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Abstract

We propose a new robust technique for solving a class of linear stochastic partial dif-
ferential equations. The solution is approximated by a series of terms, each of which
being the product of a scalar stochastic function by a deterministic function. None
of these functions are fixed a priori but determined by solving a problem which can
be interpreted as an ”extended” eigenvalue problem. This technique generalizes the
classical spectral decomposition, namely the Karhunen-Loève expansion. Ad-hoc it-
erative techniques to build the approximation, inspired by the power method for
classical eigenproblems, then transform the problem into the resolution of a few un-
coupled deterministic problems and stochastic equations. This method drastically
reduces the calculation costs and memory requirements of classical resolution tech-
niques used in the context of Galerkin stochastic finite element methods. Finally,
this technique is particularly suitable to non-linear and evolution problems since it
enables the construction of a relevant reduced basis of deterministic functions which
can be efficiently reused for subsequent resolutions.
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1 Introduction

Stochastic finite element methods have been recently proposed to solve stochas-
tic partial differential equations and offer a significant tool to deal with the
randomness which is inherent to mechanical systems.
Non-intrusive techniques, such as Monte-Carlo simulation [1,2], response sur-
face method, projection [3] or regression [4] methods, have the great advan-
tage that they only require the use of a simple deterministic calculation code.
Stochastic problems, whatever their complexity, can be solved without any
further developments, as long as the associated deterministic code exists. How-
ever, they require a huge number of deterministic calculations, which leads to
high computational costs.
Galerkin-type methods [5–7], which differ from one another in the choice of the
approximation space, systematically lead to a high precision solution which is
explicit in terms of the basic random variables describing the uncertainties.
However, they require the resolution of a huge system of equations. Ad-hoc
Krylov-type iterative techniques have been proposed to make use of the spar-
sity of the system [8–10]. The difficulty to build efficient preconditioners and
memory requirements induced by these techniques still limit their use to low
stochastic dimensions when dealing with large scale applications.
In this paper, we propose a new alternative resolution technique to solve
stochastic problems, inspired by a resolution technique for solving evolution
equations [11,12]. The idea is to approximate the solution u by:

u ≈
M∑

i=1

λiUi,

where the Ui are deterministic functions and where the λi are scalar stochas-
tic functions (i.e. random variables). A decomposition of this type will be
said optimal if the number of terms M is minimum for a given quality of ap-
proximation. The set of deterministic (resp. stochastic) functions can be then
considered as an optimal deterministic (resp. stochastic) reduced basis. Here,
neither the λi nor the Ui are fixed a priori. The key questions are then: how
to define the ”optimal” reduced basis and how to compute it? In fact, the ob-
tained decomposition depends on what we mean by ”optimal”. If we knew the
solution, the best approximation would classically be defined by minimizing
the distance to the solution in a mean square sense. In this case, it simply
leads to the classical spectral decomposition, namely the Karhunen-Loève ex-
pansion truncated at order M (see e.g. [5]). The problem is that the solution,
and a fortiori its correlation, are not known. In [7], the authors propose to
estimate the correlation of the solution by a Neumann expansion technique.
Having the correlation, the deterministic functions are simply obtained by
solving a classical eigenproblem. The associated random variables are finally
computed by solving the initial problem on the reduced basis of deterministic
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functions.
Here, we propose an intuitive and simple way to define the best decompo-
sition, which generalizes the classical spectral decomposition. It leads to the
resolution of a problem which can be interpreted as an ”extended” eigenprob-
lem. Ad-hoc iterative resolution techniques, inspired by classical techniques for
solving eigenproblem, are then proposed. They transform the initial problem
into the resolution of a few uncoupled deterministic problems and stochas-
tic equations. This method then drastically reduces computational costs and
memory requirements of classical resolution techniques.

The outline of the paper is as follows. In section 2, we introduce the abstract
variational formulation of a class of linear stochastic partial differential equa-
tion, the discretization at the deterministic level and the stochastic modeling.
In section 3, we describe the stochastic discretization and the classical Galerkin
stochastic finite elements methods. Then, in section 4, we introduce the con-
cept of generalized spectral decomposition. We will first focus on the case
of symmetric problems before briefly introducing the case of non-symmetric
problems. In section 5, we introduce power-type algorithms allowing to build
the generalized spectral decomposition. Finally, in section 6, three examples
will illustrate the efficiency of the proposed method.

2 Stochastic partial differential equation

2.1 Continuous problem

We first consider a deterministic partial differential equation which has the
following variational formulation: find u ∈ V such that

a(u, v) = b(v) ∀v ∈ V , (1)

where V is an appropriate space of admissible functions, a is a continuous
bilinear form on V and b is a continous linear form on V .
In the stochastic context, a and b forms are random. We denote by (Θ,B, P )
the probability space, where Θ is the set of outcomes, B the σ-algebra of
events and P the probability measure. We denote the bilinear and linear forms
respectively by a(·, ·; θ) and b(·; θ), which underlines their dependence on the
outcome θ. The stochastic problem now consists in finding a stochastic process
u which can be viewed as a random function with value in V . Function space V
can sometimes depend on the outcome, for example when dealing with random
geometry [13]. Here, we consider that V does not depend on the outcome. The
appropriate function space for u can then be chosen as the tensor product
space V ⊗ S, where S is an ad-hoc function space for real-valued random
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functions. The weak formulation of the stochastic partial differential equation
(see e.g. [14,15,7]) can then be written as follows: find u ∈ V ⊗ S such that

A(u, v) = B(v) ∀v ∈ V ⊗ S, (2)

where

A(u, v) =
∫

Θ

a(u(θ), v(θ); θ)dP (θ) := E(a(u, v)), (3)

B(v) =
∫

Θ

b(v(θ); θ)dP (θ) := E(b(v)). (4)

E(·) denotes the mathematical expectation. In this article, we focus on the
case of a linear elliptic stochastic partial differential equation. The bilinear
form A is continuous on (V ⊗ S) × (V ⊗ S) and (V ⊗ S)-coercive, and the
linear form B is continuous on V ⊗ S. We consider that S = L2(Θ, dP ) is an
ad-hoc choice, such that V⊗S = V⊗L2(Θ, dP ) ∼= L2(Θ, dP ;V) (see e.g. [14]).

2.2 Discretization at the deterministic level

The discretization at the deterministic level consists in searching an approxi-
mation of the solution of problem (1) under the form

u =
n∑

i=1

ϕiui(θ), (5)

where ui ∈ S and where {ϕi}n
i=1 is a basis of a finite dimensional space Vn ⊂ V .

We will denote by u = (u1, ..., un)T ∈ Rn ⊗S the random vector of unknowns
representing the approximate solution. It is the solution of the following semi-
discretized problem: find u ∈ Rn ⊗ S such that

E
(
vTAu

)
= E

(
vTb

)
∀v ∈ Rn ⊗ S, (6)

where A : Θ → Rn×n and b : Θ → Rn are such that ∀u, v ∈ Vn, we have
P -almost surely

a(u, v; θ) = vTA(θ)u, (7)

b(v; θ) = vTb(θ). (8)

Random matrix A and random vector b inherit respectively from continuity
and coercivity properties of bilinear form A and continuity property of linear
form B. Then, a solution in Rn ⊗ S of problem (6) exists and is unique.

