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Abstract

We introduce a two-scale computational strategy for the resolution of contact prob-
lems with friction, possibly with numerous contact surfaces; the structure studied
may also be highly heterogeneous. The description of ”micro” and ”macro” quanti-
ties is performed on the interfaces arising from the decomposition of the structure
studied into an assembly of substructures and interfaces. The efficiency and robust-
ness of the method are illustrated on several examples. This iterative computational
strategy is suitable for parallel computing; it can be interpreted as a mixed mul-
tilevel domain decomposition method. Its scalability has been demonstrated and
comparisons with other domain decomposition methods are also given.
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1 Introduction

The numerical resolution of engineering contact problems is probably one of
the most difficult and demanding tasks in computational structural mechanics,
which explains why so many works have been devoted to contact problems.
Without being exhaustive, let us mention [10,23], whose main feature con-
sists of formulating the problem as an implicit variational inequality. There
are many approaches to the resolution of the global problem, such as penalty
or Lagrange multiplier methods [30,14,28,29]. The former [13] are based on
the regularization of contact constraints and, usually, lead to ill-conditioned
problems when dealing with large-scale systems. Among the latter are mathe-
matical programming techniques [15] and gradient methods [21,7,25,26]. One
can also mention methods which use the augmented Lagrangian formulation
or mixed approaches [27,15] or mixed approaches [1] close to an augmented
Lagrangian formulation.
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However, the treatment of large-scale problems using global methods often gets
expensive. Recently, domain decomposition methods have been introduced to
accelerate the resolution of contact problems [5,6,8,2,4]. More recently, the
requirement of scalability for this type of method has led to the extension to
contact problems of the FETI method [9].

This paper introduces an alternative computational method. The key point
lies in the observation that what causes difficulties in contact problems is the
fact that the local solution includes high gradient effects with a short wave-
length compared to the characteristic length of the structure studied. This
is very clear, for example, for cracks involving contact with friction: at the
crack’s tip, stress singularities occur. It follows that contact problems, just
like problems involving highly heterogeneous structures (such as composite
structures), belong to the class of problems in which phenomena with differ-
ent wavelengths interact. Consequently, the proposed computational strategy
for contact problems is an extension of the micro-macro computational strat-
egy developed for highly heterogeneous structures [18–20], which incorporates
a homogenization procedure. This last computational strategy is also an en-
hancement of a previous one [5,6].

The first step consists of decomposing the structure into an assembly of sim-
ple constituents, i.e. substructures and interfaces. For instance, a substructure
may contain one or several cells of a composite structure. Each of these com-
ponents possesses its own variables and equations. An interface transfers both
a distribution of displacements and a distribution of forces.

Moreover, the unknowns (displacements and forces) are split at the interfaces
into:

s = sM + sm

where sM is the set of the macroscopic quantities and sm the complemen-
tary set of ”micro” quantities. Our descriptions are based on a ”continuous-
medium” point of view and we use a general method for homogenization and
local reanalysis. Here, contrary to previous works, we develop the traction-
based description, in which the equilibrium in traction is enforced at the in-
terfaces [20]. For contact interfaces, we introduce contact laws with friction.

The second step of this micro-macro strategy consists of using the so-called
LATIN method on the problem to be solved expressed as an assembly of
substructures and interfaces. The resulting micro-macro strategy converges
for stable materials under standard assumptions. Here, in order to focus on
the main concepts, this method will be described only for linear elasticity.

At each iteration, one has to solve a linear ”macro” problem defined on the
entire homogenized structure along with a family of linear ”micro” problems,
each associated with a single substructure. For linear problems, this strat-
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egy involves a numerical parameter which can be interpreted as an interface
stiffness.

Several numerical examples illustrate the efficiency and the robustness of the
new approach.

Globally, this scheme is well-suited to parallel-architecture computers. It can
be viewed as a mixed multilevel domain decomposition method. Its scalability
has been proved numerically. In this paper, we also give comparisons with
other domain decomposition methods. Let us also mention that a third scale
can be introduced by discretizing the ”macro” linear problem.

2 The reference problem

In this section, we outline the reference problem and its reformulation in terms
of an assembly of substructures and interfaces [17]. Then, we introduce the
contact conditions by conferring a specific behavior on the interfaces.

