Large Deviations Theorems in Nonparametric Regression on Functional Data
Mohamed Cherfi

To cite this version:
Mohamed Cherfi. Large Deviations Theorems in Nonparametric Regression on Functional Data. 2009. <hal-00362337v2>

HAL Id: hal-00362337
https://hal.archives-ouvertes.fr/hal-00362337v2
Submitted on 9 Jun 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Large Deviations Theorems in Nonparametric Regression on Functional Data

Mohamed Cherfi

Laboratoire de Statistique Théorique et Appliquée (LSTA)
Equipe d’Accueil 3124
Université Pierre et Marie Curie – Paris 6
Tour 15-25, 2ème étage
4 place Jussieu
75252 Paris cedex 05

Abstract.
In this Note we prove large deviations principles for the Nadaraya-Watson estimator of the regression of a real-valued variable with a functional covariate. Under suitable conditions, we show pointwise and uniform large deviations theorems with good rate functions.

AMS Subject Classifications: primary 60F10; 62G08
Keywords: Large deviation; nonparametric regression; functional data.

1 Introduction

Let \(\{ (Y_i, X_i), \ i \geq 1 \} \) be a sequence of independent and identically distributed random vectors. The random variables \(Y_i \) are real, with \(\mathbb{E}|Y| < \infty \), and the \(X_i \) are random vectors with values in a semi-metric space \((\mathcal{X}, d(\cdot, \cdot)) \).

Consider now the functional regression model,

\[
Y_i := \mathbb{E}(Y|X_i) + \varepsilon_i = r(X_i) + \varepsilon_i \quad i = 1, \ldots, n,
\]

where \(r \) is the regression operator mapping \(\mathcal{X} \) onto \(\mathbb{R} \), and the \(\varepsilon_i \) are real variables such that, for all \(i \), \(\mathbb{E}(\varepsilon_i|X_i) = 0 \) and \(\mathbb{E}(\varepsilon_i^2|X_i) = \sigma_i^2(X_i) < \infty \). Note that in practice \(\mathcal{X} \) is a normed space which can be of infinite dimension (e.g., Hilbert or Banach space) with norm \(\| \cdot \| \) so that \(d(x, x') = \| x - x' \| \), which is the case in this paper.

Ferraty and Vieu (2004) provided a consistent estimate for the nonlinear regression operator \(r \), based on the usual finite-dimensional smoothing ideas, that is

\[
\hat{r}_n(x) := \frac{\sum_{i=1}^n Y_i K \left(\frac{\|x-X_i\|}{h_n} \right)}{\sum_{i=1}^n K \left(\frac{\|X_i-x\|}{h_n} \right)},
\]

where \(K(\cdot) \) is a real-valued kernel and \(h_n \) the bandwidth, is a sequence of positive real numbers converging to 0 as \(n \rightarrow \infty \). Note that the bandwidth \(h_n \) depends on \(n \), but we drop this index for

E-mail address: mohamed.cherfi@gmail.com
notational convenience. In what follows $K_h(u)$ stands for $K\left(\frac{u}{h}\right)$. The estimator defined in (2) is a generalization to the functional framework of the classical Nadaraya-Watson regression estimator. The asymptotic properties of this estimate have been studied extensively by several authors, we cite among others Ferraty et al. (2007), for a complete survey see the monograph by Ferraty and Vieu (2006).

There exists a wide large deviations literature, for an extensive overview on the area we refer to the monograph of Dembo and Zeitouni (1998). The large deviations behavior of the Nadaraya-Watson estimate of the regression function, have been studied at first by Louani (1999), sharp results have been obtained by Joutard (2006) in the univariate framework. In the multidimensional case Mokkadem et al. (2008) obtained pointwise large and moderate deviations results for the Nadaraya-Watson and recursive kernel estimators of the regression.

Large deviations results have many implications in statistical analysis, we refer to Bahadur (1971) for a good survey on the subject. The main concern in the nonparametric setup is with asymptotic efficiency and the inaccuracy rate. These questions have been investigated in Louani (1998) for the density case. As an application of large deviations results, Louani (1999) gives the inaccuracy rate in conditional distribution function estimation. Another application can be found in Berrahou and Louani (2006), where the authors provide Bahadur efficiency of symmetry tests. We refer to the monograph of Nikitin (1995) for an account of results on the asymptotic efficiency.

All the results of large deviations in nonparametric regression only dealt with the case of scalar covariates. In this Note, our aim is to obtain such results in the functional case. Inaccuracy rate in nonparametric regression estimation on functional data will be considered in a future work. We are also interested to obtain a minimax Bahadur-type risk of estimating a nonparametric regression function, in the spirit of Korostelev (1996).