We will then denote by ‖ · ‖ the classical norm on Rn ⊗ S ∼= L2(Θ, dP ;Rn),
defined by

‖u‖2 = E(uTu). (9)

4



We will denote by ((u,v)) the associated scalar product.

2.3 Stochastic modeling

We consider that the probabilistic content of the problem is represented by a
finite set of random variables ξ = (ξ1, ..., ξm) : Θ −→ Rm. This is naturally
the case when A and B forms in (2) only depend on a finite set of parameters
which are random variables. When these parameters are stochastic fields, an
approximation step can allow their expression as functions of a finite set of
random variables. For example, in the case of second-order random fields, such
an approximation can consist of the truncated Karhunen-Loève expansion [5].
However, in the case of non-Gaussian random fields, the probabilistic charac-
terization of the obtained finite set of random variables is not trivial. Some
recent works try to answer this question by using truncated polynomial chaos
expansions of the stochastic field, the coefficients of the expansions being con-
structed by the resolution of an adapted inverse problem (see e.g. [16,17]).
Those techniques lead to a description of the probabilistic content by a finite
set of independent Gaussian random variables. Let us note that an approxi-
mation is done on the bilinear form A. A particular care must then be taken
on the truncation in order to keep coercivity properties of the approximate
bilinear form [18,15] and then to ensure existence and uniqueness properties
for the approximate model.

After this stochastic modeling step, a random function f can then be rewritten
as a function of the basic random variables f(ξ) and the stochastic problem
(2) can be equivalently formulated on the finite dimensional probability space
(Θ(m),B(m), P (m)), where Θ(m) = Range(ξ) is a subset of Rm, Bm is the asso-
ciated Borel σ-algebra and P (m) is the image probability measure (cf. [19,14]).
In the following, for the sake of simplicity, we will still denote by (Θ,B, P ) the
new finite dimensional probability space (Θ(m),B(m), P (m)).

3 Classical stochastic finite element methods

3.1 Stochastic discretization

Classical stochastic finite element methods introduce a finite dimensional sub-
space SP ⊂ S for the approximation at the stochastic level. Several choices
have been proposed for building approximation basis; spectral approaches
(polynomial chaos [20,5], generalized chaos [21]) classically use orthogonal
polynomial basis and show exponential convergence rates [21] in the case of
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quite smooth solutions. For the case of non-smooth solutions, other approxima-
tion techniques have been introduced (Wiener-Haar chaos [22], finite elements
[6]).
The approximation space is defined as follows:

SP = {v ∈ S ; v(θ) =
∑

α∈IP

Hα(θ)vα, vα ∈ R}, (10)

where {Hα}α∈I is a basis of S and where IP is a subset of I with cardinal P .
If random variables ξi are independent, S is a tensor product space S1 ⊗
. . .⊗ Sm. Each dimension can be independently discretized; denoting by α =
(α1, . . . , αm) ∈ Nm a multi-index, we can write Hα(θ) = h1

α1
(ξ1) . . . hm

αm
(ξm),

where hi
αi
∈ S i. In practice, we will use an orthonormal basis, i.e. E(HαHβ) =

δαβ = δα1β1 ...δαmβm .
In the case of mutually dependent random variables ξi, it is possible to use gen-
eralized “non-polynomial” chaos expansions [23] or more classically, to change
the basic random variables by using an adapted mapping of the ξi into inde-
pendent Gaussian random variables.
Below, we present a classical way of defining and computing an approximation
of the solution of problem (6).

3.2 Galerkin approximation at the stochastic level

Classical Galerkin approximation of problem (6) is obtained by replacing the
function space Vn ⊗ S by the approximation space Vn ⊗ SP . The problem is
then to find u ∈ Rn ⊗ SP such that,

E
(
vTAu

)
= E

(
vTb

)
∀v ∈ Rn ⊗ SP , (11)

which leads to the following system of equations:

∑

β∈IP

E(AHαHβ)uβ = E(Hαb) ∀α ∈ IP . (12)

Denoting the solution by a block vector u, whose block α is defined by (u)α =
uα, system (12) can be written

Au = b, (13)

where A and b are respectively a block matrix and a block vector. Their blocks
are defined by (A)αβ = E(AHαHβ) and (b)α = E(Hαb).
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3.3 Krylov-type iterative techniques

In practice, system (13) can not be solved by a direct resolution technique.
Indeed, memory requirements and computational costs of assembling and solv-
ing this huge system of size P ×n become prohibitive for large-scale engineer-
ing problems. To avoid assembling and to take part of the sparsity of this
system, we classically use a Krylov-type iterative resolution technique [8,9]
such as preconditioned conjugate gradient (PCG) for symmetric problems,
conjugate gradient square (CGS), etc. The resolution then only necessitates
matrix-vector products which can be eventually parallelized [10]. The precon-
ditioner M is classically taken as a block-diagonal matrix, each block being
the inverse of the mean value of matrix A, i.e. (M)αβ = E(A)−1δαβ. The rea-
son for this choice is that the preconditioner is quasi-optimal when A has low
variance terms. As the variance of matrix A increases, the preconditioner M
becomes less and less optimal. Iterative techniques then require a large num-
ber of iterations, which can drastically increase computational costs. Memory
capacities required by these techniques can also be significant. Indeed, when
dealing with such a huge system, reorthogonalization of the generated Krylov
subspace is necessary, which implies the storage of this subspace. For example,
if one considers a problem with n = 105 and P = 5000, storing the solution as
double-precision floating-point numbers requires around 4 Gigabytes. Storing
a Krylov subspace of dimension only 10 then requires 40 Gigabytes!

4 Generalized spectral decomposition

4.1 Principle

Here, we try to find an approximation of the solution of problem (11) under
the form

u(θ) ≈
M∑

i=1

λi(θ)Ui , (14)

where λi ∈ SP are scalar random variables and Ui ∈ Rn are deterministic
vectors. A decomposition of this type will be said optimal if the number of
terms M is minimum for a given quality of approximation. The set of deter-
ministic vectors (resp. stochastic functions) would then be considered as an
optimal deterministic (resp. stochastic) reduced basis. Neither the λi nor the
Ui are fixed a priori. The key questions are then: how to define an ”optimal”
decomposition and how to compute it? The answer is of course related to what
we mean by ”optimal”.
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When we know the stochastic vector u, a natural way to define the ”best”
approximation of the form (14) is to minimize the distance between the ap-
proximation and the solution:

‖u−
M∑

i=1

λiUi‖2 = min
U1,...,UM∈Rn

λ1,...,λM∈SP

‖u−
M∑

i=1

λiUi‖2, (15)

where ‖·‖ denotes the classical L2-norm defined in (9). It is well known that the
obtained approximation is the classical Karhunen-Loève expansion truncated
at order M (cf. [5]). Vectors Ui are the M rightmost eigenvectors of E(uuT ),
which is the correlation matrix of u, and can be characterized by

p(Ui) = min
V ∈Vn−i+1

max
U∈V

p(U), (16)

with p(U) =
UT E(uuT )U

UTU
,

where p is the classical Rayleigh quotient and Vk is the set of all k-dimensional
subspaces of Rn. The associated λi are then obtained by λi = (UT

i Ui)
−1UT

i u.