2.1 Formulation of the problem

W
Fd

fdUd

¶ W2

¶ W1

Gc

Fig. 1. The reference problem

We are considering the small perturbations of a structure Ω under prescribed
loads and displacements defined by:

• a prescribed displacement ud on part of the boundary ∂1Ω,
• a prescribed traction force F d on part of the boundary ∂2Ω,
• a prescribed body force f

d
on Ω.

The structure has internal or external contact interfaces with friction desig-
nated by Γc. The reference problem will be presented in the case of linear
elasticity. We designate the stress field by σ and the displacement field by u,
which belong respectively to finite energy spaces S and U defined on Ω.
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2.2 Reformulation of the problem

The method we are using is not a classical domain decomposition method in
that the body is split into two different types of entities: substructures and
interfaces, both defined by their own variables and equations [17]. The struc-
ture is decomposed into a set E of non-overlapping substructures ΩE, which
are subjected on their boundaries to a traction field FE and to a displacement
field WE. An interface ΓEE′ between two substructures ΩE and ΩE′ generates
constitutive relations between (WE,WE′) ∈ W

2
EE′ and (FE, FE′) ∈ F

2
EE′

(see Figure 2) and allows us to take easily into account such complex behavior
as contact with or without friction. Since both the displacement and the force
at the interfaces are unknowns, the resulting approach is a ”mixed” domain
decomposition method as opposed to the primal and dual methods.

WE

WE'

GEE'
GEE'

WE

FE'

FEWE'

M

Fig. 2. Decomposition into substructures and interfaces

The problem can be rewritten as:

Find s = {sE | E ∈ E} with sE = (uE,σE, WE, FE) which verify :

• a set of linear equations, possibly global in Space Ad, such that, ∀E ∈ E,
· Kinematic compatibility equations:

uE ∈ UE, εE = ε(uE) ,

uE|∂ΩE
= WE

· Equilibrium equations:

∀u⋆ ∈ UE,
∫

ΩE

Tr [σE ε(u⋆)] dΩ =
∫

ΩE

f
d
· u⋆ dΩ +

∫

∂ΩE

FE · u⋆
|∂ΩE

dΓ

• a set of equations Γ, local in space and possibly nonlinear, such that, ∀E ∈
E,
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· Constitutive relation:

σE = K εE on ΩE

where K is Hooke’s tensor

· Interface behavior: ∀E ′ ∈ EE,





FE + FE′ = 0 (equilibrium)

FE = AΓ
EE′

(WE,WE′) (constitutive relation)
on ΓEE′

where AΓ
EE′

is the operator describing the interface’s behavior.

where EE is the set of subdomains adjacent to E, including interfaces with
prescribed traction or displacement or external contact. This approach allows
us to consider different types of interface behavior easily, e.g. perfect linkage or
unilateral contact with or without friction. The set of equations Ad is solved
without taking into account the set Γ and, consequently, it remains a quadratic
minimization problem without constraints. Let us look at some examples of
contact behavior.

2.3 Examples of interface behavior

All following equations are local at each point of an interface ΓEE′ , for E ∈ E

and E ′ ∈ EE.

2.3.1 Perfect linkage

The linkage is defined by both the displacement and the traction force being
continuous across the interface:

Perfect linkage

FE + FE′ = 0

WE = WE′

2.3.2 Unilateral contact without friction

Following the formulation of static contact problems found in [10], let us use
the resulting contact conditions. We designate by n the unit vector normal to
ΓEE′ pointing from E to E’ and by P the corresponding orthogonal projection
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operator. The linkage is defined by:

Unilateral contact without friction

FE + FE′ = 0

n · (WE′ − WE) > 0 and n · FE 6 0(
n · (WE′ − WE)

)(
n · FE

)
= 0

PFE = PFE′ = 0

2.3.3 Unilateral contact with friction

Here, the behavior is characterized by Coulomb’s friction coefficient f . The
notations are the same as before. The linkage is defined on ΓEE′ by:

Unilateral contact with friction

FE + FE′ = 0

n · (WE′ − WE) > 0 and n · FE 6 0(
n · (WE′ − WE)

)(
n · FE

)
= 0

Sticking

if ‖ PFE ‖< f‖n · FE‖

P(WE′ − WE) = 0

Sliding

if ‖ PFE ‖= f‖n · FE‖

P(WE′ − WE) ∧ PFE = 0

P(WE′ − WE) · PFE > 0

(1)

