

]

≤
+∞∑
s=0

E sup
t∈[ts,ts+1]

[
η(t)− (1 + α)

√
2σ2(t) log(Cε−4σ2(t))

]
+
,

for some positive constant C. For all x ∈ R, the notation x+ denotes the positive part of x, i.e.
x+ = x 1{x>0}. Let s ∈ N be fixed:

E sup
t∈[ts,ts+1]

[
η(t)− (1 + α)

√
2σ2(t) log(Cε−4σ2(t))

]
+

= E sup
t∈[ts,ts+1]

[
η(ts)− η(ts) + η(t)− (1 + α)

√
2σ2(t) log(Cε−4σ2(t))

]
+
,

≤ E
[
η(ts)− (1 + α)

√
2σ2(ts) log(Cε−4σ2(ts)) + E(ts)

]
+
, (5.9)

where, for all s ∈ N,
E(ts) = sup

t∈[ts,ts+1]

{η(t)− η(ts)} . (5.10)

Since the variables η(ts) and E(ts) are not independent, the same method as [9] cannot be applied.
Instead, remark that for all 0 < µ < 1, using (5.9),

E sup
t∈[ts,ts+1]

[
η(t)− (1 + α)

√
2σ2(t) log(Cε−4σ2(t))

]
+
,

≤
∫ +∞

Bs

P (η(ts) + E(ts) ≥ x)dx,

≤
∫ +∞

Bs

P (η(ts) ≥ µx)dx+
∫ +∞

Bs

P (E(ts) ≥ (1− µ)x)dx = A1 +A2, (5.11)

with,
Bs = (1 + α)

√
2σ2(ts) log(Cε−4σ2(ts)), ∀s ∈ N. (5.12)
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We are first interested in the study of A2. For all p > 1, using a Markov inequality,

A2 =
∫ +∞

Bs

P (E(ts) ≥ (1− µ)x)dx =
∫ +∞

Bs

P

(
sup

t∈[ts,ts+1]

{η(t)− η(ts)} ≥ (1− µ)x

)
dx,

≤ 1
(1− µ)p

∫ +∞

Bs

E supt∈[ts,ts+1] |η(t)− η(ts)|p

xp
dx,

=
1

(1− µ)p
E sup

t∈[ts,ts+1]

|η(t)− η(ts)|p
1

(p− 1)Bp−1
s

. (5.13)

The process η(t), t > 0 is ordered (see Section 6). By Lemma 2, there exists a positive constant
C > 0 independent of ε and t, such that, for all p > 0:

E sup
t∈[ts,ts+1]

|η(t)− η(ts)|p ≤ Cppp(σ2(ts+1)− σ2(ts))p/2. (5.14)

Therefore, using (5.12)-(5.14), we obtain:

A2 ≤
(

C

(1− µ)(1 + α)

)p
pp

p− 1
(σ2(ts+1)− σ2(ts))p/2

[σ2(ts) log(Cε−4σ2(ts))](p−1)/2
. (5.15)

Now, choose the grid (ts)s∈N as follows:

σ2(ts) = ε4
(

1 +
1
sν

)s

, ∀s ∈ N, (5.16)

where ν ∈]3/4, 1[. This choice is a trade off between an exponential grid similar to [9] and polyno-
mial grids of [7]. Remark that:

σ2(ts+1)− σ2(ts) = ε4
(

1 +
1

(s+ 1)ν

)s+1

− ε4
(

1 +
1
sν

)s

≤ ε4
(

1 +
1
sν

)s 1
sν
. (5.17)

Moreover, for all s ∈ N, using Taylor formula,

log(Cε−4σ2(ts)) = s

[
log(C1/s) + log

(
1 +

1
sν

)]
≥ s log

(
1 +

1
sν

)
≥ Cs1−ν . (5.18)

Hence, (5.15)-(5.18) yield:

A2 ≤ ε2
[

C

(1− µ)(1 + α)

]p
pp

p− 1
(s−ν)p/2(1 + s−ν)sp/2

(1 + s−ν)s(p−1)/2(s1−ν)(p−1)/2
,

= ε2
[

C

(1− µ)(1 + α)

]p
pp

p− 1
(1 + s−ν)s/2

(sν)p/2(s1−ν)(p−1)/2
,

= ε2
[

C

(1− µ)(1 + α)

]p
pp

p− 1
s(1−ν)/2 × (1 + s−ν)s/2

sp/2
.