In this section, we introduce an extension of this principle in order to build a
decomposition of the solution of problem (11) without knowing this solution
a priori. After an introduction of several notations and comments, we fill first
focus on the case where operator A is symmetric before treating the general
case.

Remark 1 In this article, we consider that the approximation space Vn⊗SP is
given. The approximate solution u is then considered as our reference solution.
For details on convergence properties of the approximation and estimation of
errors with respect to the exact solution of (2), see e.g. [14,15,24,25].

4.2 Preliminaries and notations

In the following, we will denote by W = (U1 . . .UM) ∈ Rn×M the matrix
whose columns are the deterministic vectors and by Λ = (λ1 . . . λM)T ∈ RM ⊗
SP the stochastic vector whose components are the stochastic functions. The
approximation of order M (14) will then be rewritten

u(M) =
M∑

i=1

Uiλi = WΛ. (17)

When neither Λ nor W are fixed, approximation (17) is not defined uniquely.
In another words, there are infinitely many choices of stochastic functions
and deterministic vectors leading to the same approximation. Indeed, for any
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invertible matrix P ∈ RM×M , we clearly have

(WP)(P−1Λ) = WΛ. (18)

The couple composed by matrix (WP) and stochastic vector (P−1Λ) then
yield the same approximation as the couple composed by matrix (W) and
stochastic vector (Λ). Therefore, without loss of generality, we can for example
impose orthogonality or orthonormality conditions on the λi or the Ui for the
definition of the best approximation.

Finally, if the Ui (resp. the λi) were not linearly independent, it would be
clearly possible to obtain a new decomposition of type (17) with a lower num-
ber of terms by using linear combinations of the Ui (resp. the λi).

Remark 2 Random functions {λi}M
i=1 are said “linearly independent” if they

span a M-dimensional linear subspace of SP . In the finite dimensional space
SP , the λi can be identified with vectors λi ∈ RP whose components are the
coefficients λi,α of the λi on the basis {Hα}α∈IP

of SP . The property “ran-
dom variables {λi}M

i=1 are linearly independent” is then equivalent to ”vectors
{λi}M

i=1 are linearly independent”, or ”the rank of matrix (λ1 . . . λM) ∈ RP×M

is M”. Of course, it does not mean that random functions are statistically
independent.

We will suppose that (17) is the optimal decomposition which means that the
Ui (resp. the λi) are linearly independent. We will denote by Gn,M = {W =
(U1 . . .UM) ∈ Rn×M ; rank(W) = M} the set of full rank matrices and by
G̃P,M = {Λ = (λ1 . . . λM)T ∈ RM ⊗ SP ; dim(span({λi}M

i=1)) = M} the set of
linearly independent stochastic functions 1 .

4.3 Case of a symmetric operator A

In this section, we consider the particular case where the continuous coercive
bilinear form A is also symmetric. Therefore, random matrix A, which inherits
from properties of A, is also symmetric. The right-hand side b is a stochastic
vector.

1 span({λi}M
i=1) denotes the linear subspace of SP which is spanned by the set of

functions {λi}M
i=1
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4.3.1 Definition of the best approximation

The discretized problem (11) is equivalent to the following minimization prob-
lem:

J (u) = min
v∈Rn⊗SP

J (v), (19)

where J (v) = E(
1

2
vTAv − vTb). (20)

A natural definition for the approximation follows:

Definition 3 The best approximation of order M is defined by

J (
M∑

i=1

λiUi) = min
U1,...,UM∈Rn

λ1,...,λM∈SP

J (
M∑

i=1

λiUi), (21)

which can be equivalently written in a matrix form:

J (WΛ) = min
W∈Rn×M

Λ∈RM⊗SP

J (WΛ). (22)

4.3.2 Properties of the approximation

On one hand, the stationarity conditions of J (WΛ) with respect to Λ writes:
∀Λ∗ ∈ RM ⊗ SP ,

E(Λ∗T (WTAW)Λ) = E(Λ∗TWTb). (23)

This is clearly the way we could have naturally defined the best stochastic
functions associated with known deterministic vectors.
On the other hand, the stationarity conditions with respect to W writes:
∀W∗ ∈ Rn×M ,

E(ΛT (W∗TAW)Λ) = E(ΛTW∗Tb). (24)

This is still the way we could have naturally defined the best deterministic
vectors associated with known stochastic functions. For example, if we impose
the λi to be the basis functions of SP , namely the Hα, equation (24) would
simply yields the classical solution of system (11), i.e. W = (. . .uα . . .). How-
ever, the resulting approximation is the less optimal approximation since it
has the maximum number of terms M = P .

Here, we ask the best approximation for simultaneously verifying equations
(23) and (24). The following proposition gives fundamental properties allow-
ing to better understand the meaning of the approximation and to develop
computational resolution techniques.
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Proposition 4 The best approximation defined by definition 3 is character-
ized by:

• W maximizes on the set of full rank matrices Gn,M the functional R(W)
defined by

R(W) = Trace(R(W)), (25)

with R(W) = E((WTAW)−1(WTbbTW)).

• The stochastic functions are obtained by

Λ = (WTAW)−1WTb. (26)

Moreover, the best approximation verifies

J (WΛ) = −1

2
R(W). (27)

Proof. Equation (23) yields relation (26). Then, we have

J (ΛW) =
1

2
E(ΛTWTAWΛ)− E(ΛTWTb)

= −1

2
E(ΛTWTb)

= −1

2
E(bTW(WTAW)−1WTb)

= −1

2
Trace(E((WTAW)−1(WTbbTW)))

= −1

2
R(W).

The best deterministic vectors are then such that W ∈ Gn,M maximizes
R(W). 2

Remark 5 In equation (26), we use an abuse of notation. Indeed, the quantity
(WTAW)−1WTb does not necessarily belongs to RM ⊗ SP . In fact, Λ ∈
RM ⊗ SP must be interpreted as the solution of problem (23). This abuse of
notation is also made in the definition of functional R(W). In fact, it should be
interpreted as follows: R(W) = Trace(E(ΛTbTW)) where Λ is the solution
of (23).

For all invertible matrix P ∈ RM×M ,

R(WP) = P−1R(W)P, (28)

and
R(WP) = R(W). (29)
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Equation (29) is a property of homogeneity. In another words, functional R
takes the same value for all matrices whose column vectors span a given M -
dimensional linear subspace of Rn. This is related to the non-uniqueness of
the best solution W (cf. section (4.2)). For the decomposition to be defined
uniquely, we could impose orthonormality conditions on W. For example,
denoting by M a symmetric definite positive matrix, the optimization problem
on R could be defined on the space of M-orthogonal matrices G∗n,M = {W ∈
Gn,M ;WTMW = IM}, where IM is the identity matrix on RM . The set G∗n,M

is called a Stiefel manifold (cf. [26]).

