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Abstract

This paper presents a novel method for 2D and 3D shape matching that is
insensitive to articulation. It uses the eccentricity transform, which is based
on the computation of geodesic distances. Geodesic distances computed over
a 2D or 3D shape are articulation insensitive. The eccentricity transform
considers the length of the longest geodesics. Histograms of the eccentricity
transform characterize the compactness of a shape, in a way insensitive to
rotation, scaling, and articulation. To characterize the structure of a shape,
a histogram of the connected components of the level sets of the transform is
used. These two histograms make up a highly compact descriptor and the re-
sulting method for shape matching is straightforward. Experimental results
on established 2D and 3D benchmarks show results similar to more com-
plex state of the art methods, especially when considering articulation. The
connection between the geometrical modification of a shape and the corre-
sponding impact on its histogram representation is explained. The influence
of the number of bins in the two histograms and the respective importance
of each histogram is studied in detail.
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1. Introduction

The recent increase in available 3D models and acquisition systems has
created the need for efficient retrieval of stored models, making 3D shape
matching gain attention also outside the computer vision community. To-
gether with its 2D counterpart, 3D shape matching is useful for identification
and retrieval in classical vision tasks, but can also be found in Computer
Aided Design/Computer Aided Manufacturing (CAD/CAM), virtual reality
(VR), medicine, molecular biology, security, and entertainment [1].

Shape matching requires to set up a signature that characterizes the prop-
erties of interest for the recognition [2]. Depending on the task, the invariance
of this signature to local deformations such as articulation is important for
the identification of 2D and 3D shapes. Matching can then be carried out
over this (usually lower dimensional) space of signatures.

1.1. Related work

Most shape descriptors are computed over a transformed domain that am-
plifies the important features of the shape while throwing away ambiguities
such as translation, rotation or local deformations.

For 2D shapes, the Fourier transform of the boundary curve [3] is an ex-
ample of such a transformed-domain descriptor adapted to smooth shapes.
Shape transformations computed with geodesic distances [4, 5] lead to sig-
natures invariant to isometric deformations such as bending or articulation.
To capture salient features of 2D shapes, local quantities such as curvature
[6] or shape contexts [7] can be computed. They can be extended to bend-
ing invariant signatures using geodesic distances [8, 9]. Another possibility
is to represent a shape as a collection of modestly overlapping disk compo-
nents, which contain both local geometric and structural information [10].
More global features include the Laplace spectra [11] and the skeleton [12].
Contour flexibility [13] is a novel shape descriptor of planar contours, which
obtains both local and global features from a contour. It represents the
deformable potential at each point along a contour. The rolling penetrate
descriptor [14] combines the advantages of contour-based and region-based
methods, and provides a unified scheme to handle various shapes, geometri-
cal transforms, noise, distortion and occlusion. Some transformations involve
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the computation of a function defined on the shape, for instance the solution
to a linear partial differential equation [15] or geometric quantities [16].

Among approaches matching 3D shapes, existing methods can be di-
vided into [1]: statistical descriptors, like for example geometric 3D moments
employed by [17, 18], 3D moment invariants [19], and the shape distribu-
tion [16, 20]. A novel shape representation based on [19] is 3D gray level
moment invariants [21], which are independent of translation, scaling and
rotation. Extension-based descriptors are calculated from features sampled
along certain directions from a position within the shape [22, 23]. Volume-
based descriptors use the volumetric representation of a 3D shape to extract
features (examples are Shape histograms [24], Model Voxelization [25], and
point set methods [26]). The 3D shape impact descriptor [27] considers a 3D
object as a distributed 3D mass and it is indirectly computed from the result-
ing fields. The field is described using both Newton’s and general relativity
laws. In [28], 3D shapes are sampled using a technique based on critical points
of the eigenfunctions of the Laplace-Beltrami operator. A point-based statis-
tical descriptor is used that incorporates an approximation of the geodesic
shape distribution and other geometric information describing the surface at
that point. Matching is carried out using Bipartite graph matching. De-
scriptors using the surface geometry compute curvature measures and/or the
distribution of surface normal vectors [29, 30]. Image-based descriptors re-
duce the problem of 3D shape matching to an image similarity problem by
comparing 2D projections of the 3D shapes [31, 32, 33]. Reeb graphs have
been used to match the topology of two shapes [34, 35]. Skeletons are intu-
itive shape descriptions and can be obtained from a 3D shape by applying
a thinning algorithm on the voxelization of a solid object like in [36]. De-
scriptors using spin images work with a set of 2D histograms of the shape
geometry and a search for point-to-point correspondences is done to match
3D objects [37]. In [38], 3D shapes are automatically decomposed into parts
using topological features of the Laplace-Beltrami Eigenfunctions. The parts
of near isometric shapes are registered to each other.

A generic class of approaches for 2D and 3D shape retrieval is to define a
metric between pairs of points on the shape, and compare either directly these
metric spaces or compare features extracted from these spaces. An important
goal of this metric space design is to make the shape retrieval more or less
invariant to bending and articulations. The Gromov-Hausdorff framework
directly compares metric spaces [39], and can be used for shape retrieval in
conjunction with geodesic metric spaces [4] or diffusion spaces that are more
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robust to topological noise [40, 41]. Associated to the diffusion metric, it
is possible to define a metric using a dimensionality reduction within a few
eigenvectors of the Laplacian [42]. To speed-up retrieval applications, one
can consider low dimensional features extracted from these metric spaces.
This can be for instance the set of geodesic distances between critical points
of the Laplace eigenfunction [28], local distributions of geodesic curves [8],
statistical moments of a diffusion distance [15]. A popular class of approaches
considers histograms, such as the distribution of Euclidean distances [16], of
the mean geodesic distance [5] or the maximum geodesic distance [43, 44],
or bags of features [45]. This article elaborates on this idea of building com-
pact geodesic descriptors using two different kinds of histograms to represent
faithfully the distribution of geodesic distances.

Considering the underlying transform on which our descriptor is built,
probably the most similar works in shape matching are [5, 34], where instead
of the length of the geodesic to the point furthest away (this work), the
mean or the sum over all points are considered. Distance based transforms
are also used in [15, 12, 46], where the length of random or shortest paths to
an (existing) boundary are computed. Describing a shape as a normalized
histogram of the values of a function at all points of the shape, as in the
case of the normalized ECC histogram in this paper, is conceptually similar
to the shape distributions in [16], where different functions and histogram
comparison methods are considered.

In [8] a model of articulated objects is presented. It is defined as a union
of (rigid) parts Oi and joints (named ‘junctions’ by the authors). An ar-
ticulation is defined as a transformation that is rigid when limited to any
part Oi, but can be non-rigid on the junctions. An articulated instance of
an object is an articulated object itself (actually the same object) that can
be articulated back to the original one. The term articulated shape refers to
the shape of an articulated object in a certain pose. In the context of shape
matching the concept of articulated shape means that shapes that belong to
articulations of the same object, belong to the same class. Assuming that
the size of the junctions is very small compared to the size of the parts Oi,
it is shown that the variation of the geodesic distance1 during articulation is
small and that geodesic distances are articulation insensitive.

Similar to the method in [8], our method does not explicitly involve any

1Called ‘inner-distance’ in [8].
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part models. In [8] the part based articulation model was used to support
the analysis of the properties of the geodesic distance under articulation. We
have briefly recalled it in Section 1.1 to aid the definition of an articulated
shape. Finding the correspondences between all the parts of two shapes is
an NP -complete problem in graph theory (known also as the ‘matching’ of
two graphs) and requires the correct decomposition of the unknown object
into parts. A one-to-one correspondence (bijection) for all parts is not always
possible as some parts might be missing (e.g. due to segmentation errors).

1.2. Contribution

The eccentricity transform of a shape associates to each of its points
the distance to the point furthest away. It is based on the computation of
geodesic distances and thus robust with respect to articulation. It is robust
against minor segmentation errors, and Salt and Pepper like noise [47], and
stable in the presence of holes (i.e. it is defined in the same way for shapes
with and without holes, and does not require pre-selection of for e.g. a single
closed boundary to be processed).