For all s ∈ N, with simple algebra,

(1 + s−ν)sν

= exp{sν log(1 + s−ν)} ' exp(sν × s−ν) = O(1), as s→ +∞.

Therefore:

(1 + s−ν)s/2 = exp
{
s1−ν

2
log
(
(1 + s−ν)sν

)}
≤ Cs1−ν

,

for some positive constant C > 0. We eventually obtain:

A2 ≤ ε2g(µ, α)p s(1−ν)/2

p− 1
× pp

√
s

pC
s1−ν

, with g(µ, α) =
[

C

(1− µ)(1 + α)

]
. (5.19)
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Now, choose the parameter p in a properly way. For example, set p = s1/4. Then:

A2 ≤ ε2s
1−ν
2 − 1

4 g(µ, α)s1/4
(
s1/4

s1/2

)s1/4

Cs1−ν

,

= ε2s
1
4−

ν
2 g(µ, α)s1/4

(s1/4)−s1/4
Cs1−ν

,

= ε2s
1
4−

ν
2 exp

{
s1/4 log(g(µ, α)) + s1−ν logC − s1/4 log(s1/4)

}
,

= ε2s
1
4−

ν
2 exp

{
s1/4

[
log(g(µ, α)) + s1−ν−1/4 logC − 1

4
log(s)

]}
.

It is then easy to see that, provided ν ∈]3/4, 1[,

log(g(µ, α)) + s1−ν−1/4 logC − 1
4

log(s) < 0,

at least for s large enough. Therefore, for all µ ∈ (0, 1):

A2 ≤ ε2Ce−s1/4
and

+∞∑
s=1

∫ +∞

Bs

P (E(ts) ≥ (1− µ)x)dx ≤ C?
1 ε

2, (5.20)

where C?
1 is a positive constant independent of ε.

We are now interested in the study of A1 in inequality (5.11). For all δ > 0, using a Markov
inequality:

A1 =
∫ +∞

Bs

P (η(ts) ≥ µx)dx,

=
∫ +∞

Bs

P (exp(δη(ts)) ≥ exp(δµx))dx,

≤
∫ +∞

Bs

E exp{δη(ts)}
exp{δµx}

dx =
1
δµ

E exp{δη(ts)}e−δµBs . (5.21)

Inequality (4.14) of [9] yields:

E exp{δη(ts)} ≤ exp

{
δ2σ2(ts) + 4δ3

+∞∑
k=1

ε6λk(ts)6b−6
k

(1− 2δλ2
k(ts)b−2

k )+

}
. (5.22)

Setting,

δ =

√
log(Cε−4σ2(ts))

2σ2(ts)
, (5.23)

we obtain,

A1 ≤ Cµ−1

√
2σ2(ts)

log(Cε−4σ2(ts))
exp

{
1
2

log(Cε−4σ2(ts))
}
× e−µ(1+α) log(Cε−4σ2(ts)),

≤ Cµ−1ε2

√
1

log(Cε−4σ2(ts))
exp

{
−[µ(1 + α)− 1] log(Cε−4σ2(ts))

}
.

Indeed, using (3.1)-(3.3) and (5.23):

δ3
+∞∑
k=1

λ6
k(ts)b−6

k

(1− 2δλ2
k(ts)b−2

k )+
→ 0, as s→ +∞.

With (5.16) and (5.18), we eventually obtain:
+∞∑
s=1

∫ +∞

Bs

P (η(ts) ≥ µx)dx ≤
+∞∑
s=1

Cε2

s(1−ν)/2

[
e−s log(1+s−ν)

]µ(1+α)−1

,

≤
+∞∑
s=1

Cε2

s(1−ν)/2
exp{−C(µ(1 + α)− 1)s1−ν} ≤ C?