4.3.3 Case of deterministic operator A

In order to interpret the approximation defined in proposition 4, let us consider
the particular case where operator A is deterministic. In this case, we have

R(W) = (WTAW)−1(WT E(bbT )W). (30)

The stationarity condition of R(W) = Trace(R(W)) writes

AWR(W) = E(bbT )W, (31)

which is a classical generalized eigenproblem written in a matrix form. R(W)
(resp. R(W)) is the associated matrix (resp. scalar) Rayleigh quotient. There-
fore, the best W characterized in proposition 4 is such that its column vectors
span the rightmost M -dimensional eigenspace of the generalized eigenproblem
(31). A particular choice for the columns of W = (U1 . . .UM) consists of the
M rightmost eigenvectors. The Ui are A-orthogonal and the associated λi are
characterized by

λi = (UT
i AUi)

−1UT
i b. (32)

The couples (Ui, λi) also verify

J (
M∑

i=1

λiUi) = −1

2

M∑

i=1

R(Ui). (33)

E(bbT ) is the correlation matrix of random vector b. The spectral decomposi-
tion can then simply be interpreted as a truncated Karhunen-Loève expansion
of b in the metric induced by A. Here, we emphasize that the approximation
is not unique. Infinitely many choices of W yield the same approximation as
the particular choice consisting of eigenvectors.

Remark 6 If we choose for the Ui the eigenvectors of the generalized eigen-
problem (31), which are A-orthogonal, the associated stochastic functions are
orthogonal.We have then simultaneous orthogonality properties for both the
stochastic functions and the deterministic vectors. In general, this property
can not be verified in the case of a stochastic operator A.
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4.3.4 Interpretation and comments

Regarding the results of the previous section, functional R(W) (resp. R(W)),
defined in proposition 4, will be called a ”generalized” matrix (resp. scalar)
Rayleigh quotient. In particular, R has the homogeneity property (29) of a
classical Rayleigh quotient. The best approximation obtained will also be
called a generalized spectral decomposition, although there is no associated
classical eigenproblem.
One could think that since the obtained decomposition is not the Karhunen-
Loève expansion, it is not the optimal decomposition. In fact, the obtained
decomposition is optimal with respect to the optimality criterium introduced
in definition 3. Properties of random matrix A, inherited from the continuous
coercive bilinear form A, allow to define the following norm on Rn ⊗ SP :

‖v‖2
A = E

(
vTAv

)
. (34)

We can then easily show that the decomposition characterized by proposition
4 verifies

‖u−WΛ‖2
A = ‖u‖2

A − ‖WΛ‖2
A = ‖u‖2

A −R(W). (35)

The obtained decomposition is then optimal with respect to the A-norm (34)
while the direct Karhunen-Loève expansion of the solution is optimal with
respect to the L2-norm (9).

As a last comment, let us mention that it is also possible to characterize
the best approximation by defining an optimization problem on the stochas-
tic functions. We can show that the following proposition 7 is equivalent to
proposition 4. For this new proposition, we use the following notations: we
denote by E(Λ ⊗ A ⊗ Λ) ∈ RM×n×n×M the four indices matrix such that
(E(Λ⊗A⊗Λ))ijkl = E(λiAjkλl). We denote by E(b⊗Λ) ∈ Rn×M the matrix
such that (E(b⊗Λ))ij = E(biλj). We then define the operation ”:” as follows:
for W,W∗ ∈ Rn×M ,

W∗T : E(Λ⊗A⊗Λ) : W =
∑

i,j,k,l

W ∗
jiE(λiAjkλl)Wkl

= E(ΛTW∗TAWΛ).

Proposition 7 The best approximation defined by definition 3 is character-
ized by:

• Λ maximizes on G̃P,M the functional R̃(Λ) defined by

R̃(Λ) = E(Λ⊗ b) : E(Λ⊗A⊗Λ)−1 : E(b⊗Λ). (36)

• The deterministic vectors are obtained by

WT = E(Λ⊗A⊗Λ)−1 : E(b⊗Λ). (37)
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Moreover, the best approximation verifies

J (WΛ) = −1

2
R̃(Λ). (38)

4.3.5 Another definition of the approximation

The best approximation can also be naturally defined by the following opti-
mization problems, which define the couples (λi,Ui) one after the other:

Definition 8 The best approximation of order M can be defined recursively:
for i = 1, ..., M

J (λiUi) = min
U∈Rn,λ∈SP

J (λU +
i−1∑

j=1

λjUj) (39)

Following the proof of proposition 4, we obtain the following characterization
of the new obtained approximation.

Proposition 9 The approximation defined in definition 8 can be charaterized
by 2

• Ui maximizes the generalized Rayleigh quotient

Ri(U) = E(UTbi(U
TAU)−1bT

i U)

with bi = b−
i−1∑

j=1

AλjUj

• λi = (UT
i AUi)

−1UT
i bi.

Moreover, the best approximation verifies

J (
M∑

i=1

λiUi) = −1

2

M∑

i=1

Ri(Ui). (40)

In the case of a deterministic operator, we can easily show that definitions 8
and 3 yield the same approximation. However, these definitions do not match
in general in the case of a stochastic operator. Definition 3 then clearly yields
a better approximation as definition 8. The latter definition can however be
interesting from a computational point of view, as we will see in section 5.

2 We use the same abuse of notation as in proposition 4, explained in Remark 5

14



4.4 Case of a non-symmetric operator

For the case of non-symmetric operator, there is no direct minimization prob-
lem associated with the variational formulation (6). A possible and natural
way to define an approximation WΛ is to write the two orthogonality criteria
(23) and (24) which can be obtained by introducing in (6) test functions of the
form v = WΛ∗+W∗Λ. In the case of a non-symmetric deterministic operator
A, we can easily show that it leads to a classical non-symmetric generalized
eigenproblem. Therefore, the approximation still has a full meaning but no
characterization as the one in proposition 4 can be derived.

Another idea consists in reformulating the problem as a minimization problem
in a least-square sense. Let us denote by M ∈ Rn×n a symmetric positive
definite matrix which defines the following scalar product on Rn ⊗ SP :

((U,V))M = E(UTMV). (41)

We will denote by ‖ · ‖M the associated norm. For example, if the expected
value of the symmetric part of A is positive definite, we can take M = (1

2
E(A+

AT ))−1. We can then formulate the problem as a minimization problem of the
norm of the residual:

E(u) = min
v∈Rn⊗SP

E(v) (42)

where E(v) = ‖b−Av‖2
M.

The previous theoretical results associated with symmetric operators can then
be still applied by replacing operator A by ATMA and right hand side b by
ATMb. Of course, the approximate solution of this problem is not in general
the same as for problem (11) when A is random.

Although this symmetrization is well adapted to the discretized formulation
(finite dimensional framework), it is not easy to transpose into the continuous
framework. Indeed, the introduction of adjoint operator is non trivial, essen-
tially due to the treatment of boundary conditions. Moreover, ad-hoc function
spaces need for more regularity after symmetrization and the building of ap-
proximation spaces is then more difficult.

