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Abstract Criteria containing aarrier function i.e., an unbounded function at the
boundary of the feasible solution domain are frequentlyoentered in the optimiza-
tion framework. When an iterative descent method is usedageclsalong the line
supported by the descent direction through the miniminatfcthe underlying scalar
function has to be performed at each iteration. Usual lire@cestrategies use an
iterative procedure to propose a stepsize value ensurafutfillment of sufficient
convergence conditions. The iterative scheme is clad$gizated on backtracking, di-
chotomy, polynomial interpolations or quadratic majatiza of the scalar function.
However, since the barrier function introduces a singtylami the criterion, classical
line search procedures tend to be inefficient. In this paggprmepose a majorization-
based line search strategy by deriving a nonquadratic féenm@jorant function well
suited to approximate a criterion containing a barrier téfarthermore, we establish
the convergence of classical descent algorithms whentiiaiegy is employed. The
efficiency of the proposed line search strategy is illusttdty means of numerical
examples in the field of signal and image processing.

Keywords Descent optimization method®arrier function line search majorize-
minimize algorithm- convergence
1 Introduction

The aim of this paper is to address optimization problemtsréed

min{F(z) = P(z) + uB(z)}, u>0 (1)
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wherex € R", Bis abarrier function having its gradient unbounded at the boundary
of the strictly feasible domain

% ={x|Ci(z)>0,i=1,..,m}

and P is differentiable on&. We consider the case of linear constrai@tér) =
al z + p; with a; € R"\ {0}, pi € R and barrier functions that read

B(z) = 3 $(G()) )
with ; taking one of the following forms:
gi(u) = —kj logu, ki >0 3
Yi(u) = kjulogu, k; >0 (4)
gi(u)=—ku, re(0,1),k >0 (5)

so that the minimizers* of F fulfill Cj(z*) > 0.
A large family of optimization methods to solve (1) are basedteratively de-
creasing the criterion by moving the current solutignalong a directioniy,

T 1 = Xk + Ody, (6)

whereay > 0 is thestepsizeand dy is a descent direction.e., a vector satisfying
OF (z«) "dk < 0. Such iterative descent methods consist in alternatiegdmstruc-
tion of dy and the determination afy (line search. While the direction is computed
using the criterion properties (gradient, Hessian) at tingenit valuexy, the line
search is performed by minimizing the scalar functidior) = F (zx + ady). Some
iterative methods do not require the line search step shmeditection is calculated
such that the optimal value of; would be equal to one (e.g., trust region algorithms
([6]), subspace optimization ([36,28]) or variable metlgorithms ([10,14])). Our
analysis does not cover this family of methods.

Usual line search strategies perform an inexact mininopatif f and propose a
stepsize value that ensures the convergence of the desgerithem ([31]). Typically,
an iterative procedure generates a series of stepsizesuattieéthe fulfillment of suf-
ficient convergence conditions such as Wolfe and Goldstaiditions ([26, 31]). The
iterative scheme is classically based on backtrackingaraiomy and more sophis-
ticated procedures involve polynomial interpolationstaf scalar function. Another
alternative is to use quadratic majorizations of the sdalaction leading to stepsize
formulas guaranteeing the overall algorithm convergef®# 22]). However, since
the barrier function in problem (1) has a singularity at tbetdary of#’, the deriva-
tive of the scalar function is unbounded which makes polyiabmterpolation-based
strategies inefficient ([27]) and quadratic majorizatioisuited.

In this paper a majorization-based line search is firsthppsed by deriving a
nonquadratic form of a majorant function well suited to apimate a criterion con-
taining a barrier term. Secondly, convergence resultstateered for classical descent
algorithms when this strategy is applied. The rest of thiggpas organized as fol-
lows: After introducing the framework of the optimizatioroplem in§2, we explain



in §3 why special-purpose line search procedures are calledtien dealing with
barrier functions. A suitable line search strategy basethajorization is then pro-
posed ing4. §5 gives the properties of the resulting stepsize series;@natesents
the convergence results when the proposed line searchdsiaiesl with classical
descent algorithmg7 illustrates the efficiency of the proposed line searchessa
through numerical examples in the field of signal and imagegssing.

2 Preliminaries

Assumption 1 Let ¥ be a neighborhood of the level s& = {z|F () < F(xo)}.
¥ is assumed bounded. Moreover; R" — R is differentiable or” and OF () is
Lipschitz continuous ot with the Lipschitz constant & O:

I0F () - OF (y)|| < L[z -y, Yo,y € V

The first part of the assumption is not a restrictive conditsince it holds ifF is
coercive, that is:
F(x) =+
]| —+e
According to Assumption 1, there exisjs> 0 such that
|OF ()| <n,Veev Q)

Moreover, because the gradientBis unbounded at the boundary%f (7) leads to
the existence ofy > 0 such that

Ci(xz) > &,V eV, Vi=1,...,m, (8)
and the boundedness assumptiorvoimplies that there existsl > 0 such that
Ci(z) <M, Vee? Vi=1..m 9)

