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Limit theorems for sequential expanding dynamical systems
on [0, 1]

Jean-Pierre Conze and Albert Raugi

ABSTRACT. We consider the asymptotic behaviour of a sequence (6r), 0, =
Tn O Tp—1---0T1, where (Tn)n21 are non-singular transformations on a prob-
ability space.

After briefly discussing some definitions and problems in this general
framework, we consider the case of piecewise expanding transformations of
the interval. Exactness and statistical properties (a central limit theorem for
BV functions after a moving centering) can be shown for some families of such
transformations.

The method relies on an extension of the spectral theory of transfer op-
erators to the case of a sequence of transfer operators.

Introduction

Let (0,,) be a sequence of non-singular transformations on a probability space
(X, A,m). When the measure is preserved, the extension of notions (ergodicity,
mixing,...) from the case of the iterates of a single transformation to a sequence
(0,,) was considered by D. Berend and V. Bergelson ([BB84]) and some examples
were given of what they called sequential dynamical systems.

Recently some authors have given examples of sequential systems of hyperbolic
type ([Ba95], [AF04], [PRO03]). In the last reference, a property of stable mixing
for a sequence of automorphisms of the 2-torus has been discussed by L. Polterovich
and Z. Rudnick. Sequential systems have been also considered in [BBHO5] in
the context of the “Bendford law”, for transformations composed on IRT before
taking mod 1. Another situation where sequential systems appear is that of random
sequences of transformations (see for instance [Ki88], [Ke82], [BY93], [Bu99],
[Vi9T7]).

We consider here the asymptotic behaviour of a sequence (6,,), 0, = 7, o
Tp—1---0T1, where (7,)n>1 are piecewise expanding transformations of the interval
[0,1), and discuss properties like exactness and limit theorems for such sequential
systems. (The measure m is the Lebesgue measure, which is only quasi-invariant.)

1991 Mathematics Subject Classification. Primary 58F11, 28D20.
Key words and phrases. sequential dynamical systems, expanding maps, transfer operator,
CLT.
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A motivation is the following. Let x — [z mod 1 be a (-transformation for
[ > 1. Suppose that at each step of the iteration we make a small error and replace
B3 by B, tending to 5. If 0, (x) is defined by : Op(x) = =, O, (x) = By, 0p—1(z) mod 1,
n > 1, is it true that for a.e. « € [0, 1] the asymptotic distribution of the sequence
(0n())n>0 18, , the absolutely continuous invariant measure (ACIM) of the trans-
formation x — fr mod 1 7

A positive answer can be proved for g-transformations and more generally for
some classes of piecewise expanding transformations of [0, 1]. Moreover, statistical
properties for such sequences, like a CLT for BV functions (after a moving cen-
tering), could be investigated. It is closely related to the question of stochastic
stability of expanding transformations. But we will give also global results and
obtain exactness for some families of such transformations. The method relies on
an extension of the spectral theory of transfer operators to the case of a sequence
of transfer operators.

In the first section we consider the general case of a sequential dynamical system
where the measure m is only quasi-invariant and briefly discuss some definitions
and problems in this general framework. In section 2 general results on products
of operators of quasi-compact type are given. In sections 3, 4 and 5 we apply
these results to the particular case of sequences of piecewise expanding maps on
the interval and prove a “Borel-Cantelli Lemma” and a central limit theorem for
regular functions.

We would like to thank T. Hill for discussions and questions on the asymptotic
distribution of perturbed iterates during a workshop on ergodic theory in Chapel
Hill in 2004, and Idris Assani for organizing this workshop. We thank also the
referee for his careful reading of the manuscript and his remarks.
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1. Sequential dynamical systems

We consider a probability space (X, .4, m) and a family C of non-singular trans-
formations on it: for 7 € C, we assume that 7 m < m.

We will call sequential dynamical system any sequence (7,,) of transformations

in C.
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We denote by (6,,) the sequence of composed transformations:
O0p =Tp0Tp_1---0T1,n > 1.

If (7,,) is a constant sequence (i.e. 7, = 7 for a transformation 7 € C) (6,,) is simply
the sequence of iterated transformations (7).

NotaTIONS 1.1. If 7 is a transformation in C, we denote by T the operator of
composition by 7. The transfer operator P, corresponding to 7 is defined in L!(m)
by:

/Pngdm:/ngTdm,VfELl,gELOO.

When 7,,, n = 1,2, ..., are transformations in C, we write simply T,,, P,, for the
operators corresponding to 7,, and

I, =P,P,—1---P.
With these notations, we have for f € L', g € L>:
Ty Thg(x) = g(m--- 7)),
/Tl---Tngfdm /an---Plfdmz/anfdm,
Pu(Tug f) = g Puf.

e Invariant measure, wandering sets

In the case of an unique transformation 7, a classical problem is the existence of
a T-invariant measure which is equivalent to the measure m, or at least absolutely
continuous with respect to m. Such a probability measure p is called an ACIM for
7. In that case, we have y = ¢m, with ¢ >0, [ dm =1 and Prp = ¢.

In general, when the transformations 7, depend on k, there is no joint invari-
ant measure, but it is convenient to make for the sequence (II,,1) the following
assumption (1.1) which implies its equi-integrability since we have ||II,,1]|; = 1:

for every € > 0, there exists n(e) > 0 such that

(1.1) VB € A,m(B) < n(e) = m(0,'B) = / I,1 dm < e.
B

In particular (1.1) is satisfied if there is p €]1,400] such that the sequence
(I1,,1) is bounded for the LP-norm. As we will see, this is the case (for the uniform
norm), for some families of piecewise expanding maps of the interval.

Using the Dunford-Pettis compactness criterion, it is easy to deduce, for a single
transformation 7, the existence of an ACIM for 7 from (1.1) (Theorem of Hajian
and Kakutani).

We say that a set A is mean wandering if it satisfies:
T
. —1 .
h]{/n N Zm(Oj A)=0.
j=1
With property (1.1), one can prove the existence of a mean wandering set Ag which

is “mazimal’ in the sense that : if B is such that limy + Ziv m(Hj_lB) = 0, then
B C Ap (up to a set of m-measure 0).
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To show it, let us take a sequence (Cy) of mean wandering sets such that
limg m(Cy) = sup 4 m(A), the supremum being taken on the family of sets A which
are mean wandering.

Let Ag = U, Ck. This set is mean wandering: let ¢ > 0, n(¢) > 0 given by
(1.1) and k such that m(A4y — U¥C;) < n. We have, for N big enough,

N

%Zm 1A <E+Z Zm ) <2

and the set Ay is clearly maximal.

We note that m(A§) > 0. From the maximality of Ay, it follows that, if A € A
is such that m(A N A§) > 0, then

N

(1.2) lim sup Z

1

¢ Ergodicity and mixing

We say that a sequence (7,,) is ergodic in mean if 6, = 7, 0T,—1 - - - o 71 satisfies
the equivalent conditions:

1 N
(1.3) li]{]nNkZ:l[m(Bﬁf),;lA)—m(B)m(@,;lA)] =0
1 N
(14)  VgelL',felL™ li]{/nﬁgqoek—/foek dm.g) = 0.

We say that the sequence is mizing if
(1.5) VA, B € A lim[m(B N6, A) — m(B)m(0,A)] =

PROPOSITION 1.2. Let A be such that m(A N A§) > 0. Ergodicity in mean
implies that, for almost all z, the sequence (0,x) visits A infinitely often and, if
m(B) > 0,

lim sup 1A NB) > 0.

||Mz

REMARK 1.3. If the sequence (II,,1) is uniformly bounded, condition (1.3) is
equivalent to the convergence in LP-norm, for 1 < p < oo (cf. [BB84]):

N—1
.1
(1.6) h]rvnﬁnkzo[foek—/foek dm]|, = 0,Yf € LP.
This is a consequence of the inequality, for p > 1:
n—1 n—1
1 1
”ﬁ kZ_Q[lA 0fr—m(lao Gk)]Hzp < HH kz_(:)[lA ofr—m(lao Hk)]H%

and the fact that the set of functions f such that (1.6) holds is closed in (L, || ||)-
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REMARK 1.4. For the iterates of a single transformation, ergodicity in mean
characterizes the usual ergodicity property of 7-invariant measure and is equivalent
to the “pointwise ergodicity”. But this consequence of the ergodic theorem is not
true in the general case of a sequential dynamical system.

