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Abstract. In this paper we present a simple modi�cation of the Fast
Marching algorithm to speed up the computation using a heuristic. Th is
modi�cation leads to an algorithm that is similar in spirit to the A � al-
gorithm used in arti�cial intelligence. Using a heuristic allows t o extract
geodesics from a single source to a single goal very quickly and with a
low memory requirement. Any application that needs to compute a lot
of geodesic paths can gain bene�ts from our algorithm. The computa-
tional saving is even more important for 3D medical images with tubular
structures and for higher dimensional data.

80%60%40%Heuristic=0% 90% 100%Coarse mesh

Fig. 1. Heuristically-driven front propagation on a 3D mesh shown wi th increasing
values of heuristic proportion. The various colors indicate t he level sets of the distance
function. Only the colored region is explored by our front propagation algorithm.

1 Shortest Path: Continuous and Discrete Algorithms

A large class of problems can be formulated as the extraction of a shortest paths
for a given discrete or continuous metric. The applications of shortest paths
thus range from tubular structures extraction in 3D medical images [1] to path
�nding in video games [2]. The ability to quickly extract a geodesic path is highly
desirable. In this paper we propose a modi�cation of front propagation methods.
We introduce a heuristic that drives the computations, and greatly reduces the
computation time the Fast Marching algorithm.
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Heuristic  =  50%No heuristic Heurist ic =  80% Heurist ic =  100%3D view of the map

0x
1x

Fig. 2. An example of 2D path planning. The set of alive points according to increasing
heuristic is shown in gray.

In this section we briey review some basic facts about the Fast Marching
algorithm and geodesics extraction and we also present a common framework
that will allow to introduce our new approach.

1.1 Fast Marching Algorithm

The classical Fast Marching algorithm is presented in [3], and a similar algorithm
was also proposed in [4]. This algorithm performs a front propagation that can
be used to extract geodesic paths. The minimal length properties of geodesic
has been applied in computer vision, for example to solve global minimization
problems for deformable models [5]. We will illustrate various applications of
geodesic paths in section 3.

In the continuous setting, a geodesic curve minimizes the weighted length of
the curve for a given metric. In Rd, we are given a potential function P(x) > 0,
and the weighted geodesic distance between two pointsx0; x1 2 Rd, is de�ned
as

d(x0; x1) def.= min


� Z 1

0
jj  0(t)jjP( (t))d t

�
; (1)

where is a piecewise regular curve with (0) = x0 and  (1) = x1. When P = 1,
the integral in (1) corresponds to the length of the curve and d is the classical
Euclidean distance.

To compute the distance function U(x) def.= d(x0; x) with an accurate and
fast algorithm, this minimization can be reformulated as follows. The level set
curve Ct

def.= f x n U(x) = tg propagates following the evolution equation@Ct
@t (x) =

1
P (x )

�! nx and the function U satis�es the nonlinear Eikonal equation:

jjr U(x)jj = P(x): (2)

The function F = 1=P > 0 can be interpreted as the propagation speed of the
front Ct .

The Fast Marching algorithm on an orthogonal grid makes use of an upwind
�nite di�erence scheme to compute the value u of U at a given point x i;j of a
grid (the equation is written in R2 for simplicity), solving:

max(u � U(x i � 1;j ); u � U(x i +1 ;j ); 0)2 +
max(u � U(x i;j � 1); u � U(x i;j +1 ); 0)2 = h2P(x i;j )2:

(3)

This is a second order equation that is solved as detailed for example in [6]. An
optimal ordering of the grid points is chosen so that the whole computation only
takes O(N log(N )), where N is the number of points.
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1.2 Front Propagation Methods for Shortest Path