3 Description of the micro-macro strategy

The set of state variables is expected to have two parts: one, denoted M,
related to the macroscale and the other, denoted m, related to the microscale.
Splitting between the micro and macro quantities is carried out only at the
interfaces. The macro part is chosen to represent the large-wavelength solution.
At every interface ΓEE′ such that E ∈ E and E ′ ∈ EE, the interaction forces
(or ”interforces”) and displacements are split into:

FE|Γ
EE′

= FM
E|Γ

EE′
+ Fm

E|Γ
EE′

WE|Γ
EE′

= WM
E|Γ

EE′
+ Wm

E|Γ
EE′

(2)
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Here, we are following the traction-based approach [20], which will be ex-
plained later. Splitting is performed using a finite-dimension projection oper-
ator ΠF

|Γ
EE′

such that:

FM
E|Γ

EE′
= ΠF

|Γ
EE′

(FE|Γ
EE′

)

Fm
E|Γ

EE′
=

(
Id − ΠF

|Γ
EE′

)
(FE|Γ

EE′
)

(3)

The corresponding macro part of the displacements comes from the duality
on the contribution work:

〈
FE,WE

〉
Γ

EE′

=
〈
Fm

E ,Wm
E

〉
Γ

EE′

+
〈
FM

E ,WM
E

〉
Γ

EE′

where
〈
FE,WE

〉
Γ

EE′

=
∫
Γ

EE′
FE|Γ

EE′
· WE|Γ

EE′
dΓ

(4)

For instance, the projector ΠF
|Γ

EE′
can be chosen in order to extract the re-

sultant and moment of Field FE on ΓEE′ . The new interface quantities are
now: (

WM , FM
)
∈ W

M
ad × F

M
ad(

Wm, Fm
)
∈ W

m × F
m

Following the traction-based strategy, we choose the space F
M
ad such that FM

achieves the transmission conditions at each interface and is in equilibrium
with f

d
in each substructure.

F
M
ad = {FM ∈ F

M / ∀E ∈ E, ∀ E ′ ∈ EE, FM
E + FM

E′ = 0 on ΓEE′

FM
E in equilibrium with f

d
}

Let us note that these conditions are verified even in the case of

unilateral contact. There is no restriction in the choice of the space

W
M
ad = W

M .

4 Computational micro-macro strategy

The problem becomes: find the micro and macro displacement and interforce at
the interface which verify both sets of equations Ad (kinematic and equilibrium
equations on each substructure) and Γ (constitutive relation and interface’s
behavior). To solve this problem, we are using the framework of the LATIN
method applied to the degenerated case where time has disappeared [17]. This
procedure builds successively an element s of the space of admissible fields Ad

and an element of the second set Γ at each iteration. Iteration n starts with
sn ∈ Ad. Then, the local stage is performed from this element to an element

7



ŝn+1/2 ∈ Γ using the upward search direction E+. Next, the linear stage is
performed using the downward search direction E− (see Figure 3), leading
from ŝn+1/2 to sn+1 ∈ Ad. The search directions are the parameters of the
method.

(σ,F)

(ε(U),W)

sn+1
sn

E+

E-

sn+1/2

Ad

Γ

sex

Fig. 3. An iteration of the LATIN method

4.1 The local stage

The problem can be written:

For a given sn ∈ Ad, find ŝn+1/2 ∈ Γ such that ∀E ∈ E

• σ̂E,n+1/2 − σE,n + K
(
ε̂E,n+1/2 − εE,n

)
= 0 (5)

• ∀E ′ ∈ EE, ∀(Fm∗

, FM∗

) ∈ F
m
EE′ × F

M
EE′ ,

〈 1

km

(F̂
m

E,n+1/2 − Fm
E,n) − (Ŵ

m

E,n+1/2 − Wm
E,n), Fm∗

〉
Γ

EE′

= 0 (6)

〈 1

kM

(F̂
M

E,n+1/2 − FM
E,n) − (Ŵ

M

E,n+1/2 − WM
E,n), FM∗

〉
Γ

EE′

= 0 (7)

where km and kM are the parameters of the method. Note that the problem
is formulated in such a way that no distinction is made between boundary
interfaces and interfaces between subdomains; thus, the boundary conditions
are taken into account easily and exactly. Let us note that for perfect linkage
it has been proved that the optimum value of kM is +∞ [20]. Therefore, here,
we are taking a rather large value which, practically, is km.