In a common framework, we propose histograms built on the eccentric-
ity transform as descriptors for 2D and 3D shape matching. The descriptor
consists of two histograms: the ECC histogram h which is the normalized
histogram of the eccentricity transform of the shape, and the ECC structure
histogram s which is the histogram of the number of connected components
of the level sets of the eccentricity transform. The descriptor is invariant
to changes in orientation, scale, and articulation. It requires only a simple
representation and can be efficiently matched. We present an in-depth study
of the properties of the approach (relation between shape and descriptor,
parameters), supported by experimental results, and an analysis of the re-
sults and possibilities for improvement. The descriptor is computed on four
different domains using geodesic distances: inside 2D shapes, inside the vol-
ume, inside the border voxels, or on the surface meshes of 3D shapes, and
compared to state of the art methods. These numerical results support that
the proposed approach performs similarly and in some case better than the
state of the art on databases of articulated 2D and 3D shapes. Initial results
using only the ECC histogram h have been presented for 2D in [43], and for
3D (volumetric representation only) in [44].

To the best of our knowledge, this is the first approach applying the
eccentricity transform to the problem of shape matching.
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1.3. Overview of the Paper

The paper is organized as follows: Section 2 recalls the eccentricity trans-
form and discusses used variants and computation. Section 3 explains the
proposed matching method and discusses pros and cons of the descriptor
(Section 3.4). In Section 4 experiments, and the effect of the parameters are
presented, followed by future work (Section 5) and conclusion (Section 6).
The Appendix recalls the algorithm used to compute the eccentricity trans-
form.

2. Eccentricity Transform

The following definitions and properties follow [47, 48], and are extended
to n-dimensional domains.

Let the shape S be a closed set in R
n. A path π in S is the continuous

mapping from the interval [0, 1] to S. Let Π(p1,p2) be the set of all paths
between two points p1,p2 ∈ S within the set S.

The geodesic distance d(p1,p2) between two points p1,p2 ∈ S is defined
as the length λ(π) of the shortest path π ∈ Π(p1,p2)

d(p1,p2) = min{λ(π) | π ∈ Π(p1,p2)}, (1)

where the length λ(π) is

λ(π(t)) =

∫ 1

0

||π̇(t)||dt,

π(t) is a parametrization of the path from p1 = π(0) to p2 = π(1), π̇(t) is
the derivative of the curve with respect to t, and || || denotes the L2-norm.

Any path ν ∈ Π(p1,p2), satisfying λ(ν) = d(p1,p2) is called a geodesic
(path).

The eccentricity transform of S is defined as, ∀p ∈ S

ECC(S,p) = max{d(p,q) | q ∈ S}. (2)

To each point p it assigns the length of the geodesic path(s) to the points
farthest away from it.

The definition above accommodates n-dimensional objects embedded in
R

n as well as n-dimensional objects embedded in higher dimensional spaces
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Table 1: Types of manifolds used for matching.

Name input computing on S (dε is used)
ECCobj2D 2D 2D: whole shape 4-connected binary 2D shape
ECCobj 3D 3D: whole shape 6-connected 3D voxel shape

ECCborder 3D 3D: border voxels
6 connected voxel surface in 3D, made
out of voxels of the shape that are 26
connected to a background voxel

ECCmesh 3D 2D: triangular mesh
connected triangular mesh of the sur-
face of the 3D shape

(e.g. the 2D manifold given by the surface of a closed 3D object). The
distance between any two points whose connecting segment is contained in
S, is computed using the L2-norm, i.e. distances are not computed on a
graph, but are a discretization of the continuous geodesic distance. For a
definition of the ECC of a graph see [47].

The ECC is quasi-invariant to articulated motion and robust against salt
and pepper noise, which creates small (typically 1 pixel) holes in the shape
[47]. An analysis of the variation of geodesic distance under articulation can
be found in [8].

An eccentric point is a point q that reaches a maximum in Equation 2,
and for most shapes, all eccentric points lie on the border of S [47]. An
eccentric path of a point p is a geodesic to one of its eccentric points. The
(geodesic) center is the set of points that have the smallest eccentricity (global
minimum). The diameter of a shape S is the maximum ECC, which is the
length of the longest geodesic path in S.

The classes of 2n-connected discrete shapes S defined by points on a
square grid Z

n, n ∈ {2, 3}, as well as connected triangular meshes represent-
ing the surface of the 6-connected 3D shapes are considered in the paper.
Table 1 shows the types of manifolds used in this article, for which ECC is
computed. For ECCobj2D, ECCobj, and ECCborder, paths need to be con-
tained in the area of Rn defined by the union of the support squares/cubes
for the pixels/voxels of S. For ECCmesh, paths need to be contained in
the 2D manifold defined by the union of the triangles of the mesh (includ-
ing the interior of the triangles). The used (approximated) metric is in all
cases the Euclidean based geodesic distance dε, i.e. the distance between the
endpoints of any line segment included in the shape is computed using the
Euclidean distance. When the resolution of the shapes increases ECCborder

7



1 2 3 4 5 6 7 8 9

measure transf.
shape

2 3 4 5 6 7 8 9

mean pixel diff.
DT 0.00 0.00 0.01 0.01 0.03 0.03 0.19 0.07
GGF 0.02 0.05 0.12 0.20 0.35 0.02 0.02 0.03
ECC 0.00 0.01 0.09 0.26 0.48 0.02 0.02 0.03

max pixel diff.
DT 0.20 0.20 0.21 0.24 0.39 0.12 0.99 1.00
GGF 0.07 0.11 0.23 0.31 0.54 0.10 0.07 0.09
ECC 0.06 0.13 0.32 0.67 0.76 0.11 0.06 0.17

% same to 1st
DT 98% 95% 90% 85% 68% 46% 30% 80%
GGF 1% 0% 0% 0% 0% 0% 1% 1%
ECC 88% 76% 41% 22% 8% 11% 0% 1%

% same to prev.
DT 98% 97% 95% 96% 86%
GGF 1% 0% 0% 0% 0%
ECC 88% 76% 43% 34% 27%

Figure 1: Top: original hand followed by 8 modifications: finger removal (2-6), boundary
noise (7)(similar to [49]), random missing pixels (8), and adding a large hole (9). Bottom:
variation of the values of DT, GGF, and ECC due to the 8 modifications. The mean and
max values give the mean/max difference in the values of pixels in the original and altered
shapes, normalized by the difference between the highest and lowest value on the original
shape. The “% same” values give for cases (2-6) the ratio of pixels in the altered shape
with values unchanged as compared to the whole hand and to the values in the previous
shape (1-5), respectively.

and ECCmesh converge to the same value.

2.1. Similarity to other transforms

The eccentricity transform is part of a greater class of distance-based
transforms along with:

• the distance transform (DT) [50] defined as:

DT (S,p) = min{d(p,q) | q ∈ Y ⊆ S}
where the set Y is called marker set and is usually taken as Y = ∂S;
• the global geodesic function (GGF) [34] defined as:

GGF (S,p) =
∫
q∈S

d(p,q).
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Shortest geodesics (DT) have the advantage that they locally characterize
the shape and are invariant to deformations in all other parts of the shape.
On the other side, the shorter a path, the higher the perturbation that is
created by a hole (obstacle).

ECC uses longest geodesics and has thus the highest stability with respect
to small holes. With respect to deformations, ECC is invariant to non-
isometric deformations that do not affect the parts where eccentric points
lie, i.e. as long as a certain part does not contain any eccentric points it can
even be removed, without changing the values for the remaining points of
the shape [51] (e.g. for a shape like a “T” with the vertical line connected to
the center of an at least twice longer horizontal line, removing the vertical
line will have no effect on the eccentricity values on the horizontal line).

Figure 1 shows the changes in the mean and maximum values of the
three transforms when the shape of a hand from the Kimia 99 database [52]
is changed. The DT is more local and thus insensitive to the missing fingers,
but comparable in the case of boundary noise, and the highest variation with
respect to missing points inside. Due to the averaging that the GGF does, it
has a maximum variation which is in all cases smaller that of the ECC, but
almost all pixels change even for a minor change in the shapes. The variation
of the ECC is larger then the one of the GGF, but with a considerable amount
of pixels keeping the same value before and after a finger is removed.