2 ε
2

α
, (5.24)

15



setting for example µ = (1 + α/2)/(1 + α). Therefore,

E sup
λ∈Λ

[
ε2

+∞∑
k=1

λ2
kb
−2
k (ξ2k − 1)− (1 + α)U0(λ)

]
≤ C?ε2

α
. (5.25)

Theorem 1 is obtained using (5.8) and (5.25).

2

5.3 Proof of Theorem 2

Let µ > 0. By Theorem 1, Vµ(θ, λ) is a risk hull. Therefore,

Eθ‖θ? − θ‖2 ≤ EθVµ(θ, λ?). (5.26)

Moreover, (4.3) provides that, ∀λ ∈ Λ,

EθVα(y, λ?) ≤ EθVα(y, λ). (5.27)

We will combine inequalities (5.26) and (5.27). First, rewrite Vα(y, λ?) in terms of Vµ(θ, λ?). By
simple algebra:

Vα(y, λ?) =
+∞∑
k=1

{
(λ?

k)2 − 2λ?
k

}
(b−2

k y2
k − ε2b−2

k ) + ε2
+∞∑
k=1

(λ?
k)2b−2

k + (1 + α)U0(λ?),

=
+∞∑
k=1

{
(1− λ?

k)2θ2k + ε2(λ?
k)2b−2

k

}
+ (1 + µ)U0(λ?) + (α− µ)U0(λ?),

+2
+∞∑
k=1

{
(λ?

k)2 − 2λ?
k

}
θkεb

−1
k ξk +

+∞∑
k=1

{
(λ?

k)2 − 2λ?
k

}
ε2b−2

k (ξ2k − 1)− ‖θ‖2,

= Rµ(θ, λ?) + (α− µ)U0(λ?)− ‖θ‖2

+2
+∞∑
k=1

{
(λ?

k)2 − 2λ?
k

}
θkεb

−1
k ξk +

+∞∑
k=1

{
(λ?

k)2 − 2λ?
k

}
ε2b−2

k (ξ2k − 1), (5.28)

where Rµ(θ, λ?) is defined in (4.5). Using (5.27) and (5.28), for all λ ∈ Λ,

EθRµ(θ, λ?) ≤ EθVα(y, λ)− (α− µ)EθU0(λ?) + ‖θ‖2

− 2Eθ

+∞∑
k=1

{
(λ?

k)2 − 2λ?
k

}
θkεb

−1
k ξk − Eθ

+∞∑
k=1

{
(λ?

k)2 − 2λ?
k

}
ε2b−2

k (ξ2k − 1). (5.29)

It is then easy to see that, for all λ ∈ Λ,

EθVα(y, λ) = Rα(θ, λ)− ‖θ‖2.

This yields:

EθRµ(θ, λ?) ≤ Rα(θ, λ)− 2Eθ

+∞∑
k=1

{
(λ?

k)2 − 2λ?
k

}
θkεb

−1
k ξk (5.30)

+Eθ

[
+∞∑
k=1

{
2λ?

k − (λ?
k)2
}
ε2b−2

k (ξ2k − 1)− (α− µ)U0(λ?)

]
.

In order to complete the proof, we bound the two last terms of (5.30). First use Corollary 1 in
Section 6. For all γ > 0 and for all λ ∈ Λ:

Eθ

+∞∑
k=1

{
(λ?

k)2 − 2λ?
k

}
θkεb

−1
k ξk = Eθ

+∞∑
k=1

(1− λ?
k)2θkεb

−1
k ξk

≥ −γEθR(θ, λ?)− γR(θ, λ)− Cγ−1ε2LTω(γ−2LT ) (5.31)
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Therefore, using (5.29)-(5.31), we obtain:

EθRµ(θ, λ?)

≤ (1 + γ)Rα(θ, λ) + γEθ

{
+∞∑
k=1

(1− λ?
k)2θ2k + ε2

+∞∑
k=1

(λ?
k)2b−2

k

}

+Cγ−1ε2LTω(γ−2LT ) + Eθ

[
+∞∑
k=1

{2λ?
k − (λ?

k)2}ε2b−2
k (ξ2k − 1)− (α− µ)U0(λ?)