We now give a common framework for front propagation algorithms, which in-
cludes the Fast Marching procedure [3], the Dijkstra algorithm [7] to compute
shortest paths on graphs, and our heuristical front propagation procedure. These
methods can be described using the following formalism:
� Alive is the set of grid points at which the distance valueU has been computed

and will not change;
� Trial is the set of next grid points to be examined and for which an estimate

of U has been computed;
� Far is the set of all other grid points, for which there is not yet an estimate

for U.
Table 1 shows the main steps of the algorithms. Each algorithm must implement
the following implementation-dependant sub-functions
� A way to update the value U(y) at a given Trial point y. In the Fast Marching

and our Heuristical front propagation, U(y) is computed by solving equation 3.
� A priority map P orders the set of Alive points according to some computa-

tional criterion. In the Fast Marching and Dijkstra algorithm, P(x) = U(x) is
the current distance to the starting point. In our heuristical front propagati on,
P(x) is chosen to minimize the number of visited points.

We will explain in section 2 how to actually construct a function P that makes
use of an heuristic.

Initialization:
� Alive set: the starting point x0 ;
� Trial set: the neighbors of x0 ;
� Far: the set of all other grid points.
Loop:
� Let x be the Trial point with the smallest priority P (x);
� Move it from the Trial to the Alive set;
� For each neighbor y of the current point x:

{ if y is Far, then add it to Alive and compute a new value for U(y),
{ if y is Alive, recompute the value U(y), and update it if the new value is smaller,
{ recompute the priority P (y).

� If the end point x = x1 is reached, stop the algorithm.

Table 1: Pseudo-code for the common framework for front propagation.

1.3 Geodesic Extraction

For the applications we have in mind, the computation of the geodesic distance
U to a point x0 is only a tool needed before the extraction of a geodesic that
links this point to another point x1. This curve can be computed by extracting
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the parametric curve C(t) that solves the back propagation equation:

dC
dt

= �
��!
r U with C(0) = x0:

This gradient descent is a very local computation, and it only uses the value of
U for a small fraction of the visited grid points. Note that these grid points are
those located in the Alive set at the end of the front propagation procedure.

Heuristic  0% 40% 100%60% 80%

1x

0x

Fig. 3. Path planning using a multiresolution heuristic.

2 Heuristically Driven Front Propagation

In this section we explain our algorithm in the 2D setting, and show some nu-
merical results that illustrate the main features of this method. We also give
some insights about how to choose the parameters of our method.

2.1 Fast Marching with a Heuristic

In order to minimize the number of Alive points at the end of the front propa-
gation procedure, one should use a priority functionP that will try to advance
the front toward the goal point x1, and not isotropically. In order to do so, as-
sume that together with the the current weighted distance to the start point
U(x) = d(x0; x), we are able to have an estimate of the weighted distance that
remains to be marchedV(x) � d(x1; x). Then our heuristical front propagation
algorithm follows the implementation of the table 1 with a priority ma p

P(x) = U(x) + � V (x): (4)

This introduces the �rst parameter of our algorithm: the weight � we use for the
heuristic, which typically range from 0% to 100%.

The rational behind the de�nition of P is that d(x0; x) + d(x1; x) is minimal
and constant along the geodesic path joiningx0 and x1, see [8]. On �gure 2,
one can see the e�ect of various choices for the parameter� . The value � = 0
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corresponds to the classical Fast Marching propagation, which result in a very
large region of Alive points (shaded in gray). However, as we increase the value
of � toward 100%, the explored region shrinks around the geodesic path that
links x0 to x1. There is however two important issues with this ordering of the
Trial set:
� This ordering can break the monotone condition that is required by the Fast

Marching algorithm to produce a valid approximation of the continuous under-
lying distance function. We show in the numerical results presented in section
2.4 that although these numerical errors can accumulate during the propa-
gation, the Hausdor� error on the extracted geodesic remains low both in
synthetic case studies and in real applications.

� We do not have an immediate access to the remaining distanced(x; x 1), since
it would involve performing another front propagation from x1. We explain in
the next section how to overcome this problem.

Our heuristic ordering strategy is a reminiscence of the A� algorithm [9], which
was �rst introduced to solve problems in arti�cial intelligence. The use of heuris-
tics and fast exploration strategies (such as IDA� [10]) is crucial in the arti�cial
intelligence �eld to avoid the complexity of exploring the whole con�guration
space. These technics are also heavily used for path �nding, for example in video
games [2]. We show in section 3 that a large class of applications in computer
vision can also gain bene�t from this paradigm.