Assumption 2 Assumption 1 holds and F is convex #h for every(xz,y) € ¥ we
have
F(wz+ (1- w)y) < oF (z) + (1- w)F(y), Yo € [0,1]

Assumption 3 Assumption 1 holds and F is strongly convexforthere exists\ > 0
such that

[OF (@) — OF (@)] " (z —2') > Al — /|2, Va,a’ € ¥

Definition 1 Let { My, k=1,...,K} a set of symmetric matrice§M,} has anon-
negative bounded spectrumith bounds(vi/”, v{/) e Riffor all k,

" Myx

o<’ < T

< vy’ va e R™ {0} (10)

Moreover, the set haspositive bounded spectru'lfnvi/” > 0.
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Assumption 4 For all ' € ¥, there exists a symmetric mati® (x’) such that for
alx e,

Qz, ') = P(z') + (x — ') OP(z') + %(a: —2)\TM(2')(x—x') > P(x). (11)

Moreover, the sef M (x)|x € ¥} has a honnegative bounded spectrum with bounds
(vi vs").

As emphasized in [22, Lem.2.1], Assumption 4 is not a rastdcondition since
it holds if P is gradient Lipschitz or¥” with constant_, by settingM (x) = L, for
all z € 7. Useful methods for constructing (x) without requiring the knowledge
of Ly are developped in [5,18,13].

Assumption 5 Assumption 4 holds and at least one of the following conulitiis
fulfilled:

1) Ker(A) = {0} with A = [a1,...,am|"

2) vi” >0.

Lemma 1 If ¢ is given by(3), (4) or (5), then
— Y is strictly convex
— Uy is strictly concave
- Iiml:l—>0 Llli(u) =—®
— —Pi(u)/{(u) <2/u,Yu>0

Proof In all cases, it is straightforward to check the first threeditions. The fourth
also holds since we have:

1. yi(u) = —k; logu, k; > 0 = —i(u)/{(u) =2/u
2. ¢i(u) = kjulogu, ki >0 = —i(u)/P(u)=1/u<2/u
3. Yi(u)=—kiu',re(0,1),k >0 = —Wi(u)/Pi(u)=(2—r)/u< 2/u

3 Line search strategies for barrier functions
3.1 Problem statement

The stepsize should satisfy sufficient conditions to enseeconvergence of the
descent algorithm. The most popular are the Wolfe conditibat state that a stepsize
series{ay} is acceptable if there existg, ¢z € (0,1) such that for alk and for all
TK € v,

F(zk + akdk) < F (k) + C10kgy di (12)
|OF (@ + axdi) " di| < c2|gy di| (13)

wheregy £ OF (). The barrier ternB(x) implies thatf tends to—c whena is
such thaC;(xk + ady) cancels for some Since the constraints are linear, functibn



is undefined outside an interviad_, a.. ). Therefore, we must ensure that during the
line search, the stepsize values remain in the intdval o).

Typical line search schemes in barrier-related optimizathethods choose =
6a., wheref € (0,1) is close to one ([34, 15]). However, this simple approactsdoe
not ensure the convergence of the optimization algorithchcam lead to a sequence
of iterates ‘trapped’ near the singularity ([27]). In [30]2line search procedures
based on the self-concordancy property of the logarithrarciér functions are de-
velopped. However, the computation of the stepsize regjuive evaluation of the
Hessian matrix which is often expensive or even impossiliéafge scale problems.
Furthermore, since methods using polynomial interpafedice not suited to interpo-
late functionf, due to its behavior afr_ anda.., [11,27] propose an interpolating
function of the form

F(xz+ad)~ fo+ fia + f,a? — plog(fz —a) (14)

where the coefficient§ are chosen to fif and its derivative at two trial points. The
line search strategy consists in repeating such a sped#ipivlation process until the
fulfillment of Wolfe conditions. However, the resulting alithm is not often used in
practice, probably because the proposed interpolatingfifumis difficult to compute.
In contrast, our proposal is not based on interpolationrdthier on majorization, with
a view to propose an analytical stepsize formula and to prestrong convergence
properties. Furthermore, the majorizing function and #slting stepsize are easily
computable.