For example, let (13,t € IR) be an aperiodic measure preserving flow on a
probability space (X, .A,m). M. Akcoglu, A. Bellow, A. del Junco and R. Jones
([ABJJ93]) have shown that for any increasing sequence of integers (ny) and any
sequence (t # 0) converging to zero, the following “strong sweeping out property”
is true: given any € > 0, there is a set A with m(A) < e and

N N

| . 1
thmf N zl: 1a(Tny4t,2) =0, llmj\éup N zl: 1a(Tntt,2) = 1.

Therefore, if we sample a dynamical system with a small error tending to 0, we
cannot expect to still have a law of large number valid for any bounded measurable
observable.

This suggest that, for a sequential dynamical system, “pointwise ergodicity”
should be defined with respect to particular families of (regular) functions or sets.
The sequence (7,,) can be called pointwise ergodic if, for a.a. x,

1 n
(1.7) er}",lim—Z[f(f)kx)—/foé)k dm] =0,
Lt
where F is a convenient set of functions or the set of characteristic functions of sets
which form an algebra generating the o-algebra A.

We will give later examples of sequences of piecewise expanding maps of the
interval which are pointwise ergodic in the previous meaning.

e Stochastic and sequential stabilities

DEFINITIONS 1.5. Let 7 be a metric set of parameters and let C = {m : t € T
be a family of transformations on (X,.A,m). Fix to € 7, and for £ > 0, let U, be
an e-neighbourhood of ty. Let Y be a random variable with values in U, and law
V.. Consider the operator P, defined by

Pllsf = E(P‘ryf)

Assume that the transformation 7 = 7, has a unique ACIM g and that there
exists a measure p. which is invariant by P,_. We say that the transformation 7 is
stochastically stable (in the family 7) if lim._,o g = p.

In particular, if p. = -, 7= € U., “stochastic stability” becomes stability by
deterministic perturbations. The property of sequential stability, that we consider
now, is close to this property.

Assuming the space X to be a metric space, we say that 7 is sequentially stable
in 7 if, for every sequence (t,) in 7 such that lim,, ¢, = to, writing simply 7, = 7¢,,,
we have for every continuous f:

| N1
hj{,nﬁ z:o frnTn—1..nx) = u(f), for m-a.a. x.
n—=
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This means that, if we make a small error at each step, replacing the trans-
formation 7 by 7,, with lim, 7, = 7, then we have for m-almost all points = the
same asymptotic distribution for the sequence (0, (z) = 7,7 —1...112) as for (7"z),
namely the distribution given by the 7-ACIM pu.

e Asymptotic o-algebra, exactness

Fix a sequence{r,} C C, and for k > 1 set
Ay =11 A

The sequence of o-algebras (Ay) is strictly decreasing if the transformations 7,
are non-invertible.
The asymptotic o-algebra is defined as the intersection:

As = ﬂ7f1'~7',;1./4.
k>1

Let f be in L'(m). We use the notations of 1.1. Remark that for f € L> the
quotients |II,, f|/I1,1 are bounded by || f|lco on {II,,1 > 0} and we have I, f(x) = 0
on the set {II,1 = 0}. We define these quotients as 0 on {II,,1 = 0}. The following
relations hold:

(1.9) E(flA) = T ~-~Tk(ﬁ—:{),

and, for 0 < /4 < k < n:
Py Pra(f Hél))
el '

(1.10) E(Ty - Tof | Ag) = T1 - Ti(

By the martingale theorem, for every f € L'(m), we have convergence of the
sequence of conditional expectations (IE(f|An))n>1 to IE(f|As) and therefore:

1L, f
IT, 1

lim ||Ty... T ( ) — E(f|Ax)||1 = 0.in norm || ||; and m-a.e.
n

DEFINITION 1.6. We say that the sequence (7,) is exact if its asymptotic
o-algebra A is trivial.

Exactness implies mixing and is equivalent to lim,, ||IL,f|l; = 0,Yf € Li(m),
since we have by (1.9):

(1.1 (A = T3 T (D) s = 111

EXAMPLES 1.7.

A) We take first for C the family of translations on a compact group.

1) It is easy to see that mean ergodicity of a sequence (7,,) defined by 7,2 =
Z + ay, is equivalent to the equidistribution of the sequence (u,,) defined by u,, =
a1+ Q.
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For the torus T'?, the property is satisfied by a sequence (o) converging mod-
ulo 1 to «, if the translation by « modulo 1 is ergodic: for all continuous functions
f on the torus, the sequence (3 Zg;ol f+ a1 + -+ a,)) is equicontinuous and
any converging subsequence has a limit which is invariant by translation by o and

therefore is equal to m(f).

2) Let (X,,) be a sequence of iid r.v. with values in the torus and 7,(w)z =
x4+ X, (w). We have (almost surely in w) ergodicity of (7,(w)) if and only if the
law of X is not supported by a lattice (the translations modulo 1 do not belong
to a finite subgroup of the circle).

B) Let us consider the following matrices A and B:

2 10 2 00
A= 1 1 0 |,B=|0 2 1
0 0 2 0 1 1
We obtain a sequence (7,,) of transformations which preserve the Lebesgue
measure on the torus ™ by taking for 7, either 7,z = Az mod 1, or T,z =
Bz mod 1.

It can be shown that the sequence is exact if each matrix appears infinitely
often in the sequence.

C) Hyperbolic automorphisms of the 2-torus
We give now an example with invertible transformations.

Let A be a hyperbolic element in SL(2, Z), (B,) a sequence in SL(2, Z) such
that the sequence (trace(B,,)) is bounded. Let p > 1 be a fixed integer. We consider
the sequence of transformations on the 2-torus defined by:

(1.12) 0,z = B,APB,,_1AP...B1 APz mod 1.

L. Polterovich and Z. Rudnick have called a sequence of the form (1.12) a
“kicked system” and defined “stable mixing” for the element A as the property
that, for all sequences of kicks (By) with bounded trace, there exists pg such that
the sequence defined by (1.12) is mixing, for every p > py.

They proved ([PRO3]) that A is stably mixing if and only if A is not conjugate
to its inverse.

The following questions can be asked:
- Do we have the CLT for the Hlderian functions ?
- Is there a notion of K-system for a sequence of invertible transformations, which
would be satisfied by examples like (1.12) 7
- These questions (stable mixing, CLT,...) can be asked in higher dimension or for
other classes of diffeomorphisms.

Before considering in section 3 the example of sequences of expanding maps on
the interval [0, 1], we prove in the next section some general results on products of
operators of “quasi-compact” type.
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2. Decorrelation for products of operators

We state in this section some general results which extend to a product of
transfer operators classical spectral results for the iterates of a single operator.

NOTATIONS - HYPOTHESIS 2.1. Let (B, ]| ||) be a normed space, V be a subspace
of B equipped with a norm | |, such that || || < | |», P be a set of contractions of
(B, || ) leaving the subspace V invariant.

We assume the following hypotheses:

(H1) The unit ball of (V,| |v) is relatively compact in (B, || ||).

(H3) There is a countable family in V which is dense in (B, || ||)-

(Hs) There are an integer r > 1 and constants p, €]0,1[, My, C, > 0 such that:

VYR e P, |Rf|o < Mpl|flv,Vf € V;
for all r-tuples R, ..., R, of operators in P:
(2.1) VeV, [Re.Rifly < prlflo + Crl £

The operators we will consider further are adjoint of the operators of compo-
sition by expanding transformations of the interval. B will be L'([0,1],m), where
m is the Lebesgue measure on [0, 1], and V the space of BV (bounded variation)
functions. This is the example that we have in mind in this section 2.

REMARK 2.2. In applications, we will show (2.1) for some families of operators.
Remark that the norm | |, defined by:

r—1
|l =1flo+ D o " sup i Ry R, fo
k=1

s Ry €
is equivalent to the norm | |, and satisfies for a constant C’ the inequality:
Vf €V.YREP, [Rf[, < p/"fI, + C|I£].
Taking | |, instead of | |», we can assume during this paragraph that there exists
p €]0,1[ and Cy > 0 such that the operators R in P salisfy the inequality:
(2.2) VfeV,YReP, |Rfly < plflo+ Col £l

REMARK 2.3. If the unit ball (V,] |,) is not closed in (B, || ||), we can consider
the subspace V; of B defined as follows. For f € B, we set

£l = Jim inf(¢l,. 6 € Vs [1f = 6]l < &)

Let Vi = {f € B:|f], < co}. Now the unit ball of (V4,] |,,) is compact in (B, || ||).
Replacing (V,| |») by (V1, ] |+), we can therefore assume the compactness of the unit

ball of (V,| |,) in (B, ]| ||).