2.2 Multiresolution Heuristic

In order to compute the remaining distance V(x) � d(x; x 1) with a fast algo-
rithm, we perform a Fast Marching front propagation starting from the point
x1, but on a coarser grid. We thus have introduced a second parameter for our
heuristical front propagation: the resolution R 2]0; 1[ we use for the coarse grid.
If the original potential map P is of sizen � n, the query of P(y) thus requires:
� The pre-computation of a coarse potential mapPR of size (Rn) � (Rn). This

is done by �rst a pre-�ltering of P (to avoid aliasing of high frequencies) and
then a cubic spline re-interpolation on a coarser grid.

� The pre-computation of the approximate distance mapV of size (Rn) � (Rn).
This is done by performing a full Fast Marching on a coarse grid, using poten-
tial PR , and starting from point x1.

� During the heuristical front propagation starting from point x0, when P(y) is
queried, we interpolate with cubic splines the value ofV on the coarse grid to
retrieve a value on the original grid.

There is clearly a tradeo� between choosing a lowR to reduce the computation
time, and a high R so that V (x) approximates well d(x; x 1). We show in section
2.4 some insight about the correct value for this parameterR.

The new algorithm we propose allows to use multiresolution computation for
the extraction of geodesic curve. Using a multiresolution framework for solving
the point-to-point geodesic problem is not so easy because it is a boundary prob-
lem, and for instance, multigrid methods are not suitable. Adaptive mesh [11]
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and multigrid [12] have been used in conjunction with geodesic active contours
for segmentation purpose. However the problem of segmentation is in some sense
dual to the geodesic extraction, in which we are not interested in the level sets
of the distance function.

2.3 Reducing Memory Usage

Classical methods, such as using an octree data structure, can be used to reduce
the memory usage of level set algorithms, for example in order to perform image
segmentation [11].

We chose to implement a simple data
structure to reduce the memory usage
by allocating the grid cell on the y
during the propagation. A typical cell
data structure, for 2D computation,
is:

cellNULL
(0,0)
(1,0)
(1,1) NULL

NULL

NULLHash

NULL

NULL NULL

cell

cell

struct cell {
double distance; // current geodesic distance
char state; // either far, open or close
cell* neighbors[4]; }; // pointers to the 4 neighbors

To be able to retrieve a given cell in constant time, we also store the listof
allocated cells in a hash table. This is important because when a new cell is
allocated, we need to connect it to the existing cells. This pointer-based repre-
sentation of the neighboring relation is very convenient to extract the geodesic
with a gradient descent. There is some memory overhead due to the fact that we
explicitly store pointer to neighbors, but the fact that our scheme can explore
signi�cantly less cells that the classical fast marching allows to save much more
memory, as shown in next section. The computing time overhead due to the use
of a hash table is about 40% in all our tests.

2.4 Numerical Validation

A Matlab implementation of our algorithm, together with the scripts needed to
reproduce the �gures of this paper, is freely available on Matlab Central [13].

In order to estimate the precision of the results, we use the Hausdor� er-
ror between the found paths and the paths obtained by fast marching without
heuristic. On �gure 6 one can see the geodesics extracted for di�erent values
of � . Figure 4 shows the result of our algorithm for various settings on (a) a
synthetic map and (b) a satellite image. We have depicted:
� The 2D map: the red curves indicate the boundary of the visited region. One

can see that these curves shrink toward the geodesic (central blue curve) as
one increase the strength of the heuristic from 0% to 100%.
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Fig. 4. Inuence of heuristic strength and resolution on number of visite d cells, Haus-
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1x0x

R 6 0 %<

R 6 0 %<

R 9 0 %<

Fig. 5. Inuence of the resolution of the heuristic on the shape of the geodesic.