¤ Example of unilateral contact with friction

In the case of contact interfaces, taking the same parameter for the downward
and upward search directions, the set of equations Γ remains local in space. At
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the beginning of this stage, the complete interforce F is assembled. Using the
behavior (1) and the equations of the search direction (6) and (7), all possible
cases (separation, contact with sliding or sticking) can be calculated easily at
each point of the interface from the known element sn. To simplify the writing,
let us omit the index n + 1/2. To solve this stage, we use the procedure of
Table (1).

Table 1
Solution of the local stage in the case of a contact interface with friction

First calculation

Nn = k
2

(
WE′,n − WE,n

)
· n − 1

2k

(
FE′,n − FE,n

)
· n

Tn = k
2
P

(
WE′,n − WE,n

)
− 1

2
P

(
FE′,n − FE,n

)

Separation

if Nn > 0

F̂E = F̂E′ = 0

ŴE = WE,n − 1

kFE,n

ŴE′ = WE′,n − 1
kFE′,n

Contact

if Nn 6 0

F̂E · n = −F̂E′ · n = Nn

ŴE · n = 1

2

(
(WE,n + WE′,n) − 1

k (FE,n + FE′,n)
)
· n

ŴE′ = ŴE

gn = fF̂E,n · n

Sticking

if ‖ Tn ‖< gn

PF̂E = −PF̂E′ = Tn

PŴE = PWE,n + 1

kP(F̂E − FE,n)

PŴE′ = PŴE

Sliding

if ‖ Tn ‖> gn

PF̂E = −PF̂E′ = gn
Tn

‖Tn‖

PŴE = PWE,n + 1

kP(F̂E − FE,n)

PŴE′ = PWE′,n + 1
kP(F̂E′ − FE′,n)

4.2 The linear stage

The linear stage can be written:
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For a given ŝn+1/2 ∈ Γ, find sn+1 ∈ Ad such that

• ∀E ∈ E, σE,n+1 − σ̂E,n+1/2 − K
(
εE,n+1 − ε̂E,n+1/2

)
= 0 (8)

• ∀E ∈ E, ∀E ′ ∈ EE, ∀Fm∗

∈ F
m
EE′ , (9)

〈 1

km

(Fm
E,n+1 − F̂

m

E,n+1/2) + (Wm
E,n+1 − Ŵ

m

E,n+1/2), F
m∗

〉
Γ

EE′

= 0

• ∀FM∗

∈ F
M
ad,0,

∑

E∈E

∑

E′∈EE

〈 1

kM

(FM
E,n+1 − F̂

M

E,n+1/2) +

(WM
E,n+1 − Ŵ

M

E,n+1/2), F
M∗

〉
Γ

EE′

= 0 (10)

We can see that the choice of the admissible space F
M
ad makes the macro search

direction global. Omitting the index n, finding s ∈ Ad can be written:

Find s = {sE | E ∈ E}

with sE = (uE, σE,Wm
E ,WM

E , Fm
E , FM

E ) which verifies :

• Kinematic admissibility equations:

Wm ∈ W
m, WM ∈ W

M
ad, ∀E ∈ E, uE ∈ UE,

∀E ′ ∈ EE, uE|Γ
EE′

= Wm
E + WM

E (11)

• Equilibrium equations:

Fm ∈ F
m, FM ∈ F

M
ad, ∀E ∈ E, σE ∈ SE, ∀u⋆ ∈ UE∫

ΩE

Tr [σE ε(u⋆)] dΩ =
∫

ΩE

f
d
· u⋆ dΩ +

∫

∂ΩE

FM
E · u⋆

|∂ΩE
dΓ +

∫

∂ΩE

Fm
E · u⋆

|∂ΩE
dΓ (12)

The resulting problem is defined on the whole structure; it is characterized
a priori by highly coupled macro and micro unknowns. However, we will
see that this coupling can be taken into account by a homogenization pro-
cedure. The characteristic length of the substructure defines the microscale;
the macroscale is associated with the characteristic length of the whole struc-
ture. In the traction-based strategy, we recall that FM ∈ F

