A Geometric Analysis of Trajectory Design for Underwater Vehicles

Abstract : Designing trajectories for a submerged rigid body motivates this paper. Two approaches are addressed: the time optimal approach and the motion planning approach using a concatenation of kinematic motions. We focus on the structure of singular extremals and their relation to the existence of rank-one kinematic reductions; thereby linking the optimization problem to the inherent geometric framework. Using these kinematic reductions, we provide a solution to the motion planning problem in the under-actuated scenario, or equivalently, in the case of actuator failures. We finish the paper comparing a time optimal trajectory to one formed by a concatenation of pure motions.
Type de document :
Article dans une revue
Discrete and Continuous Dynamical Systems - Series B, American Institute of Mathematical Sciences, 2009, 11 (2), pp.233-262. 〈10.3934/dcdsb.2009.11.233〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00367422
Contributeur : Thomas Haberkorn <>
Soumis le : mercredi 11 mars 2009 - 11:19:24
Dernière modification le : jeudi 3 mai 2018 - 15:32:06

Lien texte intégral

Identifiants

Collections

Citation

Monique Chyba, Thomas Haberkorn, Ryan Smith, George Wilkens. A Geometric Analysis of Trajectory Design for Underwater Vehicles. Discrete and Continuous Dynamical Systems - Series B, American Institute of Mathematical Sciences, 2009, 11 (2), pp.233-262. 〈10.3934/dcdsb.2009.11.233〉. 〈hal-00367422〉

Partager

Métriques

Consultations de la notice

122