From now on we will make this assumption. This implies in particular that,
for a sequence (fy,) in V such that |f,|, < C and || f, — f|| — 0, we have f € V and
[fl. < C.
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We define a distance on P by taking

d(R,R') = sup |Rf — R'f]].
{fev:[fl.<1}

For P € P, we note B(P,6) :={Re€ P :d(R,P) <d}.

For convenience we set Ry = Id, the identity operator of B. From (2.2) we get
easily the following inequalities:

LEMMA 2.4. For each n > 1, for all choices of operators Ry, ..., R,, P in P, all
f €V, we have, setting M =1+ Co(1 —p)~L:

n—1
(2.3) [Rn--Rifls < p"[flo+Co Y p" ¥Rk RiRof|,
k=0

(2.5) d(Ry---Ry,P") < MY d(R;,P), n>1.
j=1

LEMMA 2.5. Let (Py) be a sequence of operators in P and 11,, = P, P,_1...P;.
For every strictly increasing sequence of integers there are a subsequence (ny) of
the integers and an operator A from B into V such that AB is contained in V,
dim(AB) < 400 and for each f € B, we have:

(2.6) ML, f = AfI =0,
(2.7) |Aflo < MIAF].

Proof. For every g € V, the set {II,,g : n € IN*} is relatively compact in (B, || ||)
by (H1) and (2.4). Let D = (g,)pemnv be a sequence of elements of V which is dense
in (B,]||]). Using the diagonal process we obtain a strictly increasing sequence
of natural numbers (nx) = (¢(k))r>1 such that, for every p € IN, the sequence
(Hw(k)fp)k>1 converges in (B, || ||) to a function of V, denoted by Af,, satisfying

|Afplo < Co(1 - P)71||fp|| < M| fpl-

Let f € B and (hp)pen be a sequence of D which converges to f in (B, || ||). The
real sequence (||, ||)pev converges to || f|| and sup,,e py |7y || < +o00. Tt follows that,
for every p € IN, [Ahp|y, < M sup,,cpy ||hn]|. Taking, if necessary, a subsequence,

we can suppose that the sequence (Ahy),emn converges in (B, || ||) to a function Af,
satisfying [Af], < M limsup, ||hy] < M]|/].

The inequalities
M) f = ASI < Tk f =My o || 4 [T gy Frp = ASI] < I f = Pop |+ [T 1y o = A

show that, for every f € B, the sequence (H¢(k)f)k>1 converges in (B, || ||) to Af.

Now, for each k,p € IN* such that k > p, we can write

Woky = Poky - Popy+1e(p)-

As before, taking a subsequence ((p(ﬁ(k;)))kew of ((p(k;))kew we can suppose that,
for every f € B, the sequence P,¢(x)) - - Pp(p)+1.f converges in (B, || []) to a limit
denoted by A, f satisfying |A,fl, < M || f]].
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For each p € IN*, we obtain
[Aflo = [ApIlpp) flo < M [Ty £

and consequently
[Aflo < M A

The operator A defined on B satisfies (2.6), (2.7), A(B) C V. By (Hi), (2.7)
and Riesz Theorem we have dim(AB) < +o0.

O

DEFINITIONS 2.6. In the following, we denote by Vy a subspace of V which is
imwvariant by the operators P € P.

We say that a sequence of operators (Py) in P is exact in Vy if

A single operator P € P is exact in Vy if lim,, ||P™f|| = 0,Vf € V.

e Decorrelation:

Property (Dec): We say that a subset of operators Py C P satisfies the
decorrelation property (Dec) in V if there exist A €]0,1[ and K > 0 such that, for
all integers £ > 1, all /-tuples of operators Ry, ..., Ry in Py:

(2.9) Vf € Vo, [Re-- Riflo < KX|f|o.

Let g = (350” ) where p and Cy are the constants of (2.2). The following result

uses an argument of convolution as in [CR03].

PROPOSITION 2.7. Let Py be a subset of P such that there exists an integer q
for which every product of q operators Ry, ..., Rq in Py satisfies:

(2.10) VfeVo lIRg: - Rifll < eolflo-
Then Py verifies the property (Dec) in V.

Proof: We can complete the sequence (R, - - - R1)1<n<¢ by taking R, = Ry, for
n > (. Let f be in Vy. We define the sequences ay, (, 5, 8, (with support in Z")
by:

ap(n) = [Rp-- Rifly, n>0,
¢(n) = Coeop™ T Hifn>qg+1, =0,if n<gq,
0y
Bn) = B|flp", n>0, withB=1+Cop1_p ,
p”|f|v+CoZZ;§1p"*1*’“|f|v, ifn>gq
Ba(n) =9 p"flo+CoXig " FIfles Hf1<n<g—1

|f|’U7 if n=0.
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We have §,(n) < f(n), n > 0, and from (2.3) and (2.10),

forn>qg+1,
qg—1
[Ro---Rifle < p"flo+Coy_ p" ' FRe R f|
k=0
n—q—1
+ Coeo Z p" Ry - Ry fl,
k=0
and for 1 <n < g:
n—1
R Riflo < p"Iflo+Co D p" | R Ruf.
k=0

Therefore we have: af(n) < By(n) + (¢ *ay)(n), Vn € Z, and

—1

ap(n) <Y (CP*By)(n) + (¢ xaf)(n), Yn € Z,¥ > 1.
p=0

Since (¢* * ay)(n) = 0, for £ such that £(q + 1) > n, this implies
[Rp - Rifly <Y (¢ % By)(n) <D (¢ * B)(n), ¥n > 1.

p>0 p>0

~

For t such that 0 < pt < 1 and Cyeot?t! < 1 — pt, we have:

PP (S ETIIORS (D ¢y ) (Y By )

p>0n>0 p>0 n>0 n>0
1
= 3" BIflo (Coso)? ##0+) (——)""
1—pt
p=>0
B|flo

1 — pt — Coeotatt’

Let r(t) = 1—pt—Coeot?t!. ;From the choice of g, we get Coeg(1—p)~ ! =1/2
and therefore (1) > 0.

For ¢ > 1, the polynomial r has only one real positive root tg, which is strictly

between 1 and 1 + q% The other roots have a modulus > tg. Therefore there

exists a constant K > 0 such that

ST B)(n) < K|f|oty", ¥n € IV,

p>0

We deduce that |R,, - - - R f|, is bounded by KA"|f|,, with A = ¢5'. The constants
K and A depend only on p,Cy and gq.

o
By Lemma 2.5 and Proposition 2.7, we get for an operator P in Py the classical
spectral properties:

PROPOSITION 2.8. For all operators P € P restricted to V we have
(2.11) Pf=Lpf+Qrf,
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where the spectral radius of Qp is < 1: there are constants vy €]0,1[ and C1 > 0
such that

(2'12) Vfev, |QYIL3f|U < Cl’Y(?lf'm

Lp is an operator of finite rank of the form
P
(2.13) Le(f) = ci(f)ey,
j=0

where the elements ej,1 < j < p, p € IN, are proper vectors for P with proper values
X; of modulus 1 and the c; are linear forms such that c;(e;) = 6; 3,1 <1,j <p.

If P is exact in Vo, Ply, = Qly, and
(2.14) Vf € Vo, [P"flo < Cirglflo-

If B is the space L'(m) for a probability measure m on a space X and if P € P
is a positive operator, there exists a function hp > 0 with mazimal support which
is P-invariant and the proper values x; of P are roots of unity.

Proof: We apply several times Lemma 2.5.
For A of modulus 1 and f in B, the sequence n)\f = Z)x kPk n>1

converges in (B, ] ||) either to zero or to a A-eigenvector IIx(f) of P Indeed any
non-null cluster value of this sequence, which is relatively compact in (B, || ), is
a A-eigenvector for P. For every integer p > 1 and every A-eigenvector h of P,
writing n = ¢p + r (Euclidian division), we get:

-1
(pY AT PUSpaf = h)+ 72~ PYSA(F = )

j=0
and therefore limsup,, ., o [|Sn 2 f—h| < M||Sp A f—h||. This inequality shows that
the sequence (Sn, A f)n>1 can have only one cluster value ; hence the convergence.