In this Note, we are interested in the problem of establishing large deviations principles of the regression operator estimate $\hat{r}_n(\cdot)$. The results stated in the Note deal with pointwise and uniform large deviations probabilities of $\hat{r}_n(\cdot)$ from $r(\cdot)$.

2 Results

Let $F_x(h) = \mathbb{P}[\|X_i - x\| \leq h]$, be the cumulative distribution of the real variable $W_i = \|X_i - x\|$. As in Ferraty et al. (2007), let $\varphi(\cdot)$ be the real valued function defined by

$$\varphi(u) = \mathbb{E}\{r(X) - r(x) \|X - x\| = u\}. \quad (3)$$

Before stating our results, we will consider the following conditions.

(C.1) The kernel K is of class C^1 with continuous derivative on the compact support $[0, 1]$.

(C.2) The operator r verifies the following Lipschitz property:

$$\text{There exists } \beta \text{ such that } \forall (u, v) \in X^2, \exists C, |r(u) - r(v)| \leq C\|u - v\|^\beta \quad (4)$$

(C.3) There exists three functions $\ell(\cdot), \phi(\cdot)$ (supposed increasing and strictly positive and tending to zero as h goes to zero) and $\zeta_0(\cdot)$ such that

2
(i) \(F_x(h) = \ell(x)\phi(h) + o(\phi(h)) \),
(ii) for all \(u \in [0,1] \), \(\lim_{h \to 0} \frac{\phi(uh)}{\phi(h)} =: \lim_{h \to 0} \zeta_h(u) = \zeta_0(u) \).

C.4 \(\varphi'(0) \) exists.

Remark 1: There exists many examples fulfilling the decomposition mentioned in condition (C.3), see for instance Proposition 1 in Ferraty et al. (2007). The conditions stated above are classical in nonparametric estimation for functional data, we refer to Ferraty et al. (2007) and the references therein. However this condition is somewhat restrictive but is necessary to prove our results, we refer among others to Ferraty et al. (2010) for less restrictive conditions.

Let now introduce the following functions,

\[I(t) = t\lambda \int_0^1 K'(u) \exp{-t\lambda K(u)} \zeta_0(u) \, du; \]

\[\Gamma_+(\lambda) = \inf_{t > 0} \{ \ell(x)I(t) \}; \quad \Gamma_x(\lambda) = \inf_{t > 0} \{ \ell(x)I(-t) \} \text{ and } \Gamma_-(\lambda) = \max\{ \Gamma_+(\lambda); \Gamma_x(\lambda) \}. \]

Let \(x \) be a an element of the functional space \(\mathcal{X} \) and \(\lambda > 0 \). Our first theorem deals with pointwise large deviations probabilities.

Theorem 2.1 Assume that the conditions (C.1)–(C.4) are satisfied. If \(n\phi(h) \to \infty \), then for any \(\lambda > 0 \) and any \(x \in \mathcal{X} \), we have

(a) \[\lim_{n \to \infty} \frac{1}{n\phi(h)} \log P(\hat{r}_n(x) - r(x) > \lambda) = \Gamma_+(\lambda), \]

(b) \[\lim_{n \to \infty} \frac{1}{n\phi(h)} \log P(\hat{r}_n(x) - r(x) < -\lambda) = \Gamma_x(\lambda), \]

(c) \[\lim_{n \to \infty} \frac{1}{n\phi(h)} \log P(|\hat{r}_n(x) - r(x)| > \lambda) = \Gamma_x(\lambda). \]

To establish uniform large deviations principles for the regression estimator we need the following additional assumptions. Let \(C \) be some compact subset of \(\mathcal{X} \) and \(B(z_k, \xi) \) a ball centered at \(z_k \in \mathcal{X} \) with radius \(\xi \), such that for any \(\xi > 0 \),

\[C \subset \bigcup_{k=1}^{\tau} B(z_k, \xi), \]

\[\exists \alpha > 0, \quad \exists C > 0, \quad \tau \xi^\alpha = C. \]

Before stating the Theorem about the uniform version of our result, we introduce the following function

\[g(\lambda) = \sup_{x \in C} \Gamma_x(\lambda). \]

Theorem 2.2 Assume that the conditions (C.1)–(C.4) are satisfied. If \(n\phi(h) \to \infty \), then for any compact set \(C \subset \mathcal{X} \) satisfying conditions (9) and for any \(\lambda > 0 \),

\[\lim_{n \to \infty} \frac{1}{n\phi(h)} \log P(\sup_{x \in C} |\hat{r}_n(x) - r(x)| > \lambda) = g(\lambda). \]
Remark 2
(i) The above conditions on the covering of the compact set C by a finite number of balls, the geometric link between the number of balls τ and the radius ξ are necessary to prove uniform convergence in the context of functional non-parametric regression and many functional non-parametric settings, see the discussion in Ferraty and Vieu (2008).