Both the DT and the GGF have previously been used as a basis for
shape matching methods. The DT is closely related to the skeleton/medial
axis/medial surface [46, 53] of a 2D/3D shape, on which shock graphs [12]
are built. Matching of shapes can be carried out by matching their shock
graphs or medial surfaces. A continuous definition of the GGF has been
used in [34] to match the topology of 3D shapes based on the similarity of
their Reeb graphs. In [5] a discrete version of the squared GGF is used to
build so called “geodesic shape distributions”. Kernel density estimation is
used to get a smooth function from the computed samples, and the Jensen-
Shannon divergence is used to match two distributions. Our normalized
eccentricity histograms are in spirit similar to the geodesic shape distribu-
tions. Differences lie in the used function (ECC vs squared GGF) and in the
normalization and matching of histograms (L2-norm). In addition we use a
second histogram to characterize the structure of a shape.
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2.2. Computation

Furthest point computation has been approached in [54], where an al-
gorithm is presented which finds for each vertex of a simple polygon the
vertex that is furthest away (eccentric). Later, [55, 56] proposed an efficient
algorithm for simply connected shapes on the hexagonal and dodecagonal
grid. The concept of the eccentricity of a vertex can be found in classical
graph theory books [57, 58], and the concept of the eccentricity transform2

in recent discrete geometry [59] and mathematical morphology books [50].
Computation is not discussed and no references to holes in a shape are made.

The straightforward approach to compute ECC(S) is: for each point of
S, compute the distance to all other points and take the maximum. A faster
computation and efficient approximation algorithms are presented in [48].
For this paper the fastest one, algorithm ECC06, is used.

ECC06 relies on the computation of the shape bounded single source dis-
tance transform3 DS(p) (Figure 2(b)), which is computed for estimated ec-
centric point candidates in an iterative manner (see the Appendix for more
details). DS(p) associates to each point q ∈ S the geodesic distance to
p. DS can be computed using Fast Marching [60] (FM), without the need
to explicitly build a neighborhood graph. The runtime complexity of FM is
O(N log(N)) steps, for N = |S| grid points, where | | denotes set cardinality.
The complexity for computing ECC(S) using ECC06 and Fast Marching

is O(KN log(N)), where 2 � K � |∂S|, K ∈ N depends on the shape and is
the number of eccentric point candidates that are evaluated.

Figure 2 shows a comparison of the geodesic and Euclidean distances.
Figures 3 and 4 show the eccentricity transform of a 2D, respectively 3D,
shape. For the 3D shape, the eccentricity transform is presented for the
whole shape (ECCobj), for the border voxels (ECCborder), and the sur-
face mesh (ECCmesh). Figure 5 shows the difference between ECCobj and
ECCborder, both using distances computed on a voxel description of S.

3. Eccentricity Histogram Matching

To match two shapes we first create a shape descriptor for each of them
and then match these descriptors to obtain a similarity measure. The pro-

2Known in the mathematical morphology community as the propagation function.
3Also called geodesic distance function with marker set p.
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(a) (b)

p0 p0

0 distance

gray value

Figure 2: Euclidean (a) and geodesic (b) distance function, for starting point p0. Gray
values are distances modulo a constant.

•◦

Figure 3: ECC of example binary shape (point with smallest ECC marked).

3D model:

ECCobj ECCborder ECCmesh

ECC

volume rendering volume rendering surface rendering

Figure 4: Top: 3D model of an ant. Bottom: ECCobj, ECCborder, ECCmesh (darker =
higher ECC value). Notice that in all three cases, the transform has its minimum in the
body of the ant (center) and the values get larger as going to the extremities.
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ECCobj ECCborder

Figure 5: Comparison between the two computations of ECC on voxels: ECCobj and
ECCborder. The Figure shows two vertical cuts through the ant in Figure 4.

posed shape descriptor is made out of two components: the first one charac-
terizes the compactness (geometry) of the shape (Section 3.1) and the second
one its structure (Section 3.2). The descriptor is highly compact, which is
an advantage for real time retrieving and low memory devices, it is invariant
under many natural deformations, it can handle shapes without as well as
with holes4 (Figure 8 (g) and (h)), and gives good results, comparable to the
presented state of the art methods (experiments follow in Section 4).

3.1. ECC histogram

The first component the shape descriptor is the histogram h of the ec-
centricity transform ECC of the shape S. We use kh bins for the histogram.
The eccentricity histogram is the vector h ∈ R

kh defined by: ∀i = 1, . . . , kh

h(S, i) = 1

|S|#
{
p ∈ S | i− 1

kh
� ECC(S,p)−m

M −m
<

i

kh

}
,

where |S| is the number of pixels/voxels/vertices in S, and m and M are
the smallest, respectively, largest eccentricity values over S. A discussion
about choosing the number of bins kh follows in Section 4.4. The obtained
histogram only contains bins for the values which exist in the eccentricity
transform, i.e. from minimum to maximum eccentricity, and the sum over
all bins is 1. Figures 6 and 7 show examples of eccentricity histograms for 2D
and 3D shapes with different geometric features. Note that the histogram h
is invariant under Euclidean transformations, scaling and isometric bending
of S (Figure 8 shows examples).

4As opposed to methods selecting a single boundary, usually the outer/longest one,
which cannot differentiate for example a disk from a 2D torus.
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Figure 6: Top: ECCobj2D for some 2D shapes. Middle and bottom: corresponding
histograms h respectively s.

Figure 7: Top: example 3D shapes. Middle and bottom: corresponding ECCobj his-
tograms h respectively s.
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3.2. ECC structure histogram

The second component of our shape descriptor is a histogram of the num-
ber of connected components of the discrete level-sets of the eccentricity
transform. A discrete level-set of ECC(S) is the set of points of the shape
having their eccentricity value in a certain domain (a, b]. More formally:

L(a, b) = {p ∈ S | a < ECC(S,p) � b}.

The eccentricity structure histogram is the vector s ∈ R
ks defined by:

∀i = 1, . . . , ks
s(S, i) = #C {L(ei−1, ei)} ,

where #C denotes the number of connected components. We use 8 con-
nectivity in 2D, 26 connectivity for the 3D voxel representations, and vertex
adjacency for the triangle meshes. For a function which is based on Euclidean
distances, to obtain at least 8 respectively 26 connected isolines/isosurfaces,
the thresholds ei have to satisfy that ei − ei−1 � g [61]. Where g = 1 is the
distance between two closest grid points. For the case of the triangle meshes,
we use g =

√
2, which is the length of the longest edge in our meshes. If

ei−ei−1 < g then the pixels covering the points of the same (connected) con-
tinuous isoline will not be connected in the discrete level-sets. The values
for ei are computed as:

ei = m+ (M −m)
i

ks
,

where as before m,M are the minimum respectively maximum eccentricity.
We take e0 = m − ε, ε > 0 to ensure that the geodesic center is included
in the first bin. If (M − m)/g < ks, which means that ei − ei−1 < g, we
compute s for k′

s = �(M −m)/g� and then resize the obtained histogram to
the required ks bins using bilinear interpolation.

3.3. Comparison of histograms

To match the descriptors of two shapes S and S̃, it is necessary to compute
the distance between the corresponding histograms. Let h, s and h̃, s̃ be the
two histograms of S respectively S̃ computed as in Sections 3.1 and 3.2. The
distance between two histograms h, h̃ ∈ R

k is measured using the L2-norm:

δ(h, h̃)
def.
= ‖h− h̃‖. (3)
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One could use more elaborate metrics such as the χ2 statistic [7] or those
defined in [16]. In numerical experiments we found that all these metrics give
results similar to δ, which is the easiest and fastest to compute (discussion
follows in Section 5).

The dissimilarity Δ(S, S̃) of two shapes S and S̃ is computed as a weighted
distance of their eccentricity histograms h, h̃ and structure histograms s, s̃:

Δ(S, S̃)
def.
= w · δ(h, h̃) + (1− w) · δ(s, s̃)

min(‖s‖, ‖s̃‖) , (4)

where w is a mixing parameter.
The histograms h ∈ R

kh lie in the kh−1 dimensional simplex with vertices
hr = (h1, . . . , hkh), hi = 1 for i = r and 0 otherwise. Thus we have 0 �
δ(h, h̃) �

√
2 for any h, h̃ ∈ R

kh. The values of the bins s(S, i) � 1 and can
be arbitrarily large depending on the number of “parts” of the object. The
expression min(‖s‖, ‖s̃‖) � √ks, and δ(s, s̃) � 0. For similar shapes (same or
similar looking classes) both terms in Equation 4 have values around 0 (in the
same range), and extend the descriptive power of the other one. Matching
very different shapes (e.g are horses more similar to scissors then to cars?)
is not considered.