M
ad contains the

subspace of the interforces which verify the equilibrium conditions at the in-
terfaces, even in the case of contact interfaces.
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4.2.1 The micro problem

Because of the search directions (8) and (9) for micro quantities, the local
problem in Substructure E can be rewritten:

Find uE ∈ UE which verifies ∀u⋆ ∈ UE∫

ΩE

Tr [Kε(uE) ε(u⋆)] dΩ +
∫

∂ΩE

k(Id − ΠU)uE|∂ΩE
· (Id − ΠU)u⋆

|∂ΩE
dΓ =

∫

ΩE

f
d
· u⋆ dΩ +

∫

∂ΩE

FM
E · u⋆

|∂ΩE
dΓ +

∫

∂ΩE

(F̂
m

E + kŴ
m

E ) · u⋆
|∂ΩE

dΓ (13)

where ΠU is the macro projector for the displacement arising from the duality
on the contribution work. The choice of a macro projector ΠF which preserves
the resultant and the moment implies that the rigid body modes are the kernel
of the bilinear form on the left-hand side. Consequently, this problem has a
solution with an undefined additional rigid body mode displacement field if
FM

E is in equilibrium with f
d
. We note that this condition is fulfilled by the

choice of the approximation space F
M
ad.

Since the micro problem is linear, its right-hand side can be separated into
a contribution (f

d
, F̂

m

E + kŴ
m

E ) on the microscale and a contribution FM on
the macroscale. Therefore, the solution to the microscale problem (13) and,
in particular, the macro part of the boundary displacement can be written:

WM
E = ΠUu|∂ΩE

= ŴM
d (f

d
, F̂

m

E + kŴ
m

E ) + LE(FM
E ) + ΠUαE|∂ΩE

(14)

where ŴM
d is the macro contribution of the micro right-hand side and αE is an

additional rigid body mode. LE : F
M
ad −→ W

M is a finite-dimension operator
which can be interpreted as a homogenized behavior operator for Cell E; it
is defined, for example, by prescribing zero values for the resultant and the
moment of the displacement on the edge of E. LE represents a symmetric,
positive definite bilinear form on F

M
ad,0×F

M
ad,0. LE can be calculated by solving

a small number of problems on the microscale because, in the cell, FM depends
on only few parameters.

4.2.2 The macro problem

The macro problem consists of verifying the global macro search direction by
taking into account the results obtained on the microscale (14).
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Find FM ∈ F
M
adsuch that,∀FM∗

∈ F
M
ad,0,

∑

E∈E

∑

E′∈EE

〈
LE(FM

E ), FM∗
〉

Γ
EE′

+
〈 1

kM

FM
E , FM∗

〉
Γ

EE′

=

∑

E∈E

∑

E′∈EE

〈 1

kM

F̂
M

E + Ŵ
M

E − ŴM
d , FM∗

〉
Γ

EE′

(15)

Due to the properties of Operator LE, the macro problem has a unique solution
if k ≥ 0. To guarantee the admissibility of FM , we can introduce Lagrange
multipliers which are the rigid body modes of the substructures. We denote

RE the space of the rigid body modes of Substructure E and F̃
M

ad the space
of the macro interforces which verify the transmission conditions but not the
equilibrium with f

d
:

F̃
M

ad = {FM ∈ F
M / ∀E ∈ E, ∀E ′ ∈ EE, FM

E + FM
E′ = 0 on ΓEE′}

The problem can be rewritten:

Find FM ∈ F̃
M

ad and α = {αE ∈ RE | E ∈ E} such that:

• ∀FM∗

∈ F̃
M

ad,0

∑

E∈E

∑

E′∈EE

〈
LE(FM

E ), FM∗
〉

Γ
EE′

+
〈 1

kM

FM
E , FM∗

〉
Γ

EE′

+
〈
αE, FM∗

〉
Γ

EE′

=

∑

E∈E

∑

E′∈EE

〈 1

kM

F̂
M

E + Ŵ
M

E − ŴM
d , FM∗

〉
Γ

EE′

(16)

• ∀E, ∀α⋆
E ∈ RE∫

∂ΩE

FM
E · α⋆

E|∂ΩE
dΓ +

∫

ΩE

f
d
· α⋆

E dΩ = 0 (17)

The resolution of the macro problem leads to the macro force field FM and
the additional rigid body modes αE. Due to (13), we know the displacement
solution in each substructure E. We can deduce its micro projection on the
boundary Wm and we calculate, with respect to the micro search direction
(9), the micro interforce Fm. This completes the linear stage.

