Fast transport optimization for Monge costs on the circle

Abstract : Consider the problem of optimally matching two measures on the circle, or equivalently two periodic measures on the real line, and suppose the cost of matching two points satisfies the Monge condition. We introduce a notion of locally optimal transport plan, motivated by the weak KAM (Aubry-Mather) theory, and show that all locally optimal transport plans are conjugate to shifts and that the cost of a locally optimal transport plan is a convex function of a shift parameter. This theory is applied to a transportation problem arising in image processing: for two sets of point masses on the circle, both of which have the same total mass, find an optimal transport plan with respect to a given cost function satisfying the Monge condition. In the circular case the sorting strategy fails to provide a unique candidate solution and a naive approach requires a quadratic number of operations. For the case of $N$ real-valued point masses we present an O(N |log epsilon|) algorithm that approximates the optimal cost within epsilon; when all masses are integer multiples of 1/M, the algorithm gives an exact solution in O(N log M) operations.
Type de document :
Article dans une revue
SIAM Journal on Applied Mathematics, Society for Industrial and Applied Mathematics, 2010, 70 (7), pp.2239. 〈10.1137/090772708〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00362834
Contributeur : Andrei Sobolevskii <>
Soumis le : jeudi 8 octobre 2009 - 10:01:06
Dernière modification le : jeudi 11 janvier 2018 - 06:23:38
Document(s) archivé(s) le : mercredi 22 septembre 2010 - 13:45:10

Fichiers

opttransnote_siam_ps.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Julie Delon, Julien Salomon, Andrei Sobolevskii. Fast transport optimization for Monge costs on the circle. SIAM Journal on Applied Mathematics, Society for Industrial and Applied Mathematics, 2010, 70 (7), pp.2239. 〈10.1137/090772708〉. 〈hal-00362834v2〉

Partager

Métriques

Consultations de la notice

543

Téléchargements de fichiers

173