Sn,)\f —h=

SR

We have that dim(AB) < +oo for any limiting value A of (P™), so that the
set {\; : 1 < j < p} of eigenvalues of modulus 1 of P is finite. The operator
Qp=P— Z§:1 IT); has no eigenvalues of modulus 1.

If A = lim, Qﬁ(") for a subsequence (¢(n)), we have: QpA = AQp and
|Q71§|AB|U — 0. This implies:

Af = lim QAT =#M Qe ¢ i QDM —
Therefore @ p is exact in V. By Proposition 2.7 we get the spectral gap for Qp.

For the last assertion, we use the same arguments as in [Sc67] (Appendix).

To apply Proposition 2.7 to a subset Py of P, we have to check (2.10). We
consider two cases: locally, i.e. in a neighbourhood of a given operator, or globally.
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o A local result

LEMMA 2.9. If P is exact in Vo, for every e > 0, there are an integer q(e) > 1
and a real 6(e) > 0 such that, for all products of q operators Ry, ..., Rq in B(P,0(g))N
P, we have:

VieVo, Ry Raf| < elflo-

Proof: let ¢ = q(¢) > 1 be such that C17¢ < 5. For f €V, we have from 2.8:

S
1POf < Sf.

For all products Ry - - - Ry such that R; € B(P,d(¢)), i = 1, ...,q, we get by Lemma
2.4:

[Ry--Bafll < |Rq---Raf =PI+ [P
€
< gMo(e)|flo + §|f|v <elflo,
for &(g) such that gMd(e) < e/2.
O

Applying this result (with e = £9) and Proposition 2.7 we get:

ProrosITION 2.10. If P is exact in Vy, there exists §g > 0 such that the set
Po = B(P,do) satisfies the condition of decorrelation (Dec) in Vy.

e A non-local result
Let Py be a subset of P such that the following compactness condition holds:

Condition (C): For any sequence (R,) in Py, there are a subsequence (R,;)
and an operator R € Py such that

(2.15) Vf € B, lim | Ru, f — RF|| = 0.
J

In the next section, we will give examples of families of expanding transforma-
tions of the interval for which the set of corresponding transfer operators satisfies
this compactness condition and the criterion of the following proposition.

PRrROPOSITION 2.11. If Py is a set of operators in P verifying the compactness
condition (C) and such that all sequences (P,,) in Py are exact in Vo, then it satisfies
the decorrelation condition (Dec) in V.

Proof: If (2.10) is not satisfied there are, for each p > 1, operators Ry p,- -+ , Ry p
in Py such that [|[Rp - - Ripfpll > €0, for some fp in Vo with |fply = 1. As they
are contractions of B, this implies:

”R&p e 'Rl,pfp” > g9, V¢ < p.

By compactness of the unit ball of V in B we construct a strictly increasing
sequence (p;) such that (f,;) converges for the norm || || to an element g in V
such that |g|, < 1. By compactness of Py and the diagonal process, there is a
subsequence of (R, ;) which converges (in the sense of (2.15)) for each r to an

operator R, € Py.
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Thus we have
|Re- - Rig| > €0,V > 1,
contrary to the hypothesis. The condition (Dec) follows then from Proposition 2.7.

|

e Two lemmas

LEMMA 2.12. Let P € P and (P,)n>1 be operators such that
(2.16) lim||P,f — Pf||=0,Vf € B.

We have, for all integers v > 1, lim,, d(P,, -+ Py—r41,P") = 0. There exists a
sequence (gp) in the space Lp(B), image of Lp (cf.(2.11)), such that, uniformly on
the unit ball of V:

(2.17) [P Prf = gnll — 0.
When B = LY(m), if P € P is ezact in Vo = {f € V : m(f) = 0}, then (P,) is
exact in Vo and limy, |P, - - Pif —m(f)hp|| =0, where hp is P invariant.

Proof: As the P,’s are contractions, the convergence in (2.16) is uniform on
the compact sets of B. Therefore we have lim,, d(P,,, P) = 0, which implies the first
statement using (2.5).

Let € > 0. We have, from (2.11) and (2.14) for r big enough,
[P Poy - PLf = Lp(Por - PLf) | = [|@pPay -+ PLf|| < C1Mglflo <e.
From the first statement, we have, uniformly on the unit ball of V:
ln [P Pocs - PaysPacr -+ Puf] = P'[Pacr -+ Pif]] =0.
This implies (2.17).
o

LEMMA 2.13. For a constant Cy > 1, we have for all integers p < n:

1Po- Pro =P o < Calpl Yy min(d(Papsrs Par)i96 '}
k=1

IN

P
Calpl (D d(Pa—r41,P) + (1 = 70) " 8).
k=1

Proof: We have from (2.5) and (2.14) :

[Po--Pro—Prol| < > |[PY Py gyr--Pro— PPy Py
k=1

IN

ol > min{C M d(P, 41, Pa-i), Ct M1},
k=1
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3. Application to some classes of expanding maps of [0, 1]

e Classes of expanding maps of the interval

There is a large number of works on expanding maps of the interval, following
Lasota-Yorke (1973) ([LY73]), Keller ([Ke80], [Ke85]), Rychlik ([Ry83]). (For
the central limit theorem for these systems, see in particular the following references:
A. Broise [Br96], M. Viana [Vi97]).

In what follows, we consider the probability space (X,.4, m), where X is [0, 1],
A the Borel o-algebra and m the Lebesgue measure. We apply the results of section
2 to the space B = L'(m) with the subspace V of BV (bounded variation) functions
on [0, 1].

We write V(f) for the variation of a function f € V. The space V is equipped
with the norm

[flo =V () + 1l

where || ||1 is relative to the Lebesgue measure. For f € V, we have: || f|locc < |flv-
The hypotheses (H7) and (H2) of section 2 are satisfied.

We consider a class C of piecewise expanding transformations 7 of I = [0, 1]
and the corresponding set of transfer operators

P={P,T€eC}.
If (7,,) is a sequence of transformations in C, by composition we get the sequence:
0p =TnoTp_1---011,n > 1.
Let us recall the following notations
Ay = w7t A,
Iy = Py b,
where P, = P, .
We assume that the transformations 7 in C satisfy the following hypothesis:

HypOTHESIS 3.1. There exists a finite or countable partition (I;) of I such
that the restriction of 7 to each interval I; is strictly monotone on I; and can be
extended into a derivable function with a BV derivative on I;. The transformations
T satisfy:

(3.1) y(r) := inf inf |7'(z)] > 1,
Jj x€l;
’ o
(3.2) K := sup sup |M| < 00.
J aFtyel, rT—y

Let us remark that the subspace Vo = {f € V : m(f) = 0} is invariant by the
operators P, 7 € C.

To get (2.1) which allows to apply the results of section 2, we have to consider
classes Cy of transformations in C for which the following condition holds:
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Condition (D,): We will say that a class Cy in C satisfies (D) if the corre-
sponding set of transfer operators Py = {P;, T € Co} verifies the conditions (H3) of
section 2.

In particular, if Cy satisfies (D,.) for some integer r > 1, each operator P;
corresponding to 7 € Cp satisfies for constants p, €]0, 1], C, the so-called Lasota-
Yorke (or Doeblin-Fortet)! inequality:

(3-3) VeV, [P flo < prlflo + Crll fl1-

By proposition 2.8, P. has in the space V an invariant function h, > 0 of
greatest support such that m(h;) = 1 and this function is the density of an ACIM
for 7.

As a consequence of Lemma 2.5, we have also:

PROPOSITION 3.2. : For any sequence (1,,) belonging to a set of transformations
Co which satisfies (D,) for some integer r > 1, the asymptotic c-algebra A =
Ni>1 b P A s finite.

e A counterexample to stability

If we perturb a transformation 7y verifying (3.3), the inequality (3.3) with
bounded constants C,. independent from the perturbed transformations 7 can be
lost. A counterexample has been given by G. Keller in [Ke82] and M. Blank and
G. Keller in [BK97]. Let us recall it.

ExamMPLE 3.3.

Let r and b be two parameters such that b > 1/2 and 0 < r < 1/4. We consider
the transformation 7, of [0, 1] into itself defined by: 7p(z) =1 —z/r, for 0 <z < r,
To(z) = 2b(1 —2r) "L (z —7), for r <2 < 1/2, p(x) = 7(1 — 2), for 1/2 <2 < 1.