However, we will see that this symmetrization does not seem necessary since al-
gorithms which are given in the following section also gives satisfactory results
when directly applied to non-symmetric problems. Without the symmetry, we
do not have an optimality criterium as in proposition 4. It is then more difficult
to judge the quality of the approximation. Of course, it is possible to evaluate
the norm of the residual of equation (11) but this increases computational
costs.
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5 Power-type algorithms for the construction of the spectral de-
composition

5.1 Description of the algorithm

Here, we propose a first algorithm to build the spectral decomposition defined
in definition 8. The couples (λi,Ui) are built one after the other. Each couple
must solve a coupled minimization problem of the functional J . A natural and
simple idea to build the approximation is to minimize J alternatively on the
stochastic function and on the deterministic vector. Algorithm 1, named (P-
GSD) for Power-type Generalized Spectral Decomposition, follows this idea.
Some trivial computational improvements are straightforward (redundancy of
several operations).

Algorithm 1 Power-type Generalized Spectral Decomposition (P-GSD)

1: u := 0 , b̃ := b
2: for i = 1 to M do
3: λi := λ0 , R

(0)
i := 0

4: for k = 1 to kmax do
5: Ui := E(Aλ2

i )
−1E(b̃λi)

6: Ui := Ui/‖Ui‖M
7: λi = (UT

i AUi)
−1UT

i b̃

8: R
(k)
i := E(UT

i b̃λi)

9: γ :=
∣∣∣R(k)

i −R
(k−1)
i

∣∣∣ /R(k)
i

10: if γ < γstop then
11: break
12: end if
13: end for
14: u := u + λiUi

15: b̃ := b̃−AλiUi

16: Compute error indicator ε(i)

17: if ε(i) < εstop then
18: break
19: end if
20: end for

Let us explain this algorithm. Step 1 is the initialization step of the solution
and the residual. The loop beginning at step 2 corresponds to the recursive
building of couples (λi,Ui). At step 3, we initialize the stochastic function
λi = λ0 ∈ SP . We will simply always take λ0,α = 1, ∀α ∈ IP . We will see
that this very simple initialization gives satisfactory results in practice. The
loop beginning at step 4 is the alternate minimization procedure. For a fixed
stochastic function λi, the stationarity condition with respect to Ui writes
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E(Aλ2
i )Ui = E(b̃λi). It has to be noticed that it is a simple deterministic

problem whose resolution is relatively cheap. This system is solved at step
5 and Ui is normalized at step 6. In the symmetric case, we simply take
M = E(A) for the definition of the norm. Then, for a fixed Ui, the stationarity
condition with respect to λi writes

E(λ∗UT
i AUiλi) = E(λ∗UT

i b̃) ∀λ∗ ∈ SP . (43)

This system is solved at step 7. From step 8 to step 12, we introduce a stop-
ping criterium based on the convergence of the quantity R

(k)
i . This quantity

corresponds to the generalized Rayleigh quotient in the case where operator A
is symmetric (see definition 8). At steps 14 and 15, we reactualize the solution
and the residual. From 16 to 19, we introduce a stopping criterium. The error
indicator can be the residual error

ε(i)
res =

‖b−A
∑i

j=1 λjUj‖
‖b‖ . (44)

Regarding the results of proposition 9, we can also use the following error
indicator, based on the generalized Rayleigh quotient evaluation:

ε(i)
ray =

Ri(Ui)∑i
j=1 Rj(Uj)

. (45)

This last indicator has the advantage to be cheaper to compute. Indicators
(44) and (45) will be compared in section 6.

Remark 10 Computing the matrix and right-hand side of the deterministic
problem (step 5) requires the computation of quantities such as E(Aλiλj) or
E(bλi). This kind of computations are classical within the context of stochastic
finite element methods. Let us consider that the random vector b is decom-
posed as follows: b =

∑Mb
k=1 bk(θ)bk, with bk(θ) =

∑
α∈IP

bk,αHα(θ) ∈ SP .
Then, due to orthonormality property of the basis functions Hα, E(bλi) =∑Mb

k=1 bk
∑

α∈IP
bk,αλi,α. Let us now consider that the random matrix writes

as follows: A =
∑MA

k=1 ak(θ)Ak, where the ak are random variables. Then
E(Aλiλj) =

∑MA
k=1 AkE(akλiλj). In practice, one pre-computes and stores the

matrices ∆(k) whose components are (∆(k))αβ = E(akHαHβ) and such that
E(akλiλj) =

∑
α,β∈IP

(∆(k))αβλi,αλj,β. If the ak are decomposed on the stochas-

tic basis, i.e. ak(θ) =
∑

γ ak,γHγ(θ), then (∆(k))αβ =
∑

γ ak,γE(HγHαHβ),
where E(HγHαHβ) only depends on the chosen basis functions {Hα}.

5.2 Interpretation and comments

In the case of deterministic operator, iteration k of the alternate minimiza-
tion stage consists in reactualizing the deterministic vector in the following
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way: Ui ← A−1E(b̃b̃T )Ui/η, where η is a normalizing scalar. The proposed
algorithm is then equivalent to a classical power method to solve the asso-
ciated generalized eigenproblem AUi = ηE(b̃b̃T )Ui. It classically converges
toward the rightmost eigenvector. We will see in examples that this algorithm
is also efficient in the case of stochastic operator. In practice, the alternate
minimization procedure (steps 4 to 13) converges very fast. We will then clas-
sically limit the number of iterations kmax to 3 or 4. In the case of deterministic
non-symmetric operator, we know that the proposed power algorithm is not
always convergent. If the maximum amplitude eigenvalue is complex, the gen-
eralized eigenproblem admits 2 complex conjugate eigenvalues. Vector Ui does
not converge in this case. However, it tends to stay in the subspace generated
by the real and complex parts of the associated complex eigenvectors and the
obtained couple (λi,Ui) still happens to be pertinent. We will see in examples
that this algorithm also gives satisfactory results in the general case of random
eventually non-symmetric operators.

5.3 Power-type algorithm with updating

Let us suppose we have built an approximation
∑M

i=1 λiUi = WΛ. We have
seen that optimality depends on the way we define the ”best” decomposi-
tion. Indeed, definitions 3 and 8 match only in the case where operator A is
deterministic. Once we have obtained such a decomposition, it can then be
interesting to update the decomposition. A natural way to do this is to fix
the deterministic vectors Ui and to compute new stochastic functions λi ∈ SP

by using a Galerkin orthogonality criterium (23). The updating can then be
formulated: find Λ ∈ RM ⊗ SP such that ∀Λ∗ ∈ RM ⊗ SP ,

E(Λ∗T (WTAW)Λ) = E(Λ∗TWTb). (46)

To obtain the solution Λ(θ) =
∑

α∈IP
ΛαHα(θ), we then have to solve a system

of equations of size M × P . It is the same system as (12) where we replace A
by the reduced random matrix WTAW and b by the reduced random vector
WTb. With an abuse of notation, we will denote by Λ = (WTAW)−1WTb
the solution of this updating. Algorithm 2, named (PU-GSD), is a modified
version of Algorithm 1 where we introduce the updating of stochastic functions
after the construction of each couple (λi,Ui). With this algorithm, we try to
compute the decomposition defined in definition 3.