4.3 Convergence results

We are following the proof given in [17] for the monoscale approach. In the
case of contact conditions, the micro and macro search parameters are chosen
equal and positive. We use for s the following norm:
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‖ s ‖=
∑

E∈E

∫

ΩE

{
Tr

[
σEK−1

σE

]
+ Tr [ε(u⋆)Kε(u⋆)]

}
dΩ+

∑

E∈E

∑

E′∈EE

∫

Γ
EE′

{
Fm

E · k−1Fm
E + Wm

E · kWm
E +

FM
E · k−1FM

E + WM
E · kWM

E

}
dΓ

In the case of contact without friction, we can prove that the mean value from
two consecutive iterations converges towards the exact solution if 0 < k1 6

k 6 k2 < ∞. To guarantee convergence of the solution itself, we modify the
procedure by introducing a relaxation after the linear stage n+1 and replacing
the solution sn+1 by:

sn+1 − µ(sn+1 − sn) −→ sn+1

The new procedure has been proved to be convergent for any positive µ. In
practice, we take µ = 0.8

5 About discretization

In this section, we present a consistent choice for the finite element approxi-
mation spaces.

First, let us consider the discretization of the interforce and of the displace-
ment at the interface. A priori, the interforce density FE|Γ

EE′
belongs to

H−1/2(ΓEE′) and, therefore, is not necessarily continuous. Here, we make a
natural choice by taking for FE,h and F̂E,h a space of piecewise continuous
functions. The interface displacement appears only as an ”interdisplacement”
(ŴE −ŴE′)|Γ

EE′
which can be considered as an interface deformation. Conse-

quently, we can take for ŴE|Γ
EE′

the same approximation space as for F̂E|Γ
EE′

.

FE,h = F̂E,h = ŴE,h

Therefore, the local stage is easy to define: the equations are simply written
at the Gauss points and they remain local.

The last discretization choice concerns the resolution of the micro problem
(13), for which we adopted a displacement approach. Then, the choice of
the space approximation UE,h for uE is classical. We denote WE,h the space
approximation for WE which is the trace on the boundary of UE,h:

WE,h = {uE|∂ΩE
| uE ∈ UE,h}

In practice, if FE,h is a space of piecewise continuous functions of degree m
(m ≥ 0), we could take for UE,h a space of continuous functions of degree p =
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m+1. Our experience shows that this classical discretization of the interforce
and displacement generates spurious oscillating modes leading to numerical
instability. This is due to the fact that the energy of several distributions of
oscillating interforces is poorly calculated. This can be interpreted as a poor
calculation of the local operator AE,h such that

uE,h|∂ΩE
= AE,h(FE,h) + Ŵ d

To solve this problem, we propose to refine the discretization of Space UE

to have a better evaluation of the local operator AE,h. In practice, this can
be done by refining the mesh near the boundary (”h-version”) or by using a
higher degree of approximation p for uh near the boundary (”p-version”).
We can see on Figure 4 the modification of the displacement approximation
for the p- and h-versions.

Interforce m=0

Interdisplacement m=0

...

... ...

INITIAL DISCRETIZATION

OVER 

DISCRETIZATION

h-version p-version

INTERFACE

Interforce m=0

Displacement p=1

SUBSTRUCTURE

Interforce m=0

Displacement p=1

SUBSTRUCTURE

Interforce m=0

Displacement p=2

SUBSTRUCTURE

Fig. 4. Modification of the classical approximations of the interforce and local dis-
placement for finite element calculations: h- and p-versions

This modification leads to a better solution without spurious modes and to a
much higher convergence rate for the iterative strategy. Further details on the
discretization will be given in an upcoming paper.
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6 Examples

In this section, we present two numerical tests which show the quality of the
solution obtained and the efficiency of the algorithm. The multiscale method
will be denoted MUSM, while the monoscale method will be denoted MOSM.