In the remainder of the paper, we will use eccentricity histogram to denote
h, structure histogram to denote s, and eccentricity based histograms to refer
to both.

3.4. Characteristics of the ECC based histograms: from S to h, s and back

The eccentricity histogram h characterizes the compactness of the shape
(e.g. a flat histogram characterizes a very elongated shape, a histogram with
monotonically increasing values characterizes a rather compact shape). The
structure histogram s characterizes the structure of the shape by represent-
ing the evolution of the number of parts of the shape when going from the
geodesic center towards larger eccentricity values (e.g. for a spider the num-
ber will range from 1 to 8, and for an ant from 1 and 6). Intuitively, one
could say that h looks at the widths of parts and s at their number. Figure 8
shows the ECC based histograms for basic shapes, with and without holes
and articulation.

Effects of basic changes of the shape to the eccentricity histogram5 h. The

5For the example class of shapes composed of 1D curves, h(S) and s(S) are equal (see
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S ECCobj2D h(S) s(S)

(a) line

(b) disk

(c)
many short
eccentric paths

(d)
many long
eccentric paths

(e)
many long+
cut

(f)
many long +
articulation

(g) with holes

(h)
with holes and
articulation

Figure 8: Basic shapes and their histograms h, s. (vertical axes independently scaled)

16



S ECC(S) h(S)

(a) Sa

e1 e2c

ECC

Sc e2

h

i

(b) Sb

e1 e2c q1 q3

q′
3

ECC

Sc q1

h

i

d(e1,q1) d(e1,q3)

(c) Sc

e1 e2c q1 q2 q3

q′
2 q′

3

ECC

Sc q1 q2

h

i

d(e1,q1) d(e1,q3)

(d) Sd

e1 e2c

c′

q1 q2

ECC

Sc, c′q1 q2

h

i

d(e1,q2)

Figure 9: Behavior of eccentricity histograms for basic changes in the shape. Column
S: where possible, straight lines where used for illustration, but only the length of the
curves is relevant, not whether they are straight or not. For the shown shapes (composed
of curves) s(S) = h(S) as each point of S contributes with “1” to both of them: one
eccentricity value and one connected component. (d) thick line in ECC(S): between q1

and q2 two points have the same eccentricity.

17



histogram of the ECC of a simple open curve6 Sa with length l = d(e1, e2)
(Figure 9(a)) is flat with a possibly smaller value in the first bin. The con-
tinuous formula is:

h(Sa, i) =
{

1
l

if i = min(ECC(Sa))
2
l

if i > min(ECC(Sa))
,

where min(ECC(Sa)) = d(e1, c) = d(e2, c).
Consider Sb obtained by adding a simple open curve of length d(q1,q

′
3) <

l/2 connected at the point q1 to Sa (Figure 9(b)). Let q3 ∈ Sb s.t. d(q1,q3) =
d(q1,q

′
3) and d(q3, e1) = d(q′

3, e1). For the points with eccentricity between
d(e1,q1) and d(e1,q3), the eccentricity histogram of Sb has increased by
50% (there is one additional point having each of the values in the domain).
A shape without cycles (e.g. Sa, Sb, Sc) has only one center point (ECC
minimum) and the histogram value for the center is always one. All other
histogram values can be changed by adding branches as above.

The histogram value for the center can be changed by introducing cy-
cles. Consider Sd obtained by adding a simple open curve q1c

′q2 of length
λ(q1,q2) to Sa (Figure 9(d)). The length d(e1, e2) is kept the same and
q1q2 has the same length if going over c or c′. Also d(e1, c) = d(e1, c

′) =
d(e1, e2)/2. Two center points exist (c and c′), and for the eccentricity values
[d(c, e1), d(q2, e1)) there is one additional point.

For a given histogram, the steps used to create Sb and Sd, can be iterated
to grow the continuous shape (for geodesics computed along thin lines). For
discrete shapes, the number of points is finite7, which limits the number
of curves that can be put close to each other and do not intersect. If the
maximum shape size (number of pixels/voxels) and the number of bins kh is
fixed, not all (real valued) histograms can result as ECC histograms (it can
also be seen as a discretization problem: the lower the resolution/maximum
size, the higher the dependence between neighboring histogram bins).

Equivalence classes of ECC based histograms. A histogram has a smaller
dimension (in our case 1D) than the shape, and a whole class of shapes is

Figure 9).
6The term curve is used to denote a one dimensional and continuous manifold, and

includes both straight and non-straight lines.
7Depends on the discretization and maximum shape size.
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projected into the same histogram. Two shapes S and S̃ with the same
eccentricity based histograms satisfy Δ(S, S̃) = 0, and are thus considered to
be the same according to our matching algorithm. Consider Sc in Figure 9(c)
obtained from Sa, similar to Sb, but with two curves s.t. d(q1,q

′
2) = d(q1,q2),

d(q2,q
′
3) = d(q2,q3), and d(q1,q3) is equal in both Sb and Sc. Hence, the

two shapes Sb and Sc have the same eccentricity based histograms h, s and
cannot be differentiated using only the histograms.

When the following operations are applied to a shape they create a shape
in the same equivalence class, i.e. having the same or similar histograms:

• scaling ;

• rotation;

• isometric deformation that does not change the structure of the shape
(e.g. moving a finger, without touching another finger);

• moving certain points : simultaneous thinning and thickening of two
parts with the same eccentricity values (e.g. making one finger thinner
while making another one thicker);

• moving certain parts : taking a part and attaching it in another point
with the same eccentricity while keeping the eccentricity values the
same (e.g. moving a finger from the left hand to the right hand, ob-
taining a human with 4 respectively 6 fingers on his hands, also Sb and
Sc in Figure 9);

• certain changes in topology without disconnecting the shape, when the
contact points in the shape without the hole8 have the same eccentricity
value and no eccentric (longest) paths go over the created/destroyed
connection (e.g. if considering the whole human as a shape, touch-
ing the tip of a finger with the neighboring finger, with the fingers as
straight as possible). This change affects at least one bin of s, but
could be only minimally (one point contact as opposed to keeping two
fingers touched along the whole length). Disconnected shapes cannot
be handled by our descriptor.

8Points that will be connected to make the hole appear.
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One can say that the eccentricity based histograms are influenced by the
geometry and the structure of shapes, but they do not uniquely characterize
them. This can be both a positive or a negative aspect, as one would like
filter out for example noise, but probably not “attaching a second head”.

4. Matching Experiments in 2D and 3D

This section shows results on popular benchmarks and comparison with
state of the art methods. When comparing the results, keep in mind that the
proposed method is simple and matching the computed descriptors is fast.
An approximation of the ECC can be computed for many shapes with as
few as 50 distance propagations (e.g. the average number for the ECCmesh
on the McGill database is 54), and determining δ between two computed de-
scriptors (L2-norm) has practically no CPU time consumption9. Two fixed-
length vectors as descriptors can be a very efficient indexing method. The
approaches compared with are more complicated and include the decompo-
sition of shapes, aligning or finding correspondences between features, etc.

4.1. 2D Shape Matching

For the experiments with 2D shapes we have used four shape databases:
Kimia 25 [62] (Figure 13), Kimia 99 [52] (Figure 10), MPEG7 CE-Shape-
1 [63] (Figure 11), and the articulated shape database of [8] (Ling articulated)
(Figure 12). As a baseline we have added the results obtained by using the
Shape Index, which is computed as the length of the boundary of the shape
over its area.

A shape database is composed of q shapes {Si}qi=1 and each shape Si has
a label L(i) ∈ {1, . . . , lmax}. Each label value 1 � l � lmax defines a class of
shapes Q(l) = {Si | L(i) = l}. The first columns of the blocks in Figure 13
show the shapes from the Kimia 25 database, ordered by classes (such as fish,
planes, rabbits, etc.). Any shape matching algorithm α assigns to each shape
Si a vector of best matches Φi, where Φi(1) is the shape the most similar
to Si, Φi(2) is the second hit, and so on. Depending on the benchmark, Φi

contains all shapes including the query shape Si (MPEG7), or leaves Si out,

9For example, on an Intel Xeon with 3 GHz, computing ECCmesh for the 255 shapes
of the McGill database (see the Appendix) takes around 2.5 hours in total i.e. an average
of 35 seconds per shape (code is partly matlab, partly c++). Computing Δ for all pairs
of descriptors (255*254 matches) takes less than 1 second in total.
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Figure 10: The 99 shapes from the Kimia 99 shape database. Shapes in the same row
belong to the same class.

