V. Andrieu, L. Praly, and A. Astolfi, Nonlinear output feedback design via domination and generalized weighted homogeneity, Proceedings of the 45th IEEE Conference on Decision and Control, 2006.
DOI : 10.1109/CDC.2006.377553

A. Bacciotti and L. Rosier, Liapunov Functions and Stability in Control Theory, Lecture Notes in Control and Information Sciences, vol.267, 2001.
DOI : 10.1007/b139028

URL : https://hal.archives-ouvertes.fr/hal-00139067

S. P. Bhat and D. S. Bernstein, Geometric homogeneity with applications to finite-time stability, Mathematics of Control, Signals, and Systems, vol.17, issue.2, pp.101-127, 2005.
DOI : 10.1007/s00498-005-0151-x

S. P. Bhat and D. S. Bernstein, Finite-Time Stability of Continuous Autonomous Systems, SIAM Journal on Control and Optimization, vol.38, issue.3, pp.751-766, 2000.
DOI : 10.1137/S0363012997321358

J. Coron and L. Praly, Adding an integrator for the stabilization problem, Systems & Control Letters, vol.17, issue.2, pp.89-104, 1991.
DOI : 10.1016/0167-6911(91)90034-C

J. Coron and L. Rosier, A relation between continuous time-varying and discontinuous feedback stabilization, J. of Math. Syst, Est., and Cont, vol.4, pp.67-84, 1994.

J. P. Gauthier and I. Kupka, Deterministic Observation Theory And Applications, 2001.
DOI : 10.1017/CBO9780511546648

W. Hahn, Stability of Motion, 1967.
DOI : 10.1007/978-3-642-50085-5

H. Hermes, Homogeneous coordinates and continuous asymptotically stabilizing feedback controls, Differential Equations Stability and Controls, pp.249-260, 1991.
DOI : 10.1051/cocv:1997101

URL : http://archive.numdam.org/article/COCV_1997__2__13_0.pdf

Y. Hong, Finite-time stabilization and stabilizability of a class of controllable systems, Systems & Control Letters, vol.46, issue.4, pp.231-236, 2002.
DOI : 10.1016/S0167-6911(02)00119-6

Z. Jiang, A. Teel, and L. Praly, Small-gain theorem for ISS systems and applications, Mathematics of Control, Signals, and Systems, vol.27, issue.2, pp.95-120, 1994.
DOI : 10.1007/BF01211469

H. Khalil and A. Saberi, Adaptive stabilization of a class of nonlinear systems using high-gain feedback, IEEE Trans. Automat. Contr, vol.32, issue.11, 1987.

M. Kawski, Stabilization of nonlinear systems in the plane, Systems & Control Letters, vol.12, issue.2, pp.169-175, 1989.
DOI : 10.1016/0167-6911(89)90010-8

S. Lefschetz, Differential Equations: Geometric Theory, 1977.

P. W. Liu, Y. Chitour, and E. D. Sontag, Remarks on finite gain stabilizability of linear systems subject to input saturation, Proc. IEEE Conf. Decision and Control, 1993.

J. L. Massera, Contributions to Stability Theory, The Annals of Mathematics, vol.64, issue.1, pp.182-206, 1956.
DOI : 10.2307/1969955

F. Mazenc, Stabilisation de trajectoires, ajout d'intégration, commandes saturées, 1996.

F. Mazenc, L. Praly, and W. P. Dayawansa, Global stabilization by output feedback: examples and counterexamples, Systems & Control Letters, vol.23, issue.2, pp.119-125, 1994.
DOI : 10.1016/0167-6911(94)90041-8

P. Morin and C. Samson, Application of Backstepping Techniques to the Time-Varying Exponential Stabilisation of Chained Form Systems, European Journal of Control, vol.3, issue.1, pp.15-36, 1997.
DOI : 10.1016/S0947-3580(97)70059-1

R. Orsi and L. , Praly, I. Mareels, Sufficient conditions for the existence of an unbounded solution, Automatica, vol.37, issue.10, 2001.

L. Praly, B. Andréa-novel, and J. , Coron : Lyapunov design of stabilizing controllers for cascaded systems, IEEE Trans. Automat. Contr, vol.36, issue.10, 1991.

L. Praly and Z. Jiang, Stabilization by output feedback for systems with ISS inverse dynamics, Systems & Control Letters, vol.21, issue.1, pp.19-33, 1993.
DOI : 10.1016/0167-6911(93)90040-D

L. Praly and Z. Jiang, Further results on robust semiglobal stabilization with dynamic input uncertainties, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171), 1998.
DOI : 10.1109/CDC.1998.760806

L. Praly and Z. Jiang, Linear output feedback with dynamic high gain for nonlinear systems, Systems & Control Letters, vol.53, issue.2, pp.107-116, 2004.
DOI : 10.1016/j.sysconle.2004.02.025

L. Praly and F. Mazenc, Design of homogeneous feedbacks for a chain of integrators and Applications, 1995.

C. Qian, A Homogeneous Domination Approach for Global Output Feedback Stabilization of a Class of Nonlinear Systems, Proc. of the ACC, 2005.

C. Qian and W. Lin, Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm, IEEE Transactions on Automatic Control, vol.47, issue.10, pp.1710-1079, 2001.
DOI : 10.1109/TAC.2002.803542

C. Qian and W. Lin, Recursive Observer Design, Homogeneous Approximation, and Nonsmooth Output Feedback Stabilization of Nonlinear Systems, IEEE Transactions on Automatic Control, vol.51, issue.9, pp.1457-1471, 2006.
DOI : 10.1109/TAC.2006.880955

L. Rosier, Homogeneous Lyapunov function for homogeneous continuous vector field, Systems & Control Letters, vol.19, issue.6, pp.467-473, 1992.
DOI : 10.1016/0167-6911(92)90078-7

H. Shim and J. Seo, Recursive Nonlinear Observer Design: Beyond the Uniform Observability, IEEE Transactions on Automatic Control, vol.48, issue.2, 2003.

E. D. Sontag, Input to State Stability: Basic Concepts and Results, Nonlinear and Optimal Control Theory, pp.163-220, 2006.
DOI : 10.1007/978-3-540-77653-6_3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. D. Sontag and Y. Wang, Lyapunov Characterizations of Input to Output Stability, SIAM Journal on Control and Optimization, vol.39, issue.1, pp.226-249, 2001.
DOI : 10.1137/S0363012999350213

M. Tzamtzi and J. Tsinias, Explicit formulas of feedback stabilizers for a class of triangular systems with uncontrollable linearization, Systems & Control Letters, vol.38, issue.2, pp.115-126, 1999.
DOI : 10.1016/S0167-6911(99)00052-3

F. W. Wilson and J. , Smoothing derivatives of functions and applications, Transactions of the American Mathematical Society, vol.139, pp.413-428, 1969.
DOI : 10.1090/S0002-9947-1969-0251747-9

B. Yang and W. Lin, Correction to "Homogeneous Observers, Iterative Design, and Global Stabilization of High-Order Nonlinear Systems by Smooth Output Feedback", IEEE Transactions on Automatic Control, vol.50, issue.11, 2004.
DOI : 10.1109/TAC.2005.858632