6.1 Example 1: Square domain with contact boundary conditions

F

Contact with friction

2

F1

Fig. 5. The square domain with contact boundary conditions and its decomposition
into subdomains

This example has been used by several laboratories. The reference solution
can be found in [24]. It is very basic and has the advantage of providing dif-
ferent contact states. The problem consists of a square domain (40×40 mm2)
loaded by two interforce densities F1 and F2 on the left and upper sides re-
spectively. There is a symmetry condition u · x = 0 on the right-hand side
and contact with friction on the lower side. We are assuming plane strain
conditions with material coefficients E = 130000 N/mm2 and ν = 0.2. In the
reference above, the problem had been discretized with 33 nodes on the con-
tact interface. To respect the overdiscretization of the local displacement in
comparing our method with the reference problem, we chose QUA8 elements
in the substructures for the displacements and piecewise constant functions for
the interforces (32 equivalent points on the contact interface). This is equiva-
lent to a ”p-version” of overdiscretization with p = 2. The structure was then
decomposed into 16 square substructures which were discretized with 8 × 8
QUA8 elements. The macro spaces W

M and F
M were chosen to be equal and

contain respectively the linear part of the displacement and the interforce at
each interface, i.e.:
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• for the displacements: 2 translations, 1 rotation and 1 tensile strain per
interface

• for the interforces: 2 resultants, 1 moment and 1 tensile force per interface

¤ Accuracy of the solution
Now, let us compare the reference solution found in [24] with the solution using
MUSM by looking in Table 2 at the length of the contact zones for different
loading cases. Let us note that in MUSM the interforce and the interface
displacement are considered to be piecewise constant. The mean values of
these quantities lie at the midpoints of the interface elements. To measure a
contact zone, we count the number of midpoints belonging to the zone and
multiply this by the length of an element. We observe a perfect correspondence

Table 2
Length of the contact zones for different loading cases and Coulomb’s friction coef-
ficient: comparison between MUSM and the reference solution (REF)

f F1 F2 Separate part Sliding part Sticking part

(N/mm2) (N/mm2) (mm) (mm) (mm)

REF MUSM REF MUSM REF MUSM

1 100 −50 3.75 3.75 18.75 20 17.5 16.25

1 150 −50 3.75 3.75 26.25 27.5 10 8.75

0.2 100 −50 0 0 40 40 0 0

0.2 100 −150 0 0 23.75 23.75 16.25 16.25

0.2 100 −250 0 0 3.75 3.75 36.25 36.25

between the solution at convergence and the reference solution for all loading
cases. We now focus on the first case of loading with f = 1. We can also look at
the distributions of the normal and tangential displacements on Figure 6 and
of the normal and tangential generalized interforces on Figure 7 and observe
that the solution at convergence is very close to the reference solution. The
displacements and interforces of MUSM are considered at the midpoints.

¤ Convergence of the algorithm
Figure 8 shows the evolution of the relative interface error (in L2-norm) with
the number of iterations. We note that only 10 iterations are sufficient to
obtain a good approximation of the solution. We also note the improved con-
vergence rate of MUSM compared with MOSM.
¤ Influence of the discretization
Figure 9 shows the evolution of the error with the number of iterations for 3
types of discretization:
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Fig. 6. Comparison with the reference solution: tangential and normal displacement
at the contact interface
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Fig. 7. Comparison with the reference solution: tangential and normal interforce at
the contact interface

- 8 × 8 QUA4 for the displacement (p = 1) and linear approximation P1 for
the interforce (dimension 9)

- 8 × 8 QUA4 for the displacement (p = 1) and piecewise constant P0 ap-
proximation for the interforce (dimension 8)

- 8 × 8 QUA8 for the displacement (p = 2) and piecewise constant P0 ap-
proximation for the interforce (dimension 8) −→ overdiscretization.

