Learning rules from multisource data for cardiac monitoring

Marie-Odile Cordier 1 Elisa Fromont 2 René Quiniou 1
1 DREAM - Diagnosing, Recommending Actions and Modelling
Inria Rennes – Bretagne Atlantique , IRISA-D7 - GESTION DES DONNÉES ET DE LA CONNAISSANCE
Abstract : This paper formalises the concept of learning symbolic rules from multisource data in a cardiac monitoring context. Our sources, electrocardiograms and arterial blood pressure measures, describe cardiac behaviours from different viewpoints. To learn interpretable rules, we use an Inductive Logic Programming (ILP) method. We develop an original strategy to cope with the dimensionality issues caused by using this ILP technique on a rich multisource language. The results show that our method greatly improves the feasibility and the efficiency of the process while staying accurate. They also confirm the benefits of using multiple sources to improve the diagnosis of cardiac arrhythmias.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [25 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00362831
Contributor : Elisa Fromont <>
Submitted on : Thursday, February 19, 2009 - 2:42:12 PM
Last modification on : Thursday, November 15, 2018 - 11:57:04 AM
Document(s) archivé(s) le : Tuesday, June 8, 2010 - 7:02:11 PM

File

IJBET.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00362831, version 1
  • ARXIV : 0902.3373

Citation

Marie-Odile Cordier, Elisa Fromont, René Quiniou. Learning rules from multisource data for cardiac monitoring. International Journal of Biomedical Engineering and Technology (IJBET), Inderscience, 2010, Vol 3 (1/2), pp.133-155. ⟨hal-00362831⟩

Share

Metrics

Record views

590

Files downloads

848