]
,

= (1 + γ)Rα(θ, λ) + γEθ

{
+∞∑
k=1

(1− λ?
k)2θ2k + ε2

+∞∑
k=1

(λ?
k)2b−2

k ξ2k

}
+ Cγ−1ε2LTω(γ−2LT ),

+Eθ

[
+∞∑
k=1

{2λ?
k − (1 + γ)(λ?

k)2}ε2b−2
k (ξ2k − 1)− (α− µ)U0(λ?)

]
. (5.32)

Now, study the last term in the right-hand side of (5.32). It can be rearranged as follow:

Eθ

[
+∞∑
k=1

{
2λ?

k − (1 + γ)(λ?
k)2
}
ε2b−2

k (ξ2k − 1)− (α− µ)U0(λ?)

]
,

= Eθ

[
ε2

+∞∑
k=1

(1− γ)(λ?
k)2b−2

k (ξ2k − 1)− (α− µ)U0(λ?)

]

+2Eθ

+∞∑
k=1

{
λ?

k − (λ?
k)2
}
ε2b−2

k (ξ2k − 1) = T1 + T2.

We are first interested in T1. The bound of this term represents the gain on the traditional URE
method. Indeed, if the penalty is zero, only less precise bounds are available (see proof of Theorem
3). Remark that if the constant CT is large, the term T1 will be negligible compared to T2. The
efficiency will not be enhanced by the RHM method. Here, using (5.25):

T1 = (1− γ)Eθ

[
ε2

+∞∑
k=1

(λ?
k)2b−2

k (ξ2k − 1)− (α− µ)
1− γ

U0(λ?)

]
≤ (1− γ)2Cε2

(α− µ+ γ − 1)+
. (5.33)

Then study the stochastic term T2:

T2 = 2ε2Eθ

+∞∑
k=1

λ?
kb
−2
k (ξ2k − 1)− 2ε2Eθ

+∞∑
k=1

(λ?
k)2b−2

k (ξ2k − 1). (5.34)

For all λ ∈ Λ and B > 0, using Lemma 3 and the same technics of proof of Corollary 1 (see Section
6) and (6.9):

2ε2Eθ

+∞∑
k=1

λ?
kb
−2
k (ξ2k − 1)

≤ C log2 S × Eθ

√√√√ε4
+∞∑
k=1

λ2
k(t?)b−4

k +
1√
S

√√√√ε4Eθ

+∞∑
k=1

λ2
k(t?)b−4

k ,

≤ C log2 S × ε2Eθ

√√√√sup
k∈N

(λ?
k)2b−2

k

+∞∑
k=1

λ2
k(t?)b−2

k + Cε2

√√√√Eθ sup
k∈N

(λ?
k)2b−2

k Eθ

+∞∑
k=1

λ2
k(t?)b−2

k ,

≤ γ

2
ε2Eθ

+∞∑
k=1

λ2
k(t?)b−2

k + Cε2γ−1 log2 S × Eθ sup
k∈N

(λ?
k)2b−2

k ,

≤ γε2Eθ

+∞∑
k=1

λ2
k(t?)b−2

k + Cε2γ−1LTω(γ−2LT ). (5.35)
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Indeed, the process

ρ(t) = ε2
+∞∑
k=1

λk(t)b−2
k (ξ2k − 1), t ≥ 0,

is ordered. The same bound for the second term in the right hand side of (5.34) occurs since the
process −η(t), t ≥ 0 is also ordered. Using (3.8), (5.7) and (5.32)-(5.35), we eventually find:

(1− cγ)EθVµ(θ, λ?) ≤ (1 + γ)2Rα(θ, λ) + γEθ

[
+∞∑
k=1

(1− λ?
k)2θ2k + ε2

+∞∑
k=1

(λ?
k)2b−2

k ξ2k

]

+Cγ−1ε2LTω(γ−2LT ) +
C(1− γ2)ε2

(α− µ+ γ − 1)+
+
Cε2

µ
,

≤ (1 + γ)2Rα(θ, λ) + CγEθVµ(θ, λ?)