Algorithm 2 Power-type Generalized Spectral Decomposition with Updating
(PU-GSD)

1: u := 0 , b̃ := b
2: for i = 1 to M do
3: do step 3 to 13 of algorithm 1 to compute Ui
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4: W := (U1 ... Ui)
5: Λ := (WTAW)−1WTb
6: u := WΛ
7: b̃ = b−AWΛ
8: Compute error indicator ε(i)

9: if ε(i) < εstop then
10: break
11: end if
12: end for

Regarding the results of proposition 4, we can here use an error criterium
based on the evaluation of the generalized Rayleigh quotient

ε(i)
ray =

∣∣∣∣∣
R(W(i))−R(W(i−1))

R(W(i))

∣∣∣∣∣ , (47)

where W(j) = (U1 . . .Uj). We recall that at step 8, the generalized Rayleigh
quotient can be simply computed as follows R(W) = Trace(E(ΛbTW)).

6 Examples

The following three examples illustrate the efficiency of the proposed method
on model problems. In example 1, the method is applied to a classical sta-
tionary heat diffusion problem with random source terms and a conductivity
parameter which is modeled by a random field. In example 2, we consider
the same problem but with a conductivity parameter modeled by a random
variable. It is a degenerate case of the previous example (simple form of the
random matrix), for which the solution is exactly represented with a decom-
position of order 2. It illustrates that the proposed algorithms allow to au-
tomatically construct this exact decomposition. Finally, example 3 illustrates
that the proposed algorithms are still efficient in the non-symmetric case.

6.1 Example 1

6.1.1 Description of the problem

[Fig. 1 about here.]

As a first model problem, we consider a classical stationary heat diffusion
problem defined on a L-shaped spatial domain Ω (see figure 1). We denote by
u(x, θ) the temperature field. The normal flux g is imposed on a part ∂2Ω of the
boundary and the temperature is imposed to be zero on the complementary
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part ∂1Ω. A volumic heat source f is also imposed on Ω. The space of admis-
sible functions used in formulation (1) is V = {v(x) ∈ H1(Ω) ; v = 0 on ∂1Ω}.
In variational formulation (2), a and b forms are respectively

a(u, v; θ) =
∫

Ω
κ∇u · ∇v dx,

b(v; θ) =
∫

Ω
fv dx +

∫

∂2Ω
gv ds,

where κ(x, θ) is the conductivity parameter. At the space level, we use a
classical finite element approximation. The mesh is composed by 1200 four-
nodes elements and 1281 nodes. Random matrix A and random vector b,
respectively defined in (7) and (8), have the following components:

(A)ij =
∫

Ω
κ∇ϕi · ∇ϕj dx

(b)j =
∫

Ω
fϕj dx +

∫

∂2Ω
gϕj ds,

where the ϕi are the basis functions of the approximation space Vn ⊂ V .

6.1.2 Stochastic modeling

The conductivity parameter is modeled by a random field. The following defi-
nition is taken from [17], where it was used to illustrate a method for identifica-
tion of non-Gaussian random fields. Here, this definition allows us to impose a
given marginal distribution which simply ensures the ellipticity of the bilinear
form. We take

κ(x, θ) = F−1
Γδ
◦ Φ(γ(x, θ))),

where γ is a normalized Gaussian second-order random field such that E(γ(x, ·)) =
0 and E(γ(x, ·)2) = 1. Function y → Φ(y) is the cumulative distribution func-
tion of a normalized Gaussian random variable and function y → FΓδ

(y) is
the cumulative distribution function of a Gamma random variable:

FΓδ
(y) =

∫ y

0

δ

Γ(δ)
(δt)δ−1e−δt dt,

with Γ(δ) =
∫ ∞

0
tδ−1e−t dt.

With this definition, κ has a Gamma marginal distribution with unitary mean
and standard deviation σ = 1/

√
δ. We take δ = 16 so that σ = 0.25. The

Gaussian random field γ(x, θ) is here defined by

γ(x, θ) =
3∑

k=1

√
ηkξk(θ)Ṽk(x), (48)

with Ṽk(x) =
Vk(x)√∑3

j=1 ηjVj(x)2
,
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where the ξk ∈ N (0, 1) 3 are independent normalized Gaussian random vari-
ables and where (ηk, Vk(x)) are the eigenpairs of the following homogeneous
Fredholm equation of the second kind:

∫

Ω
exp(−‖x− y‖2

L2
)Vk(y)dy = ηkVk(x). (49)

Then, the random field γ corresponds to a rescaled truncated Karhunen-Loève
expansion of a Gaussian random field with exponential square correlation func-
tion. We take L = 0.5. In practice, problem (49) can be approximated by using
finite elements. Here, we use the same approximation as for the solution u. We
then have to solve a classical algebraic eigenvalue problem (cf. [5]). We use a
classical technique to find its 3 rightmost eigenpairs.

Volumic heat source f and normal flux g are taken independent of the variable
x: f(x, θ) = ξ4(θ) ∈ N (0.5, 0.2) and g(x, θ) = ξ5(θ) ∈ N (0, 0.2), where ξ4 and
ξ5 are independent Gaussian random variables, also independent of {ξi}3

i=1.
The source of randomness is then represented by m = 5 independent Gaussian
random variables. We use a polynomial chaos approximation of degree p = 6
at the stochastic level. The dimension of approximation space SP is then
P = (m+p)!

m!p!
= 462.

The random field κ is projected on SP : κ(x, θ) =
∑

α∈IP
κα(x)Hα(θ) where

space functions κα = E(κHα) are computed using Gauss-Hermite quadrature
for the integration at the stochastic level. Matrix A can then be written A =∑

α∈IP
AαHα with (Aα)ij =

∫
Ω κα∇ϕi · ∇ϕj dx.

6.1.3 Reference solution and error criteria

We denote by u(M) the approximation of order M (14) obtained by the gener-
alized spectral decomposition algorithms, namely the power-type algorithms
(P-GSD) or (PU-GSD). We denote by u the reference solution, which is the
solution of (11). To compute u, system (12) is solved with a preconditioned
conjugate gradient (PCG) (see section 3.2), with a stopping tolerance of 10−8.
We introduce the following error indicators to evaluate the quality of the ap-
proximation:

ε
(M)
sol =

‖u− u(M)‖
‖u‖ , ε

(M)
sol,A =

‖u− u(M)‖A
‖u‖A . (50)

where ‖·‖ is the classical L2-norm (9) and ‖·‖A is the A-norm defined in (34).
The generalized spectral decomposition obtained by power-type algorithms
will be also compared with the direct Karhunen-Loève spectral decomposition
of the reference solution u, denoted by (Direct-SD).

3 N (µ, σ) denotes the set of Gaussian random variables with mean µ and standard
deviation σ

21



Remark 11 Of course, approximations are first introduced by the spatial and
stochastic discretizations. The error introduced by the stochastic discretization
can be defined by the difference between our reference solution u and the solu-
tion of the semi-discretized problem (6). For this example, we estimated this
error by computing the discretized solution associated with a polynomial chaos
of degree p = 8. The estimation of the relative error in L2-norm is 1.04 10−2.
In this article, we don’t focus on those errors and consider the reference so-
lution as the solution of the fully discretized problem (11). However, this re-
mark indicates that a very small tolerance for the resolution of the discretized
problem (11) is generally useless for engineering applications, for which the
discretization error is often greater than 1%.