� Hausdor� error vs. heuristic strength � : we have set the heuristic resolutionR
to 50%. One can see that the error is higher for the synthetic map (a). This is
due to the fact that this map contains large at areas, where a small error in
the computed geodesic distance leads to deviation of the extracted geodesic.
In contrast, the geodesic in the satellite image (b) contains very anisotropic
areas, which stabilize the extracted geodesic.

� Hausdor� error vs. heuristic resolution R: we have set the heuristic strength
� to 50%. One can see that the synthetic map (a) is nearly insensitive to the
resolution of the coarse map used to compute the heuristic. This is because
the underlying function is very smooth, so one can reduce a lot the resolution
without too much impact on the accuracy of the Heuristic. In contrast, one can
see that the satellite image su�ers from too huge variation when the resolution
parameter R becomes smaller than 60% and then again for 90%. This is due
to strong topological change in the path, as depicted in �gure 5.

� Computation time saving vs. heuristic strength � : the saving is computed rela-
tively to the time spent by the classical Fast Marching. In 2D the computation
times decrease roughly linearly with the strength of the heuristic.

� Computation time saving vs. heuristic resolution R (not shown): there is a
constant overhead due to the coarse resolution computation (which results in
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100%

100%0%

0%1x

1x

0x

0x

Fig. 6. Graphical display of extracted geodesics for various heuristic strengths.

an o�set between the curves forR = 50% and R = 20%). For R = 20%, this
overhead is balanced by the heuristic saving as soon as� > 5%.

These tests clearly show that our algorithm can bring a large computational
speed up, but the parameters should be �nely tuned to adapt to the characteristic
of each map. For instance, these experiments show that the user must have some
prior knowledge about the typical width of the tubular structures he wants to
extract, and set the resolution R so that the coarse mapVR still contains these
structures.

3 Applications

In this section, we show the versatility of our method by proposing various
applications where the extraction of geodesics is a central issue. We explain
why our algorithm can bring a speed improvement and allows us to use simpler
methods.

3.1 Volumetric Geodesics Extraction

3D geodesic extraction is very useful in medical volumetric data analysis. It can
be applied to perform tubular structures extraction, and it is extended to virtual
endoscopy in [1]. On �gure 7 one can see the extraction 3D geodesics on synthetic
data (top and middle rows) and on real medical data (bottom row) for R = 20%.
The red surface shows the boundary of the explored regions of alive cells. The
computation time gain (C.t. gain) is also indicated.

3.2 2D Path Planning

Direct application of AI techniques has been intensively used for path �nding,
and A� is the method of choice for video games [2]. For the Euclidean case, faster
and more complex graph-based methods have been proposed, such as visibility
graphs [14].

The Fast Marching method can be used to produce continuous paths with
a sub pixel precision [3], even when a non Euclidean metric is used. This is
very powerful since it allows the modeling of smooth obstacles (such as forest,
enemy repulsion, etc). In [15], the authors compare the Fast Marching and the
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Heuristic  0%3D data 100%40% 80%

1x

0x

Comp. gain -10% Comp. gain 10% Comp. gain 30% Comp. gain 60%

Comp. gain -10% Comp. gain 15% Comp. gain 40% Comp. gain 80%

Fig. 7. Extraction of geodesics in 3D.

A � algorithms for path planning. However they do not go one step further and
connect these two powerful methods. On �gure 3 one can see various paths
extracted from a 2D map for a resolution R = 20% and a varying � . Although
the computed path can deviate from the real geodesic, our algorithm always
produces locally acceptable path (smooth and avoiding obstacles).

3.3 Constrained Path Planning

Geodesics can be used to compute the path of a robot with various shape and
motion constraints [16]. Basically, each additional degree of freedom add anew
dimension to the domain in which the front propagation should be performed.
Solving such high dimensional problems is time and memory consuming, so the
use of a heuristic is highly desirable. In our experiment, the most important issue
is the memory used by the full-grid classical Fast Marching, and the memory
management strategy exposed in subsection 2.3 is crucial to scale to complex
problems. The resolution R of the heuristic should be chosen carefully as a
function of the typical width of the corridors and rooms the robot must pass
through. In our tests we set R = 20% and we use a varying heuristic strength
� . Note however that although our algorithm can produce a wrong path for
agressive heuristic usage, it never produces non-admissible moves.