Each transformation 7, has an unique ACIM (cf. [Ko75]). Let hy be its density.
For 1/2 < b <1—2r, we have: 7,([1 —b,b]) C [1—b,b], which implies that hs has its
support in the interval [1 — b, b]. If (b,,) is a sequence such that 1/2 < b, <1—2r
and lim,, b, = 1/2, the sequence of invariant measures (hy, m) converges weakly to
the measure d; /5, the Dirac mass at the point 1/2. Therefore the transformation
12 is not stochastically stable in {7;,1/2 <b <1 —2r}.

This counterexample to stochastic stability gives also a counterexample to the
property of sequential stability 1.5. It is characteristic of the obstruction to sto-
chastic or sequential stability. If we write to simplify 7, = 7, we get, using the
notations of 1.1 that we can have lim ||II,,1||cc = 400, if the convergence of (b,,) to
1/2 is slow enough. In particular in that case, the family (II,,1) is not bounded in
variation.

n their paper of 1937 [DF37], Wolfgang Doeblin and Robert Fortet introduced the tech-
nique of what later has been called “quasi-compact operators”. For the study of the “chanes
liaisons compltes”, a concept due to O. Onicescu and Gh. Mihoc, they used an inequality of the
type of 3.3. In [LY73] A. Lasota and J. A. Yorke proved and used this type of inequality (in the
BV-norm) in the context of dynamical systems, for expanding maps of the interval.
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e Classes where (D,) holds

We give now a series of examples where the condition (D) (i.e. inequality (2.1))
can be obtained. To get it, the method is the same as for a single transformation or
a random product of transformations (cf. [LY73], [Ke80],[Li95],[Br96], [Vi9T7]),
[Bu99]).

We will consider the following assumption on a transformation 7. We suppose
that for a subdivision 0 = ap < a1 < a2 < ... < a, = 1 of [0, 1], the restriction of
7 to I; =]aj,a;j41] is C' and strictly monotone. Let o; be the inverse application
of the restriction of 7 to I;. Write bj = lingHa;r 7(z) (resp. b; = limxﬂaj_ T(x)).
The condition is:

(3.4) Vn > 0, V7, T”(b;t) & {ag,a1,...,ap}.

THEOREM 3.4. Condition (D) is satisfied by each following family Cy of trans-
formations:

a) Co is a class of transformations T € C such that the coefficient v(T) of
dilatation defined by (3.1) verifies v(1) > 2+ a, a > 0 independent of 7;

b) Cy is a (convenient) neighbourhood in C of a transformation T verifying (3.4);

¢) Co is the family of transformations T : x — LBx mod 1 (B-transformations)
such that B> 1+ a, a > 0 independent of T;

Proof.
1) Let 7 be a transformation C. The corresponding transfer operator P; is
given by:

Prfa) = Y- £(052) Lo (o)

7' (52)|

If ¢ is a function on [0,1] and J =]u,v[C [0,1], the variation of ¢1; can be
bounded via the following inequality where [u, v] C [¢,d] C [0,1]:

Vie Ls) = V(@) +le(@)] + |0(0)] < Vi) () + Viea(9) +2 inf [o(0)]
2

(3.5) < WMW*”“”*H@@AMMW“

If [e, d] = [u,v], the inequality reduces to:

Ve ls) = V(@) + @]+ o)l < Vi (0) + Vi (0) +2 I0f ()]
2

(3.6) < 2WVuw(e) + o)) /[w] lo(t)] dt.
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a) We apply first (3.6) for the intervals [c,d] and 7(I;) =]aj, 5;[. This gives
for the variation of P, f:

V(P f) < Z VI i )oo; T(Ij)]

7.

< 3 Vs [G7) o)+ Xl 1) @500 + 181
f 1 f

= 22 V[QJ”BJ ’7'_ OUJ +Z T(Ij /[ajaﬁj] |(F)(ij)| du

< f

1
2 Viay.8,1 [(5) 0 05] + / Jlde
zj: [a, [3;] 7— i) Z T(Ij ) laj,aj41]

The first term on the right (cf. [Br96]) is less than
2 K
SV 422 fh
SV + 251l

The second term is less than 2||f||1, where § = inf; m(71;). Therefore we get:

K
(37) V(P < 2V + 251+ 51

The inequality (3.7) implies that (D,) is satisfied for » = 1 in the case a) of the
proposition.

2 b) For this case, we refer to Viana [Vi97].

2 ¢) B-transformations

Let a > 0 and B, k > 1, be real numbers such that Gy > 1+ a. Denote by 7y :
x — fBrr mod 1, the corresponding (-transformations and write 6,.(x) = 7,....71 2.
We show the existence of r > 0 depending only on a such that (D,.) is verified.

Let us consider the partition P, of [0, 1] into monotonicity intervals of 6,, for
a given n. We call full intervals of rank n the open intervals J € P,, such that the
transformation 6,, applies J surjectively on I =]0, 1].

Let J1 , ...y J; denote the full intervals in increasing order and Jj, 1, ey, for
k=1,..,t, the non-full consecutive intervals between J and J? 1

Let w(r) = maxg=1,.. +¢(k) be the maximal number of non-full intervals sep-
arated by two full intervals (we include the case of contiguous full intervals at the
left of the end point 1).

If [u, v] = Ji,; is a non-full interval, we bound the variation on this interval by
an application of (3.5) to [u,v] and to the interval [c,d] = J} = JF U Z(k) 1 Ji,; which
is the union of the full interval J; (at the left of [u,v]) and of the non full intervals
which are consecutive to J}.
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Let m, = B1...0,. Asm(J) = m, 1 if J is a full interval and the intervals j,f are
pairwise disjoint, we get:

1 w(r) p 1
VRS < o S+ D SV + o [
1+ 2w(r)

Ty

< V(f) +2w(r) [ flls-

For f-transformations, we have w(r) < r. Indeed let J} be a full interval and
Jk,15 oy J,0(r) non-full intervals following J} at the right. At the next step J} can
give rise possibly at the right to a monotonicity non-full interval for 6,1 ; on the
other hand, if one of the intervals Jj ; gives rise to more then one monotonicity
interval for 6,11, among these intervals at least one is full and at most one is not
full. This shows that w(r + 1) < w(r) + 1. Therefore we have w(r) < r,¥r > 1. If
we choose r such that 1+ 2r < m, we get (D).

O

¢ Exactness of some sequences of expanding maps
A) Transformations 7 : ¢ — Sz + o mod 1, with § > 2.

We take for Cy the family of transformations of the interval I = [0, 1] of the
form 7 : x — Bx + a mod 1, with 8 > 2 4 a, where a is a fixed > 0 real.

In the following lemma, we extend a result of Wilkinson [Wi74] for a single
transformation 7 :  — Sz + « mod 1 to the case of a sequence (73).

LEMMA 3.5. For every € > 0, there exists an integer r > 0 such that, for every
n > 1, we can cover I, up to a set of measure less then €, by full intervals of rank
between n and n + .

Proof: Let m, be the product m, = ,0n—1...01, T'(n) the number of atoms of
the partition P,, F(n) the number of full intervals of rank n

If J is a full interval of rank n, we have: m,m(J) = 1, and therefore (summing
on full intervals of rank n) we get F(n) = m, >, m(J) < mp.

Since an interval of rank n — 1 gives at rank n at most 2 non-full intervals we
have: T'(n) < m, + 2T(n — 1) ; hence, for a constant C:
2 n—1
2

2
T) <7op+27p 14+ dt2 < (Il — 4" &+ + 2 y<Cn,
(n) < n + 2 A a W R

Let € > 0 be given and n an integer > 1. Let us take first the partial covering
of [0,1] by full intervals of rank n. There remains non-full intervals of rank n (at
most T'(n)) which we partially cover by full intervals of rank n + 1. This step gives
rise to at most 27 (n) non-full intervals. Using this procedure up until n + r, there
remains a non-covered set which is formed of non-full intervals of measure at most
and whose total measure is less then

2"T(n) < C2'm, c2r 2
Tptr  Tndr ﬂn+’l"ﬂn+’l"fl"'6n+l - 2+a
for r big enough (independent from n).

Tntr

)" <e,

O
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B) Transformations 7 : + — Gz mod 1.

Let us take now for Cy the family of transformations of [0, 1] of the form 7 :
x — Pz mod 1, with # > 1+ a, where a is a fixed > 0 real.