6.1.4 Convergence of power-type algorithms

(P-GSD) and (PU-GSD) have two parameters which are associated with the
iterative search of each couple of functions (steps 3 to 13 of Algorithm 1): γstop,
which defines the stopping criterium, and kmax, which defines the maximum
number of iterations. Figures 2(a) and 2(b) show the error ε

(M)
sol with respect

to the order M of the decomposition for different values of these parameters.
On one hand, figure 2(a) shows that a relatively coarse convergence criterium
(γstop ≈ 0.1) do not affect the quality of the decomposition. On another hand,
figure 2(b) shows that for a fixed stopping criterium γstop = 0.05, a few it-
erations are sufficient, which is in fact related to the fast convergence of this
iterative procedure. For the following tests, we will choose γstop = 0.05 and
kmax = 3.

[Fig. 2 about here.]

Figures 3(a) and 3(b) compare the convergence of (P-GSD), (PU-GSD) and
(Direct-SD) with respect to the order of expansion M . We can observe that
(PU-GSD) has almost the same convergence rate as (Direct-SD). This fig-
ure also shows the importance of the updating of stochastic functions. In-
deed, without knowing the solution a priori, algorithm (PU-GSD) leads to
a spectral decomposition of the solution which has quite the same quality
as a direct Karhunen-Loève decomposition of the reference solution. We also
verify, as mentioned in section 4.3.4, that (Direct-SD), when compared with
(PU-GSD), gives a better approximation with respect to the L2-norm but a
coarser approximation with respect to the A-norm. We can also notice than
with a decomposition of order M = 4, the error is less than 1%.

[Fig. 3 about here.]

Figures 4(a),4(b) and 4(c) show the marginal probability density functions
(PDFs) of the approximation obtained by (PU-GSD) for different orders of
expansion M . The three sub-figures correspond respectively to points P1, P2
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and P3 (see figure 1). We can observe that with an approximation of order
only M = 4, the approximate PDFs fit very well the reference solution.

[Fig. 4 about here.]

Figures 5(a) and 5(b) compare error indicators εray and εres which can be
used to evaluate the convergence of algorithms (P-GSD) and (PU-GSD). εres

is the norm of the residual, defined in (44), and εray is the indicator based
on the Rayleigh quotient, defined in (45) for (P-GSD) and in (47) for (PU-
GSD). These error indicators are compared to error indicators εsol and εsol,A,
defined in (50). We can see that all these indicators are equivalent. The great
advantage of estimator εray is that it leads to very low computational costs.

[Fig. 5 about here.]

6.1.5 Analysis of the generalized spectral decomposition

Figures 6(a) and 6(b) show the first 8 deterministic vectors obtained respec-
tively by (P-GSD) and (PU-GSD). We observe that these algorithms yield to
the construction of quite relevent deterministic vectors. Vectors 1 and 2 take
respectively into account the volumic load f and the surface load g. Subse-
quent vectors seem to take into account the fluctuations of the conductivity
parameter. The superiority of (PU-GSD) appears clearly on this figure. In-
deed, vectors 5 and 7 obtained by (P-GSD) are very similar to vectors 1 and
2. In fact, they can be interpreted as correction terms for the first two modes.
Algorithm (PU-GSD) seems to capture these modes with the first two vectors
and does not require any further correction.

[Fig. 6 about here.]

Figure 7 shows the 8 first vectors computed by a direct Karhunen-Loève de-
composition of the reference solution (Direct-SD). If we compare this figure
with figure 6 (b), we can see that (PU-GSD) and (Direct-SD) lead to very simi-
lar decompositions. In fact, we can say that the proposed algorithm (PU-GSD)
allows to obtain a spectral decomposition of the solution, which is very similar
to the Karhunen-Loève expansion, without knowing the solution a priori.

[Fig. 7 about here.]

6.1.6 Calculation time and memory requirements

We now look at the computation time of the proposed algorithms. Algorithm
(PCG) took 156 s to compute the reference solution. Figure 8 shows the er-
ror with respect to the calculation time for (P-GSD), (PU-GSD) and (PCG)
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algorithms. The convergence curves for (P-GSD) and (PU-GSD) correspond
to a generalized spectral decomposition up to order M = 20. We observe
that power-type algorithms lead to the same computational cost. (PU-GSD)
converges faster with respect to the order M but the cost of one iteration is
greater than for (P-GSD), due to the updating of stochastic functions. On this
example, we can then conclude that (PU-GSD) is more efficient since it leads
to a decomposition with a lower order M for the same accuracy and calcu-
lation time. We see that power-type algorithms are significatively superior to
the classical (PCG) algorithm. To compute a decomposition of order M = 4,
which leads to a relatively good accuracy, it only takes 3.5 s with (PU-GSD).
The same accuracy is reached in 40 s with (PCG). The calculation time is
then divided by 11 on this simple example.

[Fig. 8 about here.]

To store the spectral decomposition of order M , we need to store M × (P +
n) floating-point numbers. For (PCG) we need to store n × P floating-point
numbers. For an approximation of order M = 4, memory requirements are
divided by around 85. In fact, the gain is much greater since (PCG) algorithm
generally requires reorthogonalization of the search directions. In fact, the
storage of a Krylov subspace of dimension η requires to store η × n × P
floating-point numbers.

6.2 Example 2

We consider the same problem as in example 1. The linear form b(v; θ) is un-
changed. The sources f and g are still defined by f(x, θ) = ξ4(θ) ∈ N (0.5, 0.2)
and g(x, θ) = ξ5(θ) ∈ N (0, 0.2). But now, we suppose that the conductivity is
a simple uniform random variable κ(x, θ) = ξ1 ∈ U(0.7, 1.3) 4 . Random vari-
ables {ξ1, ξ4, ξ5} are considered independent. We use a generalized polynomial
chaos approximation of degree p = 8 at the stochastic level [21]. We then use
Legendre polynomials in the first stochastic dimension and Hermite polyno-
mials in the two other stochastic dimensions. The dimension of approximation
space SP is then P = (m+p)!

m!p!
= 165, where m = 3.

6.2.1 Convergence of power-type algorithms

Figure 9 shows the convergence with respect to the order of decomposition
M for (P-GSD), (PU-GSD) and the Direct Karhunen-Loève decomposition of
the solution (Direct-SD) . We observe that the three algorithms lead to the
exact solution with a decomposition of order 2. That could have been expected

4 U(a, b) is the set of uniform random variables with value in ]a, b[.
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since the random matrix can be written A = ξ1A1 where A1 is a deterministic
matrix and the right hand side can be written b = ξ4b4 + ξ5b5, where b4 and
b5 are deterministic vectors.

[Fig. 9 about here.]