On �gure 8, one can see two examples of path extractions in 2D with one
rotational additional degree of freedom. This results in 3D front propagation,
and the corresponding speed function is depicted on the left. Figure 9 shows the
inuence of the heuristic strength � on the cells explored by the front propaga-
tion.

3.4 Globally Optimal Geodesic Active Contours

The concept of circular geodesics was �rst introduced in [17]. The authors of [18]
proposed a simple way to compute circular geodesics about a point, in order to
compute a globally optimal geodesic, with an application to object segmentation.
The user simply select a point C inside the object to segment and then the
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(a) (b)

Speed function  P

Fig. 8. Examples of constrained path planning.

Heuristic  0% 50% 80% 100%

Fig. 9. Explored area for constrained path planning.

algorithm virtually \cuts" the image along a horizontal line that links C to the
boundary of the image. This way, one can force a geodesic path to go aroundC
by running a classical Fast Marching from a point S to itself, but forbidding the
front to pass through the segmentCD.

For an underlying image I , the globally optimal geodesic aroundC is de�ned
as the closed geodesic curve with minimum length, where the metric is de�ned
as

P(x) =
1

jjC � xjj
1

1 + jjr I (x)jj2 + "; (5)

where jjC � xjj is the distance from the curve point x to the center C.
The authors of [18] proposed a powerful algorithm based on the branch-and-

bound paradigm, which is a dichotomic search that avoids computing the closed
geodesic for each pointS on the segmentCD. However, with our our heuristic
front propagation, we have tested a simpler algorithm that works well in practice.
We simply compute the circular geodesics that pass though a given �xed number
of points along the cut segmentCD. These extractions can be performed quickly
using our heuristically driven front propagation, with the restriction that t he
front should not pass though the cut segment.

In �gure 10, we have shown a globally optimal circular geodesic, computed
with various heuristic strength � .

Heuristic  0% 40% 100%60% 80%

Fig. 10. Globally optimal circular path extraction with increasing heu ristic.
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3.5 Geodesic Extraction on 3D Meshes

The Fast Marching algorithm has been extended to 3D meshes in [19]. Our
heuristic algorithm also extends to 3D meshes, with the following modi�cations
with respect to the Euclidean setting:
� We must construct a coarse mesh approximation of the original 3D mesh.

Mesh simpli�cation is a large topic, and several greedy methods exist, see for
example [20]. In our tests, we use the farthest point strategy proposed in[21]
for remeshing, since it uses the Fast Marching as a building block.

� Once the heuristic function has been computed on the coarse mesh, it must be
interpolated on the original dense mesh. Several methods for data interpolation
on 3D meshes exist, and we have use a method derived from harmonic mesh
parameterization [22]. This involves the resolution of a sparse linear system
that search a harmonic function that �ts the values computed on the coarse
mesh.

These two steps are quite computationally intensive, but note that:
� The coarse mesh can be pre-computed, and can be re-used for multiple geodesic

extraction.
� To avoid the computational overhead of computing once for all the interpola-

tion on the whole mesh, we use the local parameterization strategy of [23].We
compute the interpolation only on a small set of overlapping disk-like charts
that covers the region of alive vertices.

On �gure 1 and 11, one can see the algorithm in action on various meshes, and
for various values of the parameter� .

Coarse mesh Heuristic  0% 50% 100%90%

Fig. 11. Heuristically driven front propagation on 3D meshes.

4 Conclusion

In this paper we have presented a simple modi�cation of the Fast Marching to
speed up the computation time and the memory requirement of the algorithm.
This modi�cation is straightforward to implement, since it only involv es the com-
putation of a multiresolution heuristic to propagate the front toward the correct
direction. Numerical tests on synthetic and real data show that this modi�ca-
tion does not result in large distortion of the extracted curve. We examine some
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potential applications of this algorithm and show that it �t nicely into vari ous
existing computational frameworks.
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