+Cγ−1ε2LTω(γ−2LT ) +
C(1− γ2)ε2

(α− µ+ γ − 1)+
+
Cε2

µ
, (5.36)

for some c > 0. Combining inequalities (5.26), (5.36), choosing γ < γ0 for some γ0, we eventually
obtain:

Eθ‖θ? − θ‖2 ≤ EθVµ(θ, λ?),

≤
(

(1 + γ)2

1− cγ

)
Rα(θ, λ) +

Cε2

µ
+

(1− γ2)Cε2

(α− µ+ γ − 1)+
+ Cγ−1ε2LTω(γ−2LT ).

Set µ = γ in order to conclude the proof.

2

5.4 Proof of Theorem 4.2

The proof essentially follows the same lines of Sections 5.2 and 5.3. Let γ > 0 be fixed and
W (θ, λ) defined by:

W (θ, λ(t)) = (1 + 2γ)

{
+∞∑
k=1

(1− λk(t))2θ2k + ε2
+∞∑
k=1

λ2
k(t)b−2

k

}
+C̃ε2γ−1LTω(γ−2LT ) + γR(θ, λ0), (5.37)

where C̃ denotes a positive constant independent of ε. First remark that using (5.7):

Eθ sup
λ∈Λ

{
‖θ̂λ − θ‖2 −W (θ, λ)

}
≤ Eθ sup

λ∈Λ

[
(1 + γ)

+∞∑
k=1

(1− λk)2θ2k + ε2
+∞∑
k=1

λ2
kb
−2
k ξ2k + γε2

+∞∑
k=1

λ2
kb
−2
k

+Cγ−1ε2ω(γ−2LT ) + γR(θ, λ0)−W (θ, λ)
]
,

= Eθ sup
t∈T

[
(1 + γ)

+∞∑
k=1

(1− λk(t))2θ2k + η(t) + (1 + γ)ε2
+∞∑
k=1

λ2
k(t)b−2

k

+Cγ−1ε2ω(γ−2LT ) + γR(θ, λ0)−W (θ, λ)
]
,

The process η(t), t ≥ 0 is ordered. Using (5.35):

Eθη(t̃) ≤ γε2Eθ

+∞∑
k=1

λ2
k(t̃)b−2

k + Cε2γ−1LTω(γ−2LT ),

for some positive constant C and γ > 0, with,

λ(t̃) = arg sup
t∈T

{
‖θ̂λ − θ‖2 −W (θ, λ)

}
.
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This inequality can easily be derived from Lemma 3 and proof of Corollary 1. Hence:

Eθ sup
λ∈Λ

{
‖θ̂λ − θ‖2 −W (θ, λ)

}
≤ Eθ sup

λ∈Λ

[
(1 + γ)

+∞∑
k=1

(1− λ2
k)θ2k + (1 + 2γ)ε2

+∞∑
k=1

λ2
kb
−2
k

+Cγ−1ε2LTω(γ−2LT ) + γR(θ, λ0)−W (θ, λ)
]
≤ 0. (5.38)

Therefore, W (θ, λ) can also be considered as a risk hull. Hence, the traditional URE procedure
is in some sense a risk hull method. Nevertheless, the hull W (θ, λ) is rather rough compared to
Vα(θ, λ). The variability of the problem is neglected.

Using the same principle as in (5.26)-(5.32) and (5.38), we get:

EθR(θ, λ?) ≤ (1 + γ)R(θ, λ) + γEθR(θ, λ?) + Cγ−1ε2LTω(γ−2LT )

+Eθ

+∞∑
k=1

{2λ?
k − (λ?

k)2}ε2b−2
k (ξ2k − 1),

≤ (1 + γ)R(θ, λ) + 2γEθR(θ, λ?) + Cγ−1ε2LTω(γ−2LT ). (5.39)

Then use (5.39), (5.38) in order to conclude the proof.

2

6 Ordered processes

The control of processes like, for instance:

η(t) =
+∞∑
k=1

ε2λ2
k(t)b−2

k (ξ2k − 1), t ≥ 0 or ρ(t) =
+∞∑
k=1

(1− λk(t))θkεb
−1
k ξk, t ≥ 0, (6.1)

is rather important for the construction of a data-driven parameter choice rule. These processes
have a strong influence on the behavior of the related estimators. For all t > 0, the sequence
(λk(t))k∈N is assumed to be monotone decreasing.