By the same argument, changing only the recurrence formula into : T'(n) <
7 + T(n — 1), we have T'(n) < 7 m, and therefore:

T(n) _ >0 1
< = T+ Tp—1+...+1
Tn+r Tn+r ﬂnJrrﬂnJrrflmﬁl ( ! )
! ettt ) <C(ta)”
o 6n+r6n+r—l---ﬁn+l ﬁn Bnﬁn—l Bnﬁn—l--ﬁl o .

THEOREM 3.6. For both families of transformations A) and B), any sequence
(Tn) 1is exact.

Proof: The proof is that of [Ro61] for the iterates of a single g-transformation.

Let A be in the asymptotic o-algebra with m(A) > 0 Let us show that m(A) =
1. We have A = 6,,10,,A. Let € > 0.

By Lemma 3.5 the family of full intervals (of arbitrary rank) generates the
Borel o-algebra. Therefore there exists a full interval J such that

m(J N A) > (1 - e)m(J).

(If not, we would have m(B N A) < (1 — e)m(B), for every B, in particular for
B=A)

Let n be the rank of J. The restriction of 6,, to J is an affine bijection from J
onto 10, 1[. We have:

m@n(J —JNA))=m(J—-JNA)/m(J)=1—m(JNA)/m(J) <e;

therefore:

m(0,A) > m0,(JNA) > m0,J) —m(0.(J —JNA)
> m(@,J)—e=1—c¢,
m(0,1(0,A)°) = / Lig, a)e 1,1 dm < Ce.

e Decorrelation, law of large numbers

Let Cop be a set of transformations of [0, 1] such that:
1) Cp one of the families satisfying the statement of Theorem 3.4;
2) any sequence (7,,) in Cy is exact;
3) Cy verifies a compactness condition: if (0,,) is a sequence in Cy, there exists a
subsequence (0,;) and a transformation 7 € Cy such that

(3.8) lim||foo,, — for|i=0,Yf € L' (m).
J
This condition implies the compactness condition (C) for the corresponding set

of transfer operators Py = {P,,0 € Cp}. In the previous paragraph we provided
some examples of such sets of transformations.
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The hypothesis of Proposition 2.11 is satisfied and therefore Proposition 2.7
can be applied. Therefore the condition of decorrelation (Dec) is satisfied by Cp.

Consider now transformations 7,,, n = 1,2,...; in the class Cy. Let f be a
function in V. Using the notations (1.1), we set
(3.9) fi == f —m(fI,1).

It follows from (1.10) that:

Py P fe Hel)))
11,1

E(Ty - Tpfe Ty---Toft) = E(Ty--Thfe Ty Ti(

E(fi Py Prya(fe TIe1)).

As f~z II,1 € Vy and
(3.10) |fé H€1|v < 3M|f|va

the condition (Dec) implies:
I/T1 +++Tp fio Tr -+ Ty fo dm| < 3MD'XEHFL | f])1.

It is well known that, if (Z,,) is a sequence of centered square integrable random
variables such that |IE(Z, Z,4¢)| < ¢, where (g,,) is a summable sequence, the law
of large numbers holds for the sequence (Z,). This implies the following law of
large numbers:

THEOREM 3.7. Under the previous conditions, we have, for f € V and m-a.e.
x’

1 n
lim = Y "[f(r -+ mz) — /T1 Ty f dm] = 0.

n -n
k=1

e Application in a neighbourhood of a transformation, equidistribu-
tion

Due to Proposition 2.10 and Theorem 3.4, the result of Theorem 3.7 is valid
in a neighbourhood of an exact transformation 7 in C which satisfies (3.4). Let 7,,
n = 1,2, ..., be transformations in C such that lim, |7, — 72| = 0, for each x € I.

The exact transformation 7 has an unique ACIM with density h and we have
by Lemma 2.12 lim,, [ f Iy1dm = [ f h dm ; therefore:

L1
hglgl;/ﬂ---mdm:/fhdm.

We deduce from it the following equidistribution theorem (sequential stability):
THEOREM 3.8. 1) If 7 = lim,, 7, if 7 is exact and verifies (3.4), then for m-

a.a. x, the asymptotic distribution of the sequence (0p(x) = Ty -+ - T1Z)n>0 1S given
by the measure hm: for every BV function f, we have

n—1 1
1
hrrlnﬁkz%f(rk---ﬁm):/o fh dm.
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2) If (Bn) is a sequence such that lim, B, = 5> 1, and (0,(z))n>0 is defined by
Oo(z) =z, Opt1(z) = (Bnbn(z)) mod 1,n > 0, then we have the same conclusion:
for almost all z, the sequence (0,,(x))n>0 is distributed according to the measure
h m, where h is the density of the ACIM for T : x — [Bx mod 1.

In particular if B is an integer > 2, the sequence (0n(x))n>0 is uniformly dis-
tributed on [0,1] for a.a. x.

e Rate of convergence of (II,p) to m(y) h, case of S-transformations

The convergence given by Lemma 2.12 is qualitative. For the g-transformations,
the rate of convergence is related to the rate of convergence of (3,,) towards 8. To
prove it, we need a measure of the regularity of functions.

For a real t > 0 and f a bounded Borel function, we set

w(fvx’t) = sup |f(y)—f(x)|,

ly—=z|<t
1 1
W)= [ et dn@ = [ sw |- f@)] dnlz).
0 0 |y—=z|<t
By Fubini’s Theorem, we get:
(3.11) w(f,t) <2tV (f).

LEMMA 3.9. There exists a constant C such that for any two reals 31,82 > 1
with Py, Py the transfer operators corresponding resp. to the transformations x —
Gix mod 1, © — (Box mod 1, we have:

(3.12) d(Py, Py) < C|B1 — Bal.
Proof: To simplify we assume that G2 > 31 and [2] = [B1].
We have:
e Ry 1, x+ B3]
|Pof(z) = Prf(z)] = | 2 Ef( 5 )+Ef(T)1[o,{52}]($)
£1]—1
G NS YR )
2 61f( 3 ) ﬁlf( 3 110,111 (2)]
< 1-Bpiiw + 3 LipEtE) - patky
B — b B2 B
1 + 1 +
4ol g @) + 1 5P 10 g @)
< P2Blpisie) + Puts 5 - 3w

1
+E|\f|\oo 11,481 (®) — 1,15 (@)]-

Since m is P-invariant, we have:

/ Pul(J, Bi - é)(x) dm(z) = i(f, — — ).
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Integrating in the previous equality and using 3.11, we get for some constant C':

[P2f = Piflls < C|flolB2 = Bl

Using this Lemma and Lemma 2.13, we can now give a rate of convergence of
the sequence (II, ) to m(p)h, for a BV function ¢. Recall that the constant g as
defined in Proposition 2.8, inequality (2.14).

LEMMA 3.10. There exists a constant C7 > 1 such that for all integers p <n

IPo--Pro—=P ¢lli < Cilply Y min{|Buri1 — B30 "}
k=1

p
Crlelo (D 1Bk — Bl + (L =) 18).

k=1

IN

As a corollary of the previous result we get:

COROLLARY 3.11. If |8, — O] < #, with @ > 0, we have, for a constant A
independent from n and from @ € V:

Alogn

M —m(p) hllx < [lo-

nf

4. A Borel-Cantelli lemma

A law of large numbers of the type of the Borel-Cantelli Lemma, stronger than
Theorem 3.7, can be obtained under a condition of minoration for the sequence
(I1,,1), which can be checked for the S-transformations, when the £,’s are in a
convenient neighbourhood of a fixed .

Condition (Min): There exists § > 0 such that IT,,1(x) > d, Vx € [0, 1],Vn >
0.

This condition and boundedness of the sequence of functions (II,,1) imply that
the integrals [T --- T f dm and | f dm are of the same order, i.e. for f > 0 and
all k> 1,

dm(f) <m(Ty---Tpf) < sup [, 1[ocrn(f)-

THEOREM 4.1. Assuming the conditions (Dec) and (Min), if (fn)n>o0 is a se-
quence of positive BV functions such that

Z m(fn) =+oo and sup |fn|v < 400,
n>0 n>0
then the sequence (Fy,)n>o defined by

= ZZ:Ofk(Tk"'qu;)
B Ezzom(Tl...kak)anZ 0,

(4.1) Fu(x)

converges m-p.p. to 1.
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Proof: 1) We show that there is a constant C' such that

C
/E(Fn—l) dm < ST (T T )

Write fp = fi — m(feIl1),Vk > 0. We have for some constants Cq,Ca, for
each n > 1:

(Zm D)) [ (F= 1 dm

<2 ¥ [ B nfne T
0<k<t<n
< > (> AP mife)
0<t<n 0<k<e
< Coswlfjle Y mlfe)
J 0<e<n
1
< Cegswlfjle > m(Ty--Tufo),
J 0<e<n

hence the result.