Figures 10(a) and 10(b) show the influence of parameters γstop and kmax of
power-type algorithms. The iterative search of the couples (λi,Ui) converges
very fast. We also observe that with a relatively coarse stagnation criterium
(γstop = 0.05) and only two iterations (kmax = 2), we still obtain the exact
numerical solution at order M = 2. Parameters γstop and kmax have a small
influence on the obtained couples (U1, λ1) and (U2, λ2) but have no influence
on the obtained decomposition of order M = 2. In fact, the iterative procedure
converges in only 1 iteration for the construction of couple (U2, λ2).

[Fig. 10 about here.]

Here, both power-type algorithms required a calculation time of 0.7 s while
(PCG) required 4 s. The gain is still significant. However, comparing calcula-
tion time on this simple example is not so relevant.

6.2.2 Analysis of the generalized spectral decomposition

Figures 11(a), 11(b) and 11(c) show the two deterministic vectors which are
obtained respectively by (P-GSD), (PU-GSD) and (Direct-SD). The obtained
approximation of order 2 u(2) is the same for the three algorithms. However,
(P-GSD) and (PU-GSD) lead to deterministic vectors which are different from
the ones obtained by (Direct-SD). It simply illustrates the fact that the de-
composition is not unique. If we normalize all the deterministic vectors with
the same norm and compare the vectors obtained by power-type algorithms
and the ones obtained by (Direct-SD), we find a relative error of 2% for U1

and 5% for U2. The difference is due to the fact that the first ones are the op-
timal vectors with respect to the A-norm and the second ones are the optimal
vectors with respect to the L2-norm.

[Fig. 11 about here.]

Stochastic functions λ1 and λ2 obtained by (P-GSD) and (PU-GSD) are also
identical. Figures 12 and 13 show respectively the probability density functions
of these two stochastic functions and their joint probability density function.

[Fig. 12 about here.]

[Fig. 13 about here.]
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6.3 Example 3

In this last example, we briefly illustrate the fact that power-type algorithms
also lead to satisfactory performances in the non-symmetric case. We here
consider the same domain and boundary conditions as in example 1. The
linear form b(v; θ) is unchanged but we take the following non symmetric
bilinear form:

a(u, v; θ) =
∫

Ω
κ∇u · ∇v dx−

∫

Ω
χ u · ∇v dx,

where χ = (χ1, χ2)
T . We consider that material parameters are uniform ran-

dom variables: κ(x, θ) = ξ1(θ) ∈ U(0.7, 1.3), χ1(x, θ) = ξ2(θ) ∈ U(5.5, 6.5),
χ2(x, θ) = ξ3(θ) ∈ U(5.5, 6.5). The five random variables {ξi}5

i=1 are indepen-
dent. We use a generalized polynomial chaos approximation of degree p = 5.
We then use Legendre polynomials in the first three stochastic dimensions and
Hermite polynomials in the last two stochastic dimensions. We can notice that
A still defines a norm ‖ ‖A since its symmetric part is almost surely positive
definite. The reference solution, which solves system (12), is computed with a
preconditionned conjugate gradient square algorithm (PCGS) with a stopping
tolerance of 10−8.

6.3.1 Convergence of power-type algorithms

We take γstop = 0.05 and kmax = 4 for the parameters of power-type al-
gorithms. Figure 14(a) and 14(b) show the convergence of the spectral de-
composition obtained by (P-GSD), (PU-GSD) and (Direct-SD). The three
algorithms have quite the same convergence rate, which confirms the fact that
power-type algorithms are also adapted to the non-symmetric case. The su-
periority of (PU-GSD) over (P-GSD) is not significant in this case.

[Fig. 14 about here.]

The resolution with (PCGS) took here 16 s to reach a relative error of 10−8

and 2.8 s to reach a relative error of 10−2. The construction of a decomposition
of order M = 5, which leads to a relative error lower than 10−2, took 1.9 s with
(P-GSD) and 2.3 s with (PU-GSD). For the same precision, the gain obtained
in terms of computational time is not significant on this small-scale example.
However, the gain in terms of memory requirements is still significant.

6.3.2 Analysis of the generalized spectral decomposition

Figures 15(a), 15(b) and 16 show the deterministic vectors obtained respec-
tively by (P-GSD), (PU-GSD) and the direct Karhunen-Loève decomposition
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of the solution (Direct-SD). We can observe that (P-GSD) and (PU-GSD)
lead to quite the same vectors but than these vectors are significatively dif-
ferent from those obtained by (Direct-SD) (except for the first two vectors).
However, we must recall than the obtained approximations u(M) have quite
the same accuracy although the deterministic vectors and stochastic functions
are different.

[Fig. 15 about here.]

[Fig. 16 about here.]

7 Conclusion

We proposed a new method for solving stochastic partial differential equa-
tions based on a generalized spectral decomposition technique. The decompo-
sition is the solution of a problem which can be interpreted as an ”extended”
generalized eigenproblem. This method allows to obtain a decomposition of
the solution which is very similar to the one obtained by a classical trun-
cated Karhunen-Loève expansion of the solution. Power-type algorithms have
been proposed to solve this ”extended” eigenproblem. The proposed resolution
technique leads to significant computational savings compared to Krylov-type
techniques which are classically used in the context of Galerkin Stochastic
Finite Element methods. It also leads to a drastic reduction of memory re-
quirements. It could then allows to deal with large-scale engineering problems
and large stochastic dimensionality. Future works will be devoted to the de-
velopment of more efficient algorithms to solve the ”extended” eigenproblem,
particularly for non-symmetric problems. We will also focus on the resolution
of evolution equations and non-linear problems. This new method should be
very efficient in these last cases since it enables the construction of a relevant
reduced basis of deterministic functions which can be efficiently reused for
subsequent resolutions.
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[6] M. Deb, I. Babuška, J. T. Oden, Solution of stochastic partial differential
equations using galerkin finite element techniques, Computer Methods in
Applied Mechanics and Engineering 190 (2001) 6359–6372.

[7] H. G. Matthies, A. Keese, Galerkin methods for linear and nonlinear
elliptic stochastic partial differential equations, Computer Methods in Applied
Mechanics and Engineering 194 (12-16) (2005) 1295–1331.

[8] R. G. Ghanem, R. M. Kruger, Numerical solution of spectral stochastic finite
element systems, Computer Methods in Applied Mechanics and Engineering
129 (1996) 289–303.

[9] M. F. Pellissetti, R. G. Ghanem, Iterative solution of systems of linear equations
arising in the context of stochastic finite elements, Advances in Engineering
Software 31 (2000) 607–616.

[10] A. Keese, H. G. Mathhies, Hierarchical parallelisation for the solution of
stochastic finite element equations, Computer Methods in Applied Mechanics
and Engineering 83 (2005) 1033–1047.
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Fig. 7. Vectors {Ui}8
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Fig. 11. Vectors U1 and U2 obtained by (P-GSD) (a), (PU-GSD) (b) and (Direc-
t-SD) (c)
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Fig. 15. Vectors {Ui}8
i=1 obtained by (P-GSD) (a) and (PU-GSD) (b)
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Fig. 16. Vectors {Ui}8
i=1 obtained by (Direct-SD)

46