(ii) More recently, Ferraty et al. (2010) proved a very nice result about the uniform almost complete convergence of $\hat{r}_n(\cdot)$ by use of the Kolmogorov’s ϵ-entropy of C. It will be of interest to prove Theorem 2.2, under their conditions.

3 Proofs

3.1 Proof of Theorem 2.1

We only prove the statement (6), (7) is derived in the same way.

(a) Write

$$Z_n = \sum_{i=1}^{n} \{ Y_i - r(x) - \lambda \} K_h(||X_i - x||)$$

Define $\Phi_x^{(n)}(t) := E \exp(tZ_n)$ to be the moment generating function of Z_n. To prove the large deviations principles, we seek the limit of $\frac{1}{n\phi(h)} \log \Phi_x^{(n)}(t)$ as $n \to \infty$.

Observe that

$$\Phi_x^{(n)}(t) = \left\{ 1 + E \left(\exp \left\{ t[r(X_1) - r(x) - \lambda]K_h(||X_1 - x||) \right\} - 1 \right) \right\}^n.$$

Using the definition of the function φ in (3), we can write

$$\Phi_x^{(n)}(t) = \left\{ 1 + E \left(\exp \left\{ t[\varphi(||X_1 - x||) - \lambda]K_h(||X_1 - x||) \right\} - 1 \right) \right\}^n, $$

$$= \left\{ 1 + \int_0^h \left(\exp \left\{ t[\varphi(u) - \lambda]K_h(u) \right\} - 1 \right) dF_x(u) \right\}^n. $$

$$= \left\{ 1 + \int_0^1 \left(\exp \left\{ t[\varphi(hu) - \lambda]K(u) \right\} - 1 \right) dF_x(hu) \right\}^n. $$

By (C.4), using a first order Taylor expansion of φ about zero, we obtain

$$\Phi_x^{(n)}(t) = \left\{ 1 + \int_0^1 \left(\exp \left\{ t[h\varphi'(0) - \lambda + o(1)]K(u) \right\} - 1 \right) dF_x(hu) \right\}^n, $$

Integrating by parts and by (C.1), we have

$$\Phi_x^{(n)}(t) = \left\{ 1 - \int_0^1 t[h\varphi'(0)K(u) + K'(u)(uh\varphi'(0) - \lambda)] \exp \left\{ t[h\varphi'(0) - \lambda]K(u) \right\} F_x(hu) \ du \right\}^n. $$
Therefore,
\[
\log \Phi_x^{(n)}(t) = n \log \left\{ 1 - \int_0^1 t[h\varphi'(0)K(u) + K'(u)(uh\varphi'(0) - \lambda)] \exp\{t[h\varphi'(0) - \lambda]K(u)\}F_x(hu) \, du \right\}.
\]

Using Taylor expansion of \(\log(1 + v)\) about \(v = 0\), we obtain
\[
\log \Phi_x^{(n)}(t) = n \left\{ - \int_0^1 t[h\varphi'(0)K(u) + K'(u)(uh\varphi'(0) - \lambda)] \exp\{t[h\varphi'(0) - \lambda]K(u)\}F_x(hu) \, du + O(h) \right\}.
\]

Hence, from Assumption (C.4) (ii) it follows that
\[
\lim_{n \to \infty} \frac{1}{n \phi(h)} \log \Phi_x^{(n)}(t) = \ell(x) \left\{ t\lambda \int_0^1 K'(u) \exp\{-t\lambda K(u)\} \zeta_0(u) \, du \right\} =: \ell(x)I(t).
\]

Using Theorem of Plachky and Steinebach (1975), the proof of the theorem can be completed as in Louani (1998).

(c) Observe that for any \(x \in X\),
\[
\max\{P(\hat{r}_n(x) - r(x) > \lambda); P(\hat{r}_n(x) - r(x) < -\lambda)\} \leq P(|\hat{r}_n(x) - r(x)| > \lambda)
\]
and
\[
P(|\hat{r}_n(x) - r(x)| > \lambda) \leq 2\max\{P(\hat{r}_n(x) - r(x) > \lambda); P(\hat{r}_n(x) - r(x) < -\lambda)\}.
\]

Hence,
\[
\Gamma_x(\lambda) \leq \lim_{n \to \infty} \frac{1}{n \phi(h)} \log P(|\hat{r}_n(x) - r(x)| > \lambda) \leq \max\{\Gamma^+_x(\lambda); \Gamma^-_x(\lambda)\} = \Gamma_x(\lambda),
\]

Thus the proof is complete.

