Minimal resolutions of geometric D-modules

Abstract : In this paper, we study minimal free resolutions for modules over rings of linear differential operators. The resolutions we are interested in are adapted to a given filtration, in particular to the so-called V-filtrations. We are interested in the module D_{x,t}f^s associated with germs of functions f_1,...,f_p, which we call a geometric module, and it is endowed with the V-filtration along t_1=...=t_p=0. The Betti numbers of the minimal resolution associated with this data lead to analytical invariants for the germ of space defined by f_1,...,f_p. For p=1, we show that under some natural conditions on f, the computation of the Betti numbers is reduced to a commutative algebra problem. This includes the case of an isolated quasi homogeneous singularity, for which we give explicitely the Betti numbers. Moreover, for an isolated singularity, we characterize the quasi-homogeneity in terms of the minimal resolution.
Type de document :
Article dans une revue
Journal of Pure and Applied Algebra, Elsevier, 2010, 214, pp.1477-1496. 〈10.1016/j.jpaa.2009.12.001〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger
Contributeur : Rémi Arcadias <>
Soumis le : mercredi 18 mars 2009 - 09:38:28
Dernière modification le : mercredi 19 décembre 2018 - 14:08:04
Document(s) archivé(s) le : mardi 8 juin 2010 - 20:28:57


Fichiers produits par l'(les) auteur(s)




Rémi Arcadias. Minimal resolutions of geometric D-modules. Journal of Pure and Applied Algebra, Elsevier, 2010, 214, pp.1477-1496. 〈10.1016/j.jpaa.2009.12.001〉. 〈hal-00368826〉



Consultations de la notice


Téléchargements de fichiers