Figure 11: One shape from each of the 70 classes in the MPEG7 shape database.

Figure 12: The 40 shapes from the Ling articulated database. Shapes in the same column
belong to the same class.
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i.e. the shape Si is not matched to itself and Φi has q− 1 elements (all other
benchmarks presented).

For the Kimia 25 database lmax = 6 and q = 25, and for the Kimia 99
database, lmax = 9 and q = 99. The efficiency of various matching algorithms
on Kimia databases is measured by the number of correct matches for each
ranking position r:

Matchr(Φ)
def.
=

q∑
i=1

1L(Φi(r))=L(i) � q. (5)

Tables 2 and 3 give the value of Matchk for various shape matching algo-
rithms. We also show results when using only one of the two: h or s.

In the case of the MPEG7 database, which contains lmax = 70 classes with
20 images each (q = 70 × 20 = 1400), the efficiency of matching algorithms
is computed using the standard Bullseye test:

Bullseye(Φ)
def.
=

1

20q

40∑
r=1

q∑
i=1

1L(Φi(r))=L(i)

=
1

20q

40∑
r=1

Matchr(Φ). (6)

This test counts the number of correct hits (same class) in the first 40 hits.
For each image there can be at most 20 correct hits and a maximum of
20×1400 hits can be obtained during the benchmark and thus Bullseye(Φ) �
1. Table 4 gives the value of Bullseye for various shape matching algorithms.

The Ling articulated shape database was created specifically to show
results in the presence of articulation. The database contains q = 40 shapes
of articulated objects from lmax = 8 classes. The efficiency of an algorithm
is measured by the number of correct matches Matchr(Φ) for each ranking
position r (Equation 5). Table 5 gives the value of Matchk for various shape
matching algorithms.

Case study - Kimia 25. Figure 13 shows the retrieval results for Kimia 25
when using only h, only s or both terms. The first columns show the 25
shapes Si (1-4 fish, 5-8 greebles, 9-13 hands, 14-17 airplanes, 18-21 rabbits,
22-25 tools). The following columns r show Φi(r), the rank-r shape associated
to Si.
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Table 2: The value of Matchr(Φ) for various algorithms on the Kimia 25 database (q = 25
shapes from lmax = 6 classes).

Algorithm α r=1 2 3

Shape Index 14 10 10
ECCobj2D, s only 18 19 17
ECCobj2D, h only 20 16 14

ECCobj2D 22 20 17
Sharvit et al. [62] 23 21 20

Gdalyahu et al. [64] 25 21 19
Shape Context [7] 25 24 22

ID-Shape Context [8] 25 24 25

Table 3: The value of Matchr(Φ) for various algorithms on the Kimia 99 database (q = 99
shapes from lmax = 9 classes).

Algorithm α r=1 2 3 4 5 6 7 8 9 10

Shape Index 43 51 58 52 52 49 51 47 45 44
ECCobj2D, s only 84 68 65 67 56 57 51 50 41 31
ECCobj2D, h only 87 74 66 64 49 52 45 38 33 33

ECCobj2D 94 85 81 73 81 73 64 59 56 35
Shape Context [7] 97 91 88 85 84 77 75 66 56 37
Gen. Model [65] 99 97 99 98 96 96 94 83 75 48
Shock Edit [52] 99 99 99 98 98 97 96 95 93 82

ID-Shape Context [8] 99 99 99 98 98 97 97 98 94 79

Table 4: The value of Bullseye(Φ) (Equation 6) for various algorithms on the MPEG7
database (q = 1400 shapes from lmax = 70 classes).

Algorithm α Bullseye(Φ)

random 2.86%
Shape Index 25.46%
ECCobj2D 54.56%

Shape Context [7] 64.59%
ID-Shape Context [8] 68.83%
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Table 5: The value of Matchr(Φ) for various algorithms on the Ling articulated shape
database (q = 40 shapes from lmax = 8 classes). See [8] for a description of these algo-
rithms.

Algorithm α r=1 2 3 4

Shape Context+DP [8] 20 10 11 5
Shape Index 24 17 17 18
ECCobj2D 40 33 29 22

ID-Shape Context+DP [8] 40 34 35 27

The Kimia 25 database has shapes from 6 classes: 5 classes with 4 images
each, and one (hands) with 5 images (1 simulating a segmentation error). If
considering only h (Figure 13 top) the class with the best results are rab-
bits, followed by tools, hands, fishes, airplanes and greebles. Two questions
immediately rise when looking at these results:

1. Why are the greebles considered to be more similar to the hands than
to other greebles?

2. Why does a rabbit appear in so many cases when the matching has
failed?

For the first question, consider the ECC histograms h of the greebles
and the not occluded hands (Figure 14). The histograms are similar even
though the shapes are of different classes, e.g. the histogram of the first
greeble (Figure 14 top-left) looks more similar to the hands, than the second
and third greeble. This is due to the abstraction of a 2D shape to a 1D
histogram which, in the case of h, disregards certain structural properties of
distances/paths (studied in detail in Section 3.4). The structure histogram s
can better discriminate between these shapes, and adding it to the descriptor
compensates for this effect.

For the second question, consider the shapes in Figure 15 (a rabbit - S19,
and two tools - S25 and S22). When matching S25, the rabbit has a smaller
distance of h than S22, even though one might say that the histograms h of
S25 and S22 reveal more similar distance characteristics than the histogram
h of S19 (see Figure 15). Both S25 and S22 have more long distances than
medium, and short, while S19 has a peak in the medium. This effect is due
to typical histogram matching methods, which are inherently low level and
fail to capture the high level context of the task. Note that similar examples
could be constructed also using s. Discussion follows in Section 5.
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fish greebles hands airplanes rabbits tools

Figure 13: Retrieval results on Kimia 25 using top: h, middle: s, bottom: both h and s.
Each row shows the query shape, followed by the first three matches.

greebles hands

Figure 14: Histograms for greebles and not occluded hands, top: h, bottom s.

S19 S25 S22

Figure 15: Three shapes from the Kimia 25 database and their eccentricity histograms h.
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Global geometrical and structural statistics of the shapes are well cap-
tured by our low dimensional descriptors. However, more detailed structural
properties like part decomposition, ordering and adjacency of parts, and the
geometrical features corresponding to these parts are not considered by our
signature extraction.

4.2. 3D Articulated Shape Matching

A widely used 3D object retrieval database is the Princeton Shape Bench-
mark [66]. It contains 1,814 3D object models organized by class and is
effective for comparing the performance of a variety of methods. However,
the majority of the models corresponds to rigid, man-made objects. Only a
limited number of shapes in the database have articulated parts. As one of
the main advantages of using the eccentricity transform is its robustness with
respect to articulation, we have turned to the McGill Shape Benchmark [53].
It contains several models from the Princeton repository and others added
by the authors. The main advantage of this benchmark is that from its 455
3D shapes, 255 have significant part articulation. We show the results on
the q = 255 shapes grouped into the lmax = 10 classes of articulated shapes
(Figure 16). Shapes are not matched to themselves and so Φi contains q − 1
shapes.

We compare results with:

• medial surfaces (MS) [46];

• spherical harmonic descriptor (HS) [67];

• shape distributions (SD) [16].

MS computes the medial surfaces of a voxelized shape and decomposes
them in parts. The similarity of two shapes is obtained from the matching
of the directed acyclic graphs describing their parts. HS transforms rota-
tion dependent spherical shape descriptors into rotation invariant ones. It
describes spherical functions on the shape in terms of the amount of energy
they contain at different frequencies. The L2-norm is used to match two
descriptors. SD computes the similarity of two shapes by the comparison of
two probability distributions sampled from a shape function measuring geo-
metric properties of the 3D model. Best results are obtained with a function
called D2 which represents the distribution of Euclidean distances between
pairs of randomly selected points on the surface of a 3D model.