We will see in this section that they are embedded in a more general class: the ordered pro-
cesses. These stochastic objects have been introduced in [20] and are intensively studied in [7].
In this section we recall the definition and present some results useful for the proofs of Theorems 1-3.

Definition 2 Let ζ(t), t ≥ 0 a separable random process with Eζ(t) = 0 and finite variance Σ2(t).
It is called ordered if for all t2 ≥ t1 ≥ 0,

Σ2(t2) ≥ Σ2(t1), and E[ζ(t2)− ζ(t1)]2 ≤ Σ2(t2)− Σ2(t1). (6.2)

The class of ordered processes is thus rather vast. In particular, it contains the well-known
Wiener processes.

Proposition 1 The process η(t), t ≥ 0, defined in (6.1) is ordered.

PROOF. For all t ≥ 0,

Eη(t) = 0 and Σ2(t) = 2ε4
+∞∑
k=1

λ4
k(t)b−4

k = 2σ2(t).
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Assume that for all k ∈ N, λk(t) → 1 as t → +∞ and let t1 ≤ t2 be fixed. Then Σ2(t1) ≤ Σ2(t2)
since, for all k ∈ N, λk(t1) ≤ λk(t2). Moreover,

Eη(t1)2 = E

[
+∞∑
k=1

ε2λ2
k(t1)b−2

k (ξ2k − 1)

]2

= ε4
+∞∑
k=1

λ4
k(t1)b−4

k E
[
(ξ2k − 1)2

]
,

≤
+∞∑
k=1

ε2λ2
k(t1)b−2

k ε2λ2
k(t2)b−2

k E
[
(ξ2k − 1)2

]
,

= E

[(
+∞∑
k=1

ε2λ2
k(t1)b−2

k (ξ2k − 1)

)
×

(
+∞∑
k=1

ε2λ2
k(t2)b−2

k (ξ2k − 1)

)]
= E[η(t1)η(t2)].(6.3)

The property (6.2) is a consequence of (6.3). The process η is ordered.

2

The main characteristic of ordered processes is contained in the following lemma.

Lemma 2 Let ζ(t), t ≥ 0 an ordered process and suppose that there exists κ > 0 such that

ϕ(κ) = sup
t1,t2

E exp

{
κ

ζ(t1)− ζ(t2)√
E[ζ(t1)− ζ(t2)]2

}
< +∞. (6.4)

Then, there exists a constant C depending on κ such that, for all S, T > 0 and all p ≥ 1,

E sup
s,t∈[S,T ]

|ζ(t)− ζ(s)|p ≤ Cppp
√

Σ2(T )− Σ2(S)
p
. (6.5)

This result is an extension of Lemma 1 of [7]. They consider the particular case S = 0. This
lemma is rather important. It may be useful in many situations. In particular, many processes
encountered in the proofs of Theorems 1 and 2 are ordered and satisfy (6.4). The proof follows
essentially the same lines of [7].

The following result is a consequence of the previous lemma.

Lemma 3 Let ζ(t), t ≥ 0 be an ordered process satisfying (6.4) such that ζ(0) = 0 and t? mea-
surable with respect to ζ. Then there exists a positive constant C depending on κ and τ > 0 such
that for all K > 1:

E|ζ(t?)| ≤ log2(K)EΣ(t?) + C

√
EΣ2(t?)
K

.

PROOF. First remark that:

Eζ(t?) = Eζ(t?)1{ζ(t?)≤(log K)2Σ(t?)} + Eζ(t?)1{ζ(t?)≥(log K)2Σ(t?)},

≤ (logK)2EΣ(t?) + Eζ(t?)1{ζ(t?)≥(log K)2Σ(t?)}. (6.6)

We can assume without loss of generality that Σ(t) → +∞ as t → +∞. Let (tk)k∈N the real
sequence verifying:

Σ(tk) = kd

√
EΣ2(t?)
K

, ∀k ∈ N, (6.7)

where d > 0 will be chosen later. Using Lemma 2,

Eζ(t?)1{ζ(t?)≥log2(K)Σ(t?)}

= Eζ(t?)1{ζ(t?)≥log2(K)Σ(t?)}1{t?<t1} + Eζ(t?)1{ζ(t?)≥log2(K)Σ(t?)}1{t?>t1},

≤ E sup
t<t1

|ζ(t)|+ Eζ(t?)1{ζ(t?)≥log2(K)Σ(t?)}1{t?>t1},

≤ Σ(t1) + Eζ(t?)1{ζ(t?)≥log2(K)Σ(t?)}1{t?>t1},

=

√
EΣ2(t?)
K

+ Eζ(t?)1{ζ(t?)≥log2(K)Σ(t?)}1{t?>t1}.
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Let p ∈ N such that 1 < p < 2. Using Hölder inequality:

Eζ(t?)1{ζ(t?)≥log2(K)Σ(t?)}1{t?>t1}

=
+∞∑
k=1

Eζ(t?)1{ζ(t?)≥log2(K)Σ(t?)}1{t∈[tk,tk+1]},

=
+∞∑
k=1

E
[
Σp(t?)

ζ(t?)
Σp(t?)

1{ζ(t?)≥log2(K)Σ(t?)}1{t∈[tk,tk+1]}

]
,

≤
+∞∑
k=1

[EΣpr(t?)]1/r ×
[
E
|ζ(t?)|s

Σps(t?)
1{ζ(t?)≥log2(K)Σ(t?)}1{t∈[tk,tk+1]}

]1/s

,

where r and s are such that r−1 + s−1 = 1. In the following, set r = 2/p and s = 2/(2− p). Such
a choice leads to:

Eζ(t?)1{ζ(t?)≥log2(K)Σ(t?)}1{t?>t1}

≤
√

EΣ2(t?)
p
×

+∞∑
k=1

[E supt∈[tk,tk+1]
|ζ(t)|s

Σps(tk)
1n

supt∈[tk,tk+1] |ζ(t)|≥log2(K)Σ(tk)
o]1/s

.

Let q > 0 which will be chosen later. Using a Markov inequality and Lemma 2, we obtain:

Eζ(t?)1{ζ(t?)≥(log K)Σ(t?)}1{t?>t1}

≤
√

EΣ2(t?)
p
×

+∞∑
k=1

[
E supt∈[tk,tk+1]

|ζ(t)|s+q

Σps+q(tk)
× 1

(logK)2q

]1/s

,

≤
√

EΣ2(t?)
p
×

+∞∑
k=1

[
C(s+ q)(s+q)Σs+q(tk+1)

Σps+q(tk)
× 1

(logK)2q

]1/s

.

Now, use (6.7) in order to obtain:

Eζ(t?)1{ζ(t?)≥log2 KΣ(t?)}1{t?>t1}

≤
√

EΣ2(t?)
p
×

+∞∑
k=1

[
C(s+ q)(s+q)(k + 1)d(s+q)

√
EΣ2(t?)

s+q
K−(s+q)

kd(ps+q)
√

EΣ2(t?)
ps+q

K−(ps+q)
× 1

(logK)2q

]1/s

,

≤
√

EΣ2(t?)
p
×

+∞∑
k=1

[
C(s+ q)(s+q)2d(s+q)Ks(p−1)

kds(p−1)
√

EΣ2(t?)
s(p−1)

× 1
(logK)2q

]1/s

,

=

√
EΣ2(t?)

p√
EΣ2(t?)

p−1 ×
1
K
×

+∞∑
k=1

1
kd(p−1)

[
C(s+ q)(s+q)2d(s+q)Ksp

(logK)2q

]1/s

.

Setting for instance d = 2/(p− 1),

Eζ(t?)1{ζ(t?)≥log2(K)Σ(t?)}1{t?>t1} ≤ C

√
EΣ2(t?)
K

× qq/s2dqKp

(logK)2q/s
.