2) As the functions (f,) are uniformly bounded, we can assume || f,|c < 1.
Let ¥ be the sequence defined by ¥(n) = inf{¢ : Zi:o m(Ty -+ Tifr) > n?},n> 1.
We have

TL

k=0
The subsequence (Fy,)) converges m-a.s. to 1, since

Z/|Fw(n)—1| dm<Z—<+oo

n>1 n>1
For n € IV, let r = r(n) such that ¢(r) <n <(r +1). The inequalities
w(r+1)
r Dopmo  m(Th Ty fr) r+2
(r + 2)2 Fyy < Fn < w(r) Fyiri1y < ( , )? Fyiry1)
> ko MU(T1 - Tie fi)

imply the convergence of (F},)n>0 m-a.s. towards 1.
o

REMARK 4.2. The previous “Borel-Cantelli Lemma” applied to sequences of
regular sets gives information on the visits of regular sets of small measure by the
sequence (0, (x)).

Let (By) be a sequence of sets such that sup, » < 00. Then if (Dec) and
(Min) are satisfied, we have either: ), m(B}) < 400 or

Z 1, (0xx) = +o0, for a.a. z.
k>0

For example in the case of [0, 1], we can take for (B,,) a sequence of intervals
of length 1/n. We get that, infinitely often, 8,z € B,,.

For r > 0 and a €]0, 1], let k(x,r) :=inf{l: 0,(z) € [a — r,a + 7]}.
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Let v be any real > 1, M = sup,, ||II,1||cc. Let us take ¢ > 0 such that
5(y—1) > 2Mne.
By (4.1) there exists N = N(v,¢,x) such that, for n > N,

D s (Orr) = (1=e)(Q_ om0 Br)) — (1+e)(Y_ m(0; " By))

n” n”
> (52 m(By) — 2M€(Z m(By)) > 6(y — 1)Logn — 2MevyLogn.
This implies that k(z,1/n) < n?, for n > N(v,e,z) and therefore for a.a. x:

. Logk(z, )
1 —— <1
et

e Minoration of 11,1 (case of g-transformations)

In this paragraph, we show that the condition (Min) is satisfied in the class of
[B-transformations for a neighbourhood of each g-transformation.

We consider reals 3, > 1 and the corresponding [-transformations.

Let xo(z) =1 and, for n > 1

(4'2) =1+ Z ﬁ n— ]+1 1{z<‘rn‘rn,1.A.-rn,j+11}-
We have:
z+k +k
Vn > 0, Pn+1Xn Z 6n+1Xn ) ( ) = XnJrl(x) + ¢n,
k>0 ﬁ Bn-i-

where ¢, is a constant. By integration with respect to the Lebesgue measure, we
get that ¢, = m(xn) — Mm(Xn+1)-

On the other hand, if (3, is such that |3, — §| < a, for some a > 0 such that
B —a > 1, then the functions y,, satisfy:

1< ynlz) < %

When (G = 8 > 1, for each k, we get:
0 < Xnt1 — Xn < A7) and lime, = 0.

= M,Vz € [0,1].

In that case, the sequence (x,) converges to the sum

X=14> B lgeriy
j=1

which is P-invariant and gives, up to a factor, the density of the ACIM for the
[-transformation. This shows also that the density is bounded from below by the

constant % > 0 (cf. Renyi [Re57], Parry [Pa60]).

In the general case, if the (§,’s are close to a fixed 3, as in the estimation of
the rate of convergence of (IL,,p), one can show that ||xn+1 — X»l|/1 is small and
therefore also the constant c¢,, for a small enough.
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Iterating, we get:
PPy 1. Py kXn—k—1
=Xn T Cn-1+ Cn—2Pnl+cn 3PPl + ...+ CnfkflpnpnfLupnkarl]-a

hence
k+1

(43) |PnPn—1---Pn—an—k—1 _Xn| < CZ|Cn—j|-
j=1

PROPOSITION 4.3. For every3 > 1, there exists a > 0,0 > 0 such that, if
Bn €8 —a,B+al], then II,1(x) > 4.

Proof. Recall that we have |P,...P,_k1l|lcc < C, independently of n and &,
Im(x;) — m(x;j+1)| < € for j big enough. On an other hand we have (cf. (2.14)):

11,1 — P,...P 1], < Cp.
We fix r such that M C~§ < 1/4. For n big enough it follows from (4.3):
PPy 1..Py_Xn—r—1>Xn—TE>1—r1¢,
hence:
P.,Py 1..Py 1 >M PP, 1..Py s Xn—r_1> M (1 —1¢)
and finally, taking § = ﬁ and ¢ < ﬁ, we obtain the inequality:
,1> M Y1 —re) — Cyh > 0.

5. Central limit theorems

In the following, we assume that the transformations 7,, belong to a family of
transformations Cy such that the conditions (Dec) and (Min) are satisfied.

As we have seen, this is the case for any By > 1, when Cj is the set of (-
transformations for 8 in a suitable neighbourhood of Gy > 1.

We will show the convergence towards the normal law for the sums

n—1
S fr--ma)
k=0

after centering and normalisation. (We have to center at each step of the iteration
since there is no joint invariant measure for the transformations 7,,.) We consider
also the more general case of a sequence of functions f,.

We define the operators Q,,, for n > 1, by
Pn (anfl ]-)
m,1
Let (fn) be a sequence in V such that sup,,~q |fn|o < +00. Write

g— Qng =
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Let h,, be defined by the relations h, 11 = Qann + Qn+t1hn, with hg = 0. We get:

hnp = annfl+QnQn71f~n72+~'-+QnQn71~~'Q1f~0
1

= [Palfari 1) + PaPact(faollimal) 4 oo+ PaPacsPr(follo ).
3

The functions fn,kﬂn,kl belong to Vy. Therefore, under condition (Dec), we
have an exponential decay for the norm | |, of the general term of the previous sums
and the sequence (h,,) is bounded for the norm | |,. In particular it is bounded for
the uniform norm. We write
(5.1) on = fothy—Thp1hnia,

(5.2) U, = Ti..T,pon.

(From (1.10), the sequence (U,) is a sequence of reversed martingale for the
filtration (A,) and we have

n—1 ~ n—1
ZTl...kak = Z Us+ Ty Tphn.

Therefore we can replace Zo T fk by a reversed martingale, the error term
being bounded. We can now apply a theorem of B.M. Brown ([Br71]) (see 5.8
below) on martingales to get the CLT.

We write S,, = Z;& Ty - Ty f
THEOREM 5.1. Let (fn) be a sequence in V such that sup,>q|fnls < +o00.

Assuming (Dec) and (Min), we have:
- either the norms ||Sy|l2 are bounded and in that case, for a.e. x, the sequence

ka 7'1:[,‘ nz].

is bounded,
- or the sequence

(fo —m(fo) +T1fi—m(Tifi)+...+T1r-Tpr fna—m(Ty-Th 1 fn1)

)n>1
[1Snll2 -
converges in law to N(0,1).
Proof. Let:
n—1 n—1
o= B, V, Z Ui | Ak 1].
k=0

k=
We have to check conditions i) and ii) of Theorem 5.8:
i) the sequence of v.a.r. (0,2 V;,)n>1 converges in probability to 1 ;

n—1
i1) for every € > 0, nEIJIrlOO 0,2 Z E[U,fl{wkbwn}] =0.
k=0

The difference [[|Syll2 = || 320 Ukll2| = [I1Sallz = (
ZZ;& Uk||2 is bounded. We have

E[U])?] < |1Sn ~

E[UR| A1) = T - Ty T
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If the sequence (0,,) tends to +oo, ii) is satisfied since the functions U are
uniformly bounded. For the first condition, we apply the law of large numbers
(Theorem 4.1) to the sequence

(Pk+1(<Pi Hkl)) _ (Pk+1[(fk + hy — Tk+1hk+1)2nk1])
M1l Iyyal '

Using the fact that the functions II,,1 are bounded from below from 0, we get

Pt (o7 TI1)
Myya1

and we can apply 4.1, under the assumption

sup | lo < o0
k

o0
Z/(Tk < Tify + T+ Tihg = Tioyr -+~ Tihg41)® dm = 400,
0

In that case, we have lim,, o, = +00 and lim, ||S,||2 = +o.