Three ECC based descriptors are evaluated (Figure 4):
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30 ants (ant) 30 crabs (cra)

25 spectacles (spe) 20 hands (han)

29 humans (hum) 25 octopuses (oct)

20 pliers (pli) 25 snakes (sna)

31 spiders (spi) 20 teddy (ted)

Figure 16: The object classes from the McGill 3D shape database having significant part
articulation. The number of instances in each class are given.
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Figure 17: Recall for several rank thresholds
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Figure 18: Average ranks for each class. The first three letters of each class name are
printed.
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1. ECCobj - eccentricity of the whole shape (all object voxels);

2. ECCborder - eccentricity of the border/boundary voxels;

3. ECCmesh - eccentricity of the triangular mesh of the surface of the
shape.

ECCborder is the eccentricity transform ECC(∂6S), where ∂6S is the 6
connected voxel boundary of S. ECCmesh is computed on the 2D manifold
defined on the boundary of the 3D shapes. ECCborder uses distance compu-
tation in the 3D volume, ECCmesh in the 2D surface. If the resolution of the
shapes is increased, ECCborder and ECCmesh converge to the same value.
For a similar resolution, ECCmesh needs less memory, as cells not part of
the boundary do not have to be stored (e.g. interior of the shape), and it can
be more accurate when approximating the eccentricity of the surface, as the
computation is done on the surface itself, not on an approximating (thicker)
volume.

The size of the voxel models used for ECCobj and ECCborder is below
128× 128× 128 (the size of the binary 3D images is 128× 128× 128).

Experimental results. In the following, results of the three variants on shapes
of the 10 articulated classes of the McGill Shape Benchmark are given. The
notation from Section 4.1 is used. The following measures are considered.

Recall(Φi, t) =
1

|Q(L(i))| − 1

t∑
r=1

1L(Φi(r))=L(i)

The recall computes the ratio of models in the database in the same category
as the query, with indexing rank � t, to the total number of shapes in
the same category (never including the query itself). The average results
and standard deviation for several rank thresholds (t = 10, 20, . . . ), over all
classes, are given in Figure 17.

AvgRank(Φi) =
1

|Q(L(i))| − 1

q−1∑
r=1

r · 1L(Φi(r))=L(i)

For all queries in a class, the average of the ranks of all other shapes
in that class are computed. Figure 18 shows the average and the standard
deviation of the ranks for each class (lower average is better).

Table 6 shows the average score for all pairs of classes. Each shape in
the database is matched against all other shapes and each cell shows the
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average of the score (Equation 4) between all combinations of shapes of the
two classes defined by the row and column.

Precision(Φi, t) =
1

t

t∑
r=1

1L(Φi(r))=L(i)

Precision refers to the ratio of the relevant shapes retrieved, to the total
number retrieved. Figure 19 shows the precision-recall curves for each of the
10 classes. Precision-recall curves are produced by varying the parameter t.
Better results are characterized by curves closer to the top, i.e. recall = 1
for all values of precision. Precision and recall are common in information
retrieval for evaluating retrieval performance. They are usually used where
static document sets can be assumed. However, they are also used in dynamic
environments such as web page retrieval [68].

As can be seen in Figures 17, 18, and 19, and Table 6, ECCobj does
in most cases a better job than ECCborder and ECCmesh. The recall of
the three methods is very similar, with slightly better results from ECCobj
(noticeable on the first three bars). With respect to the average ranks, EC-
Cobj does better with the ants, octopus, spiders, teddy, is equal to one of
ECCborder and ECCmesh with the crabs, humans, pliers, snakes, and is
slightly worse than one of the other methods with the humans and spec-
tacles. None of the three variants produces an average class rank higher
than 21% of 255 (average rank 42, 53, and 52, for the octopus, for ECCobj,
ECCborder, and ECCmesh, respectively). ECCobj has the smallest average
class distance (highest similarity) correct for all 10 classes. For both EC-
Cborder and ECCmesh the smallest average class distance is correct for 9
classes, while the correct class is the second smallest one for the remaining
class, the octopus (see Table 6). A discussion considering the differences
between the three ECC variants follows at the end of this section.

Figure 19 shows comparative precision-recall results of ECCobj, ECCbor-
der, ECCmesh, MS, HS, and SD. ECCobj, ECCborder, and ECCmesh are
close, except for the teddy bears, where ECCobj is superior to the other two.
The best results (higher precision vs. recall) are reached by the ECC vari-
ants for the snakes, by MS for the crabs, and HS and SD for teddy. For these
best results the MS and the ECCobj have almost identical precision-recall,
followed by HS and SD (Figure 20). The worst results are achieved by EC-
Cobj, ECCborder, and ECCmesh for the octopus, MS for the pliers, HS for
snakes, and SD for the hands. The results of MS for the pliers are superior
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Table 6: Average matching results multiplied by 100 (smaller means more similar). For
each row, the first and second smallest value are printed in bold.
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ants 2.99 7.74 7.93 8.15 8.31 7.90 15.73 19.49 7.25 10.57
crabs 7.74 2.60 9.09 9.85 5.88 10.37 20.85 20.17 4.75 11.24
hands 7.93 9.09 4.39 5.34 10.15 5.36 10.83 13.02 9.76 5.72

humans 8.15 9.85 5.34 3.62 10.11 4.08 8.88 10.60 9.51 5.21
octopus 8.31 5.88 10.15 10.11 5.10 10.46 19.94 17.55 5.60 11.97

pliers 7.90 10.37 5.36 4.08 10.46 1.45 6.58 9.44 10.44 4.53
snakes 15.73 20.85 10.83 8.88 19.94 6.58 1.40 6.29 20.78 7.80

spectacles 19.49 20.17 13.02 10.60 17.55 9.44 6.29 3.00 19.60 9.29
spiders 7.25 4.75 9.76 9.51 5.60 10.44 20.78 19.60 2.98 11.91
teddy 10.57 11.24 5.72 5.21 11.97 4.53 7.80 9.29 11.91 3.47

E
C
C
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rd

e
r

ants 2.40 5.62 6.51 6.39 4.83 6.26 14.33 16.84 4.93 8.32
crabs 5.62 2.58 7.83 9.27 5.78 10.14 19.65 22.26 4.71 11.20
hands 6.51 7.83 3.97 4.91 7.97 5.01 10.09 12.33 8.30 5.60

humans 6.39 9.27 4.91 3.01 8.73 3.62 7.73 10.37 8.68 4.53
octopus 4.83 5.78 7.97 8.73 4.49 8.48 17.74 18.12 4.44 10.57

pliers 6.26 10.14 5.01 3.62 8.48 1.57 6.45 8.84 8.85 4.08
snakes 14.33 19.65 10.09 7.73 17.74 6.45 1.49 5.63 18.89 6.35

spectacles 16.84 22.26 12.33 10.37 18.12 8.84 5.63 2.60 19.70 8.92
spiders 4.93 4.71 8.30 8.68 4.44 8.85 18.89 19.70 2.80 10.72
teddy 8.32 11.20 5.60 4.53 10.57 4.08 6.35 8.92 10.72 3.74

E
C
C
m
e
sh

ants 2.45 5.90 5.86 6.31 4.52 6.01 13.76 15.62 4.77 7.31
crabs 5.90 2.86 8.02 9.62 5.52 10.42 20.03 22.16 4.49 10.77
hands 5.86 8.02 4.20 5.19 7.39 4.97 10.38 11.98 7.74 5.50

humans 6.31 9.62 5.19 3.01 8.67 3.61 7.41 9.78 8.74 4.53
octopus 4.52 5.52 7.39 8.67 4.19 8.39 17.63 18.20 4.16 9.61

pliers 6.01 10.42 4.97 3.61 8.39 1.71 6.43 8.30 8.76 3.87
snakes 13.76 20.03 10.38 7.41 17.63 6.43 1.56 4.73 18.76 6.87

spectacles 15.62 22.16 11.98 9.78 18.20 8.30 4.73 2.58 19.69 8.78
spiders 4.77 4.49 7.74 8.74 4.16 8.76 18.76 19.69 2.65 9.75
teddy 7.31 10.77 5.50 4.53 9.61 3.87 6.87 8.78 9.75 3.70
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ECCobj ECCborder ECCmesh
MS SD HS

Figure 19: Precision-recall for the articulated shapes from the McGill dataset (q = 255
shapes from lmax = 10 classes). Left two columns: ECCobj, ECCborder, ECCmesh. Right
two columns (image taken from [46], with kind permission of Springer Science and Business
Media): results of three other methods on the same database: medial surfaces (MS) [46],
spherical harmonic descriptor (HS) [67], and shape distributions (SD) [16]. Precision:
horizontal axis, recall: vertical axis. (Best visualized in color.)
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best worst

Method
ECCobj snakes octopus
MS crabs pliers
HS teddy snakes
SD teddy hands

Figure 20: Best and worst precision-recall curves for the results of ECCobj, MS, HS, and
SD (Picture synthesized from Figure 19). (Best visualized in color.)

to ECCobj for the octopus, which are in turn superior to the HS, superior to
SD (Figure 20). In comparison to all other three methods (MS, HS, SD), the
eccentricity based methods score better on the pliers, spectacles and snakes,
and ECCobj is on par with the best on ants, hands, and spiders.

