Estimation of the density of regression errors by pointwise model selection

Abstract : This paper presents two results: a density estimator and an estimator of regression error density. We first propose a density estimator constructed by model selection, which is adaptive for the quadratic risk at a given point. Then we apply this result to estimate the error density in an homoscedastic regression framework $Y_i=b(X_i) + \epsilon _i$, from which we observe a sample $(X_i,Y_i)$. Given an adaptive estimator $\widehat{b}$ of the regression function, we apply the density estimation procedure to the residuals $\widehat{\epsilon} _i = Y_i -\widehat{b} (X_i)$. We get an estimator of the density of $\epsilon _i$ whose rate of convergence for the quadratic pointwise risk is the maximum of two rates: the minimax rate we would get if the errors were directly observed and the minimax rate of convergence of $\widehat{b}$ for the quadratic integrated risk.
Type de document :
Pré-publication, Document de travail
MAP5 2009-05. 2009
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00364334
Contributeur : Sandra Plancade <>
Soumis le : jeudi 26 février 2009 - 12:15:55
Dernière modification le : mardi 10 octobre 2017 - 11:22:03
Document(s) archivé(s) le : vendredi 12 octobre 2012 - 12:30:44

Fichier

article-ponctuel-final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00364334, version 1

Collections

Citation

Sandra Plancade. Estimation of the density of regression errors by pointwise model selection. MAP5 2009-05. 2009. 〈hal-00364334〉

Partager

Métriques

Consultations de
la notice

127

Téléchargements du document

118