3.2 Proof of Theorem 2.2

First for any \(x_0 \in \mathcal{C}\), by Theorem 2.1 we have
\[
\liminf_{n \to \infty} \frac{1}{n \phi(h)} \log P\left(\sup_{x \in \mathcal{C}} |\hat{r}_n(x) - r(x)| > \lambda \right) \geq \liminf_{n \to \infty} \frac{1}{n \phi(h)} \log P(|\hat{r}_n(x_0) - r(x_0)| > \lambda) \geq \Gamma_{x_0}(\lambda).
\]

Hence
\[
\liminf_{n \to \infty} \frac{1}{n \phi(h)} \log P\left(\sup_{x \in \mathcal{C}} |\hat{r}_n(x) - r(x)| > \lambda \right) \geq g(\lambda).
\] \hspace{1cm} (12)

To prove the reverse inequality, we note that by conditions (9) it follows
\[
\sup_{x \in \mathcal{C}} |\hat{r}_n(x) - r(x)| \leq \max_{1 \leq k \leq r} \sup_{x \in B(z_k, \xi)} |\hat{r}_n(x) - r(x)|,
\] \hspace{1cm} (13)
Hence,
\[
\sup_{x \in B(z_k, \xi)} |\hat{r}_n(x) - r(x)| \leq \sup_{x \in B(z_k, \xi)} |\hat{r}_n(x) - \hat{r}_n(z_k)| + \sup_{x \in B(z_k, \xi)} |r(z_k) - r(x)| + |\hat{r}_n(z_k) - r(z_k)|.
\]
(14)

Using the fact that \(K \) is Lipschitz by condition (C.1), there exists \(C > 0 \) so that
\[
\sup_{x \in B(z_k, \xi)} |\hat{r}_n(x) - \hat{r}_n(z_k)| \leq \frac{C \xi}{n \phi(h) h} \sum_{i=1}^{n} |Y_i|.
\]

For \(n \) sufficiently large, we choose \(\xi \) according to the preassigned \(\epsilon > 0 \), so that
\[
\sup_{x \in B(z_k, \xi)} |\hat{r}_n(x) - \hat{r}_n(z_k)| \leq \epsilon.
\]
(15)

Moreover, \(r \) is Lipschitz, hence for a suitable choice of \(\xi \)
\[
\sup_{x \in B(z_k, \xi)} |r(z_k) - r(x)| \leq \epsilon.
\]
(16)

Finally, (13)-(16) yield
\[
\sup_{x \in C} |\hat{r}_n(x) - r(x)| \leq \max_{1 \leq k \leq \tau} \{ |\hat{r}_n(z_k) - r(z_k)| + 2 \epsilon \},
\]
(17)

which implies
\[
P(\sup_{x \in C} |\hat{r}_n(x) - r(x)| > \lambda) \leq \sum_{k=1}^{\tau} P(|\hat{r}_n(z_k) - r(z_k)| > \lambda - 2 \epsilon).
\]

Thus,
\[
P(\sup_{x \in C} |\hat{r}_n(x) - r(x)| > \lambda) \leq \tau \max_{1 \leq k \leq \tau} P(|\hat{r}_n(z_k) - r(z_k)| > \lambda - 2 \epsilon).
\]

It follows, by Theorem 2.1, that
\[
\limsup_{n \to \infty} \frac{1}{n \phi(h)} \log P(\sup_{x \in C} |\hat{r}_n(x) - r(x)| > \lambda) \leq \inf_{t > 0} \sup_{x \in C} \ell(x) I_t(t),
\]

where
\[
I_t(t) = t(\lambda - 2 \epsilon) \int_{0}^{1} K'(u) \exp\{-t(\lambda - 2 \epsilon) K(u)\} \zeta_0(u) \, du.
\]

By continuity arguments, and the fact that
\[
\inf_{t > 0} \sup_{x \in C} \ell(x) I(t) = \sup_{x \in C} \inf_{t > 0} \ell(x) I(t),
\]

we obtain
\[
\limsup_{n \to \infty} \frac{1}{n \phi(h)} \log P(\sup_{x \in C} |\hat{r}_n(x) - r(x)| > \lambda) \leq g(\lambda).
\]
(18)

Combining (12) and (18), we see that the limit exists which is \(g(\lambda) \).
References