MS searches for a concrete mapping between the parts of articulated
shapes, which explains the overall superior results. The ECC variants are
articulation insensitive and able to characterize the compactness (geometry)
of the shapes quite well. However, describing the structure of the shape
using a histogram does not capture the connections between the parts (e.g.
one could detach a finger from a hand and attached it to the other one,
without changing the descriptor of the human). The descriptor computed by
HS is invariant to the independent rotation of parts, even if the shape gets
disconnected. SD uses a function which is based on Euclidean distance and
not invariant to articulation.

The differences in the results of ECCobj vs. ECCborder and ECCmesh,
can be linked to the compactness of the shapes and the width of their joints.
During articulation, the variation of the geodesic distances is larger when
computed on the ‘skin’ (boundary) compared to computed inside the shape
(smaller). In the case of 2D shapes the eccentricity of the boundary is a
constant. In 3D it manages to capture some of the properties of the shape,
but it is more unstable, e.g. the eccentricity transform of a simply connected
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volume has in most cases a single stable center (minimum), while the eccen-
tricity transform of its boundary will have a disconnected center or at least
one with a more complex structure. A more concrete example of such insta-
bility with only minor deformation of the shape is the ECC of the surface
of:

• a sphere: all points make up the center;

• an ellipsoid with two equal radiuses and a slightly longer third one: the
center is one circle.

As a last experiment we show results of ECCmesh on the Robustness
Benchmark from the SHREC’10 dataset [69]10. The dataset consists of 1184
shapes given as triangle meshes. The query set consists of 13 shape classes
taken from a subset of the dataset with simulated transformations applied
to them. For each shape, transformations are split into 10 classes (isometry,
topology, small and big holes, global and local scaling, noise, shot noise,
partial occlusion, sampling, and a combination of all transformations). In
each class, the transformation appears in five different strength levels. The
total number of transformations per shape is 55 plus the null shape (neutral
pose), and the total query set size is 728 shapes. The reported results are
mean average precision (mAP).

The given triangle meshes are possibly disconnected and non-manifold
(e.g. more than 2 triangles can share an edge). As the ECC is computed
on a single connected component and our geodesic distance computation
requires manifolds, for each shape we select the largest subset of triangles
(based on area), which are connected and approximate a manifold.

Table 7 gives the results of ECCmesh on the SHREC’10 robustness bench-
mark. The transformation “partial” reduces the shape to a disconnected
subset of the original triangles, consisting of many components. Our method
cannot handle such disconnected shapes and computes the descriptor of one
of the connected mesh parts instead. Thus we also give the average score
over only the transforms which keep the query shape connected (without
“partial” or “all”). When computing the shape descriptors we did not refine
the meshes or sample from them uniformly, but took the ECC values for the
given vertices of the mesh. The resolution of the meshes is not uniform and

10See http://tosca.cs.technion.ac.il/book/shrec_robustness.html for images
of the shapes in the dataset.
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Table 7: Retrieval results on the SHREC’10 Robustness Benchmark (total q = 1184
shapes, with a query set of 728 shapes from lmax = 13 classes). The reported performance
is mean average precision. Rows indicate the type of transform that the query shape was
altered with, columns indicate the maximum strength of the applied transform. “avg”:
results over all queries in the dataset. “avg (connected)”: results only with connected
shapes (without transformations “partial” and “all”).

transformation
strength

1 ≤ 2 ≤ 3 ≤ 4 ≤ 5
isometry 94.23 88.62 86.66 81.82 81.10
topology 80.45 67.73 65.26 64.57 64.84
holes 85.26 80.45 81.28 78.14 73.40
microholes 94.23 94.23 94.23 94.23 94.23
scale 87.01 90.62 91.82 90.18 89.20
localscale 94.23 91.67 88.61 84.92 79.47
sampling 88.46 77.12 58.15 43.97 35.26
noise 94.23 94.23 92.95 91.99 90.64
shotnoise 94.23 94.23 94.23 92.31 89.74
partial 9.61 8.20 7.53 6.53 6.17
all 0.63 13.34 36.25 41.00 37.61

avg 94.11 89.68 86.84 83.50 80.33
avg (connected) 98.06 95.52 93.02 90.13 87.54

explains why the results for “scale” are not 100%, as expected from the nor-
malization. The sensitivity of the histograms to the non-uniform sampling
of the vertices is reflected in the results for the transformation “sampling”11.
For an evaluation of different methods on the SHREC’10 benchmark see [69].

4.3. Discussion: 2D and 3D

The computed shape similarities are robust with respect to scaling, rota-
tion, and part articulation. The matching results are good, especially when
considering the straightforward approach, and databases of shapes undergo-
ing articulation. Our histogram representation is invariant to articulation,
thus achieving state of the art performance on these databases. In contrast,
the most efficient shape matching algorithms [8, 46] are more complicated
and require extraction of salient features and local signatures that need to be

11Refining the meshes to obtain a uniform sampling for the locations of the vertices
could in principle be added as a pre-processing step.
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aligned or registered. E.g. the method in [8] describes shapes by a collection
of local descriptors sampled at different locations on one selected boundary
of the shape. Each descriptor is a 2-dimensional histogram, and is based on
the computation of geodesic distances and the angle made by the tangent
to the geodesic with the tangent to the shape boundary at the point of the
descriptor. Similarities are computed using dynamic programming as the
cost of the best matching of the descriptors along the boundary. In [46], first
a medial surface is obtained by doing topology preserving thinning on the
average outward flux computed on the distance transform of the shape. The
obtained medial surface is segmented into components and using saliency a
directed acyclic graph (DAG) is built to describe the shape. To match a
query DAG with a database, first an indexing strategy is used to quickly
select a few candidates, followed by a bipartite graph matching to compute
node correspondences and the matching score. In addition to the matching
score both methods [8, 46] can provide correspondences between the used
parts/points. Also the higher quality results of [8] can be explained by the
usage of local descriptors together with a score computation which considers
their order – this gives more detailed geometric information with a higher
tolerance to missing parts.

The limitations of our approach include: (1) Eccentricity structure his-
tograms s are not able to fully capture the part structure of the shape and thus
histograms of different shapes can be very similar. (2) Histogram ‘matching’
(whether using the L2-norm or more sophisticated methods) is inherently low
level and does not consider the higher level context in which it is applied.

One can identify the limitations discussed before (see Figure 19 and Ta-
ble 6): for classes with simple topology (e.g. snakes and spectacles), the
results are very good. For classes where part decomposition and detailed
geometry play an important role (e.g. octopus, hands, humans), the discrim-
ination capabilities are reduced.