Consequently, we conclude that the new type of discretization increases the
convergence of the iterative strategy.
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Fig. 9. Convergence of MUSM: influence of overdiscretization

6.2 Example 2: Compression and bending of a domain with periodic cracks

6.2.1 Description of the 2D problem

Here, we are attempting to solve a more complex problem. A square domain
(90 × 90 mm2) is loaded in compression (100 Mpa) and bending (100 Mpa)
along its upper side and fixed on its lower side (see Figure 10). The domain
contains many cracks. We use contact interfaces to take into account the non-
interpenetrating condition and the friction of the lips. We take f = 1. We
assume plane strain condition with material coefficients E = 130000 N/mm2

and ν = 0.2. The domain decomposition and contact interfaces chosen are
shown on Figure 10. Each substructure is discretized with 6× 6 square QUA8
elements (p = 2). Each interface is discretized with 6 P0 elements (m = 0).
This choice corresponds to a p-version of overdiscretization. The macro spaces
W

M and F
M are chosen to be equal and contain respectively the linear part

of the displacement and that of the interforce on each interface, as was the
case for the previous example.
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Cracks
(contact with friction)

f=1

Substructuring
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Contact interface with friction
Subdomain

Perfect interface

Fig. 10. The reference problem and the domain decomposition

6.2.2 Solution given by the algorithm

The solution in terms of Von Mises’ stress and the interface displacement at
convergence is shown on Figure 11. The leftward cracks are opening whereas

200 400 600 800 1000 1200 1400 1600 1800

Mises Stress Interface displacement
Fig. 11. Solution at convergence: Von Mises’ stress and interface displacement

the rightward cracks remain closed, sticking or sliding, as can be seen on Figure
12. On the same figure, we note that the solution to the macro problem FM is
a good approximation of the average solution. The micro term Fm improves
the solution at the tips of the cracks.
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Fig. 12. Macro and micro interforces at convergence for some interfaces

6.2.3 Evolution of the algorithm

Now, let us look at the evolution of the solution with the number of iter-
ations. Figures 13 and 14 show respectively the evolutions of F and of the
corresponding contact error criterion on a sliding and sticking crack.

Normal criterion : |FE.n|.((WE′ − WE).n)

Tangential criterion : (f |FE.n| − |FE.t|).|(WE′ − WE).t|

We conclude that the solution verifies the contact conditions well and con-
verges rapidly.
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Fig. 13. Contact error criterion on a sliding and sticking crack
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6.2.4 Scalability of the method

The evolution of the error is shown on Figure 15 for the problem with 9 × 9
subdomains. Now, let us test the convergence rate of the iterative method by
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Fig. 15. Evolution of error

analyzing the same problem with different numbers of substructures as shown
on Figure 16. We observe that the convergence rate is independent of the
number of substructures and conclude that the multiscale method is almost
scalable in the case of contact with or without friction.
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Fig. 16. Scalability test
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6.2.5 Comparison with other methods

We compared the efficiency of this method with the previous monoscale method.
The new method turned out to be much more efficient than a classical code
such as ABAQUS for engineering problems with many contact-type connec-
tions; the ratio can exceed 50 (see [5]). The convergence rates of the two
methods are compared on Figure 17.
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Fig. 17. Comparison between the LATIN monoscale and multiscale methods

We note how efficient MUSM is compared to MOSM. For this comparison, we
can look at the stress distribution at iterations 10 and 100 for MUSM (Figure
19) and at iterations 10 and 300 for MOSM (Figure 18). We see that MUSM
gives pretty good results at iteration 10 whereas MOSM is still far from having
converged at iteration 300.
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iteration 10

100 200 300
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Fig. 18. Von Mises’ stress at iterations 10 and 300 for MOSM
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Fig. 19. Von Mises’ stress at iterations 10 and 100 for MUSM

¤ Cost of the algorithm
With MUSM, the number of operations to solve the local problem Γ is un-
changed. For the linear problem Ad, we need approximately twice as many
operations as with MOSM. The construction of the homogenized operator LE

consists of solving for each substructure E
∑

E′∈E dim(FM
Γ

EE′
) local problems,

where dim(FM
Γ

EE′
) is the number of macro base functions on Interface ΓEE′ . In

this example, this is equivalent to solving 16 local problems per substructure.
Although we need to build the homogenized operator and perform twice as
many operations per iteration of the LATIN method, MUSM remains much
more efficient than MOSM.

7 Conclusion

The present strategy is a multi-scale approach to solve contact problems. This
strategy, which appears to be efficient and robust, leads to a parallel algo-
rithm well-adapted to parallel-architecture computers. The extensibility of
the method has been numerically proved for contact problems.
In certain cases, the use of three scales could be interesting from a modeling
point of view (e.g. for composites) and/or to improve the computational effi-
ciency. This can be achieved by discretizing the macro problem.
Further work is in progress to extend this computational strategy to time-
dependent problems.
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