On the contrary if this series converges, we have by a martingale theorem that

the series
n—1

Z[Tk o Tifr+ T Trhy — Tigr - Tihia]

k=0
converges for a.a. x and the sum ZZ;& fe(rie - -mx) = (m(fo) + m(Thfr) + ...+
m(Ty - Tn_1 fn—1)) can be written as the sum of a (for a.a. x) bounded sequence
and of Ty - - - Thhgy — Tke1 - - - T1hg41 which is uniformly bounded in k.
|

REMARK 5.2. The previous statement can be made more precise (locally) in the
class of S-transformations and for a fixed function f. Denote by P the relativised
transfer operator corresponding to z — Bz mod 1 for a given 3 > 1 and by "G its
potential (cf. below).

In a neighbourhood of a [-transformation, if f is not a coboundary for the
transformation x — [z mod 1, the functions f — hy — Tk1hgt1, which are close
(in L2 norm) to f — "P"Gf + T"P"Gf, have norms bounded from below. This
shows that the variance in the previous theorem is of order y/n.

As a particular case of the previous theorem we have, in the case of the iterates
of a single transformation of the interval which belongs to the class C and whose
ACIM has a strictly positive density, the following result: if (f,,) is a sequence of BV
functions such that sup,,~q | fn|v < 400, then the sums Zg_l Tk f;, after centering
and normalisation satisfy a CLT.

e CLT when lim, 7, =7

We can give a more precise formulation of the CLT for a fixed BV function f,
when lim,, 7, = 7.

We suppose from now on that the P-invariant normalised function h is m-a.e.
strictly positive. This is the case for the (-transformations as we have shown,
but not always true for transformations of the form x — Bz + a mod 1, as in the
following example:

3= 1+\/57a_ 3-8

5 = =5, where the density % is zero on interval ]@ _14_4\/5[.

2 I
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We consider the “relativised” operator "Pf = P(Z D and its “potential” de-

fined, for f in V such that m(hf) =0 by:

k

k20 k=0

The probability hm is » P-invariant.

We set & = "Gf, so that f can be written f = £ — "P¢. The function ¢ has
still a bounded variation.

THEOREM 5.3. Let f € V be such that m(h f) = 0. Let

(5.3) o m(h ("Gf)?) - m[h (hPth)Q}

(5.4)

[ p[(reso - pharw) o e d

0

If f is not a coboundary for x — Bx mod 1, we have: 0® > 0 and for every density
p €V such that m(p) = 1, under the probability o m, the sequence

(G5l =mleh) +Tof = m(@Tf) 4o+ Ti Tt [ = m(e T Tt 1))

n>1
converges in distribution to N'(0,0?).

For example for the (-transformations, taking into account Corollary 3.11, we
have:

COROLLARY 5.4. Suppose that |3, — 8] < #, with 6 > % Let f € V such that
m(h f) = 0. Suppose 0> # 0. Then for every ¢ € V such that m(p) = 1, under the
probability ¢ m, the sequence of real random variables

(%(f-}-Tlf—l—...+T1"'Tn—1f))

converges in distribution to N'(0,0?).

n>1

The proof of Theorem 5.3 will be given in several lemmas. We begin with some
notations:
ForneVand ke IN,let ny =n— FEom[Th - Ten] = n—m(nIip). We set:

Ue = Tv-Tp (&) — Eom[Th - Tk (&) | Art1],
Wi = FEon[Ti Tk (&) | Aksa] = T1 - Thga (hpf)k_H-

With these notations, we have:

i
L

(Tl"'kak — (Uk +Wk)) =TTy (hpf)n - (hpg)o,
0

el
Il

LEMMA 5.5. Let ¥ be an integrable function, (g,) and (p,) two sequences of
functions such that: sup,, ||gn]lcc = M < 00, ||gnenli — 0,|ln — ¥|l1 — 0. We
have then: ||gnlgysoylli — 0.
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Proof: We apply the inequality

lontgusorls < M m((0 < <)) + 7 [ lgallo] dm

1 1
<Mml{p <)o > 0D+ 2 [1galle = gul dm+ 2 [ lgallon dm.

LEMMA 5.6. The sequence (f >rco  Wi)ns1 converges in IL?(pm)-norm to
0.

Proof. For f € V, we have pm-a.e.

Piy1 (f iyp)
Hit19

En [l =0y Hkt19] = 0.

FEom|T - Tk f| Ags1] = Tv---Thpr (

em({Ty - Tl = 0})
Hence Wy, =Ty -+ - Ti41 gr+1 with

1{Hk+190>0});

Pk((f)kfl Hk‘p) h
gk = Tl{nw>0} - ( Pﬁ)k.
We have: m(gx Ilxp) = 0,Vk > 1 and sup,>, ‘gk Hkg0|v = L < 4o00. Moreover
the inequalities:

En[l9alTag] = Enn|Pa(én-1Ta10) = (“PE), Tt
< Bl|Pa(Tla1p) - "PETLy|
+[m (E 1) —m (" PETTg) |
< Em|: Py (E11, 1) — P(EHnA@)H

+ o [[P(ET-1¢) = P(h€) |
B[ ["PE (h =) || + [m(§Ta-19) = m(" PETL)|
show that limy, 4 |gn IIn@|l 1 (m) = 0. [Remark that "P¢ is bounded by [|£]|sc].
As supy>q [|gklloe < +00, using Lemma 5.5, this implies:

HEIEOO |~ gnllz1(m) = 0 and ngffw lgnll 1 (m) = 0.

For 1 </ < k, we have then:
Eomn[WiWe] = Bk Pt - Prya (ge41 Tep19)]

< sup ||gjrillmrom) I1Prest - Py (ger1 og10) [l
j>l+1
< DAk_e‘ge+1He+1<P|v sup | gj+1llz1(m)
J>e41
<

D LN sup |lgjsallm: m)s
041
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and E[W2] < L ||ge+41]lz1 (m)- This implies the result.
o

LEMMA 5.7. The sequence (

S|

ZE¢m[U1§|Qk+1])n21 converges in IL' (o m)
k=1
norm to o given by (5.4).

Proof: We have:
Eon[UF|Giss] = Bom[T1 - Te & Gisa] = (BpmlT1 - T & | Arra])

By the martingale property, we have convergence to zero in IL> (¢ m)-norm and
pm-a.e. of the sequence

3
|
—

1
- (Ty+ Th&& — Epm[Ty -+ T & | Art]),
0

=
Il

so that the sequence
1

Ecpm [Tl Ty EI% | 'Ak-i-l]

S|
el 3
Il |
)

has, for the IL*(p, m)-norm and pm-a.e., the same limit as

1 n
il E Tl"'Tk£]%~
n

k=1

Therefore it converges (Theorem 3.8) to m(h&?) — (m(hf))Q.

On the other hand the convergence of ||g, I,/ g1 (m) to zero (cf. proof of
Lemma 5.6) implies that the sequence of r.r.v.

Ecpm[Tl SRR I 3 | AnJrl] =T Tag (hpf)n+1

converges in El(go m)-norm to zero. As these r.r.v. are uniformly bounded, this
implies that
2 2
(Ecpm [Tl Ty €n| -An+1]) —Ty--Thgr ((hpf)n+1)
converges in IL'(pm) to 0.

We deduce from it that the sequence

1 n—1

= Bon[Ti-- Ti &l Aia])”

n
k=0

converges for the IL*(¢m)-norm to m(h (th)Q) — (m(h §))2. This implies the
result.
o

To conclude the proof of Theorem 5.3 we apply the following result, whose proof
is analogous to that of the theorem of B.M. Brown [Br71] for direct martingales.
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THEOREM 5.8. Let (Un, gn)n>0 be a sequence of differences of square integrable
reversed martingales, defined on a probability space (Q,F,IP). Forn >0, let

n—1 n—1
Sp=Up+...+Up1, oo=> E[UF] and V,=> E[U}|Ar1].
k=0 k=0

Let us assume the following two conditions:
i) the sequence of r.r.v. (0,2 Vyu)n>1 converges in probability to 1.

n—1
i) For each € > 0, nEIJIrlOO 0,2 Z E[U,fl{wkbwn}] =0.
k=0
Then we have:
: Sn 1 /" _s2
lim sup |[P|l— <a] - — e 2 dex| = 0.
n—+00 a€%| [Un <ol Vor J_so |
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