Asymptotic behavior of bifurcating autoregressive processes

Abstract : Bifurcating autoregressive (BAR) processes are an adaptation of autoregressive processes to binary tree structured data. They were first introduced by Cowan and Staudte for cell lineage data. We have carried out a sharp analysis of the asymptotic properties of the least squares (LS) estimators of the unknown parameters of first-order BAR processes and improved the previous results of Guyon via a martingale approach, based on the generation-wise filtration. Namely, we have established the almost sure convergence of our LS estimators with a sharp rate of convergence, together with the quadratic strong law and the central limit theorem.
Type de document :
Communication dans un congrès
Mathematical models for cell division, Mar 2009, Paris, France. 2009
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00366060
Contributeur : Benoîte De Saporta <>
Soumis le : jeudi 5 mars 2009 - 16:00:56
Dernière modification le : mardi 6 octobre 2015 - 08:38:45

Identifiants

  • HAL Id : hal-00366060, version 1

Collections

Citation

Benoîte De Saporta, Bernard Bercu, Anne Gégout-Petit. Asymptotic behavior of bifurcating autoregressive processes. Mathematical models for cell division, Mar 2009, Paris, France. 2009. <hal-00366060>

Partager

Métriques

Consultations de la notice

131