Recall that the parameter 1 < p < 2 is fixed. Set q = s logK. Therefore:

Eζ(t?)1{ζ(t?)≥log2(K)Σ(t?)}1{t?>t1}

≤ C

√
EΣ2(t?)
K

× Kp(logK)log K2d log K/s

(logK)2 log K
,

= C

√
EΣ2(t?)
K

×
(
ep2d

logK

)log K

≤ C

√
EΣ2(t?)
K

,

for some C > 0 independent of K. This concludes the proof of Lemma 3.
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2

Corollary 1 Let t̂ > 0 measurable w.r.t. the sequence (ξk)k∈N and t0 the oracle defined in (3.5).
For all γ > 0, the following inequalities hold:

(i) Eθ

∣∣∣∣∣
+∞∑
k=1

λ2
k(t̂)θkεb

−1
k ξk

∣∣∣∣∣ ≤ γEθRε(θ, λ̂) + γRε(θ, λ0) + Cε2γ−1LTω(γ−2LT ),

(ii) Eθ

∣∣∣∣∣
+∞∑
k=1

(1− λk(t̂))2θkεb
−1
k ξk

∣∣∣∣∣ ≤ γEθRε(θ, λ̂) + γRε(θ, λ0) + Cε2γ−1LTω(γ−2LT ),

for some C > 0 independent of ε.

PROOF. In a first time introduce:

∆ε[λ] = ε2 sup
k∈N

λ2
kb
−2
k , ∀λ ∈ Λ. (6.8)

First prove inequality (i).

Eθ

+∞∑
k=1

λ2
k(t̂)θkεb

−1
k ξk = Eθ

+∞∑
k=1

{λ2
k(t̂)− λ2

k(t0)}θkεb
−1
k ξk.

The process:

ρ(t) =
+∞∑
k=1

{λ2
k(t)− λ2

k(t0)}θkεb
−1
k ξk, t > 0,

is ordered on [t0; +∞[. Moreover, ρ̃(t) = ρ(t−1), t ≥ 0 is also ordered on [t−1
0 ; +∞[. Both processes

satisfy (6.4) for some κ > 0. Hence, using Lemma 3 with K =
√
S:

Eθ

+∞∑
k=1

λ2
k(t̂)θkεb

−1
k ξk

≤ C log2(S).Eθ

√√√√+∞∑
k=1

{
λ2

k(t0)− λ2
k(t̂)

}2
θ2kε

2b−2
k +

C√
S

√√√√Eθ

+∞∑
k=1

{
λ2

k(t0)− λ2
k(t̂)

}2
θ2kε

2b−2
k ,

where λ0 = λ(t0) is the oracle defined in (3.5) and C a positive constant independent of ε. Then,
remark that the following inequality holds:

{λ2
k(t0)− λ2

k(t̂)}2 = [(1− λk(t̂))− (1− λk(t0))]2(λk(t̂) + λk(t0))2,

≤ 4
[(

1− λk(t̂)2 + (1− λk(t0)
)2] [

λ2
k(t0) + λ2

k(t̂)
]
.

For all γ > 0, using the elementary inequality 2ab ≤ γa2 + γ−1b2, we obtain:

Eθ

+∞∑
k=1

λ2
k(t̂)θkεb

−1
k ξk

≤ γEθ

+∞∑
k=1

(1− λ̂k)2θ2k +Dγ−1 log2(S).Eθ∆ε[λ̂] + γ
+∞∑
k=1

(1− λ0
k)2θ2k +Dγ−1 log2(S).∆ε[λ0],

for some positive constant D. With simple algebra, for all x > 0 and λ ∈ Λ:

Dγ−1 log2(S).∆ε[λ] = Dγ−1 log2(S).ε2 sup
k
λ2

kb
−2
k ,

≤ Dγ−1 log2(S).x−1ε2
+∞∑
k=1

λkb
−2
k +Dγ−1 log2(S).ε2ω(x), (6.9)

where the function ω is introduced in (3.6) and computed for some particular examples in Section
3.2. Then set x = Dγ−2 log2 S in order to obtain (i).

The proof of (ii) exactly follows the same lines. It uses in particular Corollary 1 and inequality
(34) of [8].
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[23] P. Mathé. The Lepskij principle revisited. Inverse problems, 22:L11–L15, 2006.
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