4.4. The Parameters kh, ks and w

The approach has three parameters: the number of bins kh, ks, of the
histograms h, s, and the mixing factor w. In all presented experiments 2D
and 3D, kh = 200 and ks = 100 where used. The values where chosen based
on a few initial trials on a small set of shapes (Kimia25). Table 8 shows the
results on Kimia99 for different values of the parameter kh when using only
h as a shape descriptor, i.e. when w = 1. For s, a difference of at least 1
(2D, and voxel representations in 3D) respectively

√
2 is required between
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Table 8: The value of Matchr(Φ) for ECCobj2D, h only (w = 1 in Equation 4), on
the Kimia 99 database using descriptors with different number of bins. See Table 3 for
comparison with other methods.

number of bins k r=1 2 3 4 5 6 7 8 9 10
10 85 69 66 59 52 51 40 46 42 30
25 87 74 68 63 48 53 45 38 35 33
50 87 74 67 68 45 51 43 38 37 31
100 87 74 66 65 48 53 44 38 34 32
200 87 74 66 65 49 51 45 39 33 33
500 87 74 67 64 48 53 45 38 33 33
1000 87 74 67 64 48 54 44 37 34 33
2000 87 74 67 64 48 53 44 38 34 33

Table 9: The value of Matchr(Φ), r = 1, 2, 3 for ECCobj2D on the Kimia 25, Kimia 99,
and Ling databases using kh = 200, ks = 100 and different values of w. See Section 4.1 for
comparison with other methods.

database w r=1 2 3
Kimia 25 0.93 22 19 16
Kimia 99 0.93 95 84 79
Ling 0.93 40 33 27
Kimia 25 0.94 22 20 17
Kimia 99 0.94 94 85 81
Ling 0.94 40 33 29
Kimia 25 0.95 22 20 18
Kimia 99 0.95 93 86 81
Ling 0.95 40 33 29
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the centers of two neighboring bins. Thus any value of ks larger than half the
average of the geodesic diameters of the shapes is enough. The used value for
w was 0.94 and was selected based on a few trials on the Kimia25, Kimia99,
and Ling databases (note that h and s use a different normalization scheme,
which explains the apparently large bias toward h). Table 9 shows results
for different values of w.

As the shapes are discrete, the number of distance values of the ECC
is finite. Let hc be the ordered set of eccentricity values computed for a
shape S, i.e. each distinct value that exists in the ECC of the discrete
shape S. We have min(hc) equal to the ECC value of the center (minimum
ECC) and greater or equal to half the diameter of the shape (max(hc) =
max(ECC)). The largest distance between two neighboring (grid) points is
equal to one (shapes are required to be 4 respectively 6 connected). For the
ECC histogram of a shape not to contain any empty bins, the number of
bins kh has to satisfy:

k � max(ECC(S))−min(ECC(S)).

Depending on the shape, kh could be much higher and still have no empty
bins in h, e.g. for S a disk with radius u in Z

2 and the Euclidean distance,
there are more distinct values than u (consider the discrete approximation of
the Euclidean circle). An absolute upper bound is kh = |S|. If this number
is exceeded, there will be empty bins in h.

As kh decreases, the description capability of the histogram also decreases.
In the extreme case, a single bin would just contain |S|, and for the nor-
malized histogram it would contain the value 1. Two bins can give the
equivalent of a simple compactness measure (similar to the circularity ratio
or shape index ), which relates the area of the shape to the area of the cir-
cle with the same diameter). Three bins could be considered as a relative
measure for short/long/medium distances and can characterize more than
the simple compactness measure.

A higher number of bins increases the dimension of the space in which
distances are computed, and gives more flexibility in the relations, e.g. in 2D
there can be maximum 3 points s.t. they are pairwise at the same Euclidean
distance (equilateral triangle), and this number increases to 4 in 3D (regular
tetrahedron). Assuming that the number of classes and their pairwise (av-
erage) distances are known, a lower bound for the number of bins is equal
to the smallest dimension in which the classes can be embedded s.t. the
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distances computed in the histogram space are equal or close to the given
distances.

5. Potential Extensions

Topological changes in the shape. Geodesic distances are sensitive to changes
in the topology of the shape. For example, it is enough to touch the index
fingers of two hands in one point to drastically change the geodesic distance
between the points of the two palms: before we had to go over the arms
and torso, now we only have to travel over two fingers. This problem has
been approached in [42, 41] by using diffusion distance as an alternative to
geodesic distance. Diffusion distances consider all possible paths by which
two points can be connected and are expected to be more stable to changes in
topology (in the previous example, the high number of paths going through
the thicker arms will still be dominant over the path(s) going over the small
size contact area between the two fingers). The definition of the eccentricity
transform (Equation 2) is defined over a metric space and diffusion distances
could also be used.

Describing and matching part structure. One of the problems identified in
Section 3.4 and during the experiments (Sections 4.1 and 4.2) is that the his-
tograms s do not capture the exact structure/topology of the shape. Classical
methods to describe the topology of a shape (e.g. Reeb graphs [70], and ho-
mology generators [71]) do not capture geometrical aspects. An approach
to deal with this problem is presented in [72]. Two descriptors are used to
describe a shape: a geometric one, based on the Global Geodesic Function
(GGF) [34], which is defined for a point as the sum of the geodesic distances
to all points of the shape multiplied by a factor, and a topological one, the
Reeb graph of the shape using the GGF as the Morse function.

Initial steps in combining the eccentricity transform with Reeb graphs
have been presented in [73].

A better histogram matching. The problem of having a matching function
that is aware of the context in which it is applied can be approached in two
ways: (1) use expert knowledge about the context to create an algorithm
that considers the proper features, or (2) learn the important features by
giving a set of representative examples (e.g. [45]). In [74, 75], a survey of
current distance metric learning methods is given. The purpose of distance
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metric learning is to learn a distance metric for a space, from a given collec-
tion of pairs of similar/dissimilar points. The learned distance is supposed
to preserve the distance relation among the training data. Example training
data would be: S1 is more similar to S2 than to S3. The result is a distance
function that would replace the L2-norm in Equation 3 with a new mea-
sure, which is adapted to the task of computing the distance of eccentricity
histograms as given by the training examples.

Partial shape similarity. The presented approach matches “whole” shapes
and will work in the presence of only minor occlusion. Even though the
eccentricity values remain the same when certain parts of a shape are re-
moved, removing parts will change the histograms, proportional to the size
of the removed parts. Partial shape similarity could be approached by first
decomposing a shape into parts (like in the approaches in [12, 46]) and then
matching the parts to each other. This way one can obtain part correspon-
dences and higher robustness with respect to occlusion.

Higher dimensional data. 4D data has started to be available in the medical
image processing community (e.g. 3D scans of a beating heart, over time).
The presented method is general and should work in any metric space. This
includes 4D, but also gray scale images (e.g. gray values can determine the
distance propagation speed in the respective cells). A study in this direction
is planned.

6. Conclusion

We have presented a method for matching 2D and 3D shapes. The
method is based on the eccentricity transform, which uses maximal geodesic
distances and is insensitive to articulation. Descriptors are composed of two
terms: a normalized histogram of the eccentricity transform and a histogram
of the connected components of the level-sets of the eccentricity transform.
They characterize the compactness and structure of the shape, are com-
pact and easy to match. The method is straightforward but still efficient,
achieving state of the art results on databases of shapes undergoing articula-
tion. Articulation is indeed the main invariance provided by our histogram
representation. Experimental results on popular 2D and 3D shape matching
benchmarks are given, with computation on binary 2D images, binary 3D
voxel shapes, and 3D triangular meshes. The parameters of the method, and
the relation between changes to a shape and its corresponding eccentricity
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histogram are discussed in detail. Adding extended structural information to
the descriptor and searching for correspondences between parts would help to
overcome the cases where shapes of different classes have similar histograms.
Matching can be improved by adding context in the histogram similarity
computation e.g. through metric distance learning.

7. Acknowledgments

The presented work was partially supported by the Austrian Science Fund
under grants S9103-N13 and P18716-N13. Adrian Ion was supported, in part,
by the European Commission, under project MCEXT-025481.

Appendix

For completeness, the algorithm ECC06 [47] used to compute the eccen-
tricity transform for the shapes in our experiments is included (see [48] for an
analysis of the speed/error performance). ECC06 (see Algorithm 1) tries to
identify points of the geodesic center (minimum ECC) and use those to find
eccentric point candidates. Computing DS(c) for a center point c ∈ C(S) is
expected to create local maxima where eccentric points lie. In a first phase,
the algorithm identifies at least two diameter ends by repeatedly ‘jumping’
(computing DS(p)) for the point that had the highest value in the previous
estimation. In the second phase, the center points ci are estimated as the
points with the minimum eccentricity and all local maxima m of DS(c) are
marked as eccentric point candidates. For all m, DS(m) is computed and
accumulated. When no new local maxima are found (i.e. with DS(m) not
previously computed), the algorithm stops.
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