3.2 Majoration-Minimization line search

In Majoration-Minimization (MM) algorithms ([18, 19]), #gaminimization of a func-
tion f is obtained by performing successive minimizationsagigent majorantunc-
tions for f. Functionh(u, v) is said tangent majorant fd(w) atw if for all w,

{2

The initial optimization problem is then replaced by a semgeof easier subprob-
lems, corresponding to the MM update rule

w1t = argminh(u, /).
u
Recently, the MM strategy has been used as a line searchdumecg12]) and the
convergence is established in the case of conjugate-gitgfB&, 22]), memory-gradient ([25])
and truncated Newton algorithms ([21]). The stepsize vajuessults fromJ succes-
sive minimizations of quadratic tangent majorant functiéor the scalar functior,
expressed as

qi(a,ai):f(ai)+(a—ai)f(ai)+%mi(a—ai)2 (15)
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atal. Itis obtained by the recurrence

a®=0; ai’”l:ajfLa.]),j:O,..‘,J—l
m!

and the stepsizey corresponds to the last valae. The main advantage of this pro-
cedure is that it gives an analytical formulation of the siep value and guarantees
the algorithm convergence whatever the valugd (£2]). However, it cannot be ap-
plied in the case of logarithmic barrier function (3) sinbere is no parameten
such that the quadratic functiep(., al) majorizesf in the seta_,a ). Actually, it
would be sufficient to majorizé within the level set% = {a, F (xx + ady) < F(xk)},
but this set is difficult to determine or even to approximéighe case of barriers (4)
and (5),f is bounded at the boundary of the ¢eat_, a, ). However, the curvature
of f is unbounded and one can expect suboptimal results by miajgrihe scalar
function with a parabola. In particular, very small valués® will be obtained for
al close to the singularity.

4 Proposed majorant function

To account for the barrier term, we propose the followingrfaf tangent majorant
function:

h(ar) = ho+hya +hpa? —hglog(hs — a),

This form is reminiscent of the interpolation function (I3t here the parameters
h; are chosen to ensure the majorization property. Moreotgeminimizer can be
calculated explicitely.

According to the MM theory, let us define the stepsizey

a®=0
al™l =argmirh!(a,a’), j=0,...,d-1 (16)
a
o =a’

wherehl (a, al) is the tangent majorant function

_ ' _ ' o . al — -
h(a,al) =gl(a,al)+y | (a _O,J)Iog((z_{j _(L ) —a+al} a7

which depends on the value bfand its derivative atr) and on three design parame-
tersm!,y) al. Itis easy to check that

hi(al,al) = f(a)).
Thus, the values afil, y!, al should ensure

hi(a,a’) > f(a),va.



4.1 Construction of the majorant function

Letx € ¢, d a search direction and! € (a_,a. ) such thate + ald € 7. Let us
derive an expression for the parametetsy!, al such thahl (a, a!) is a tangent ma-
jorant forF (x + ad) = f(a) atal. Properties 1 and 2 respectively propose tangent
majorant forp(a) = P(z + ad) and forb(a) £ B(z + ad).

Property 1 Under Assumption 5, the functiagy(a, al) given byp(al) + (a —a’)p(a’) +
smp(a —a’)? is a tangent majorant fqu at ol if

mh=d"M(z+ald)d. (18)

Proof Direct consequence of Assumption 5. O

In order to build a tangent majorant for the barrier tdsmnwe define

bi(a) = Z w6 +ad)
i15>0

by (a) = Z gi(6+ad)
i|5<0

with 6 = a] 2 + o and & = af d for all i = 1,...,m so thatb = by + by + cste.
Functionsh; andb, present vertical asymptotes respectivelgat< a! anda, > a!

with
{ a_ = max—2,
|50 O
8
a. = min—%.
T a<0
Property 2 The functiong! (a, al) given by
al—al
al—a

b(orj)+(a—aj)b(aj)+%n1£,(a—aj)2+ W | (@ —al)log +al-a

with parameters

m =bi(al), ¥ =(a;—al)by(a)), a=a,, for aelala,) (19
and

m =by(al), ¥ =(a_—al)by(al), al=a_, for aec(a,al] (20)

is a tangent majorant fdratal.
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Proof Let us first prove this property far > a/. In this case, functio’ is noted
@l with parametersn), =m} andy’ = ){. The aim is to prove that

@ ,(a,al) =by(al)+ (o —ah)bp(al) +y! |(as —al)log%=2 4 gi —a}

aL—a

{cpilw,ai) =by(a)) + (@ —abhby(al) + jm (a —al)?

respectively majorizé; andb, for all o > a;. _
First, Lemma 1 implies thdt is strictly convex andb; is strictly concave. Then,
foralla € [aj;a), by(a) <bi(al) =m'. Henceg!,(.,a’) majorizesh; on[aj;a™).
Then, let us defin@ (a) = by(a)(a, — a) andl (a) = by(ai)(ay —a)+ ! (a—
al). Givenyl = (a, —al)by(al), the linear function also reads:

(@) = @l,(a,a))(a; —a)
Thus we havé(al) = T(al) andi(al) = T(al). Moreover:
T(a) = ba(a)(a, —a)~2by(a) = T Ui(8+ad)(as —a)-2820(6 +ad)
i|5<0 o
According to the definition ofr :
(ay—a) < —(6+ad)/4&, Visuch thaty <0

According to Lemma 1, the third derivative g¢f is negative, so

Ta)< 5 F[-¥iG+ad)(6+ad)-2i(6+ad)] <0
i1§=0

where the last inequality is a consequence of Lemma 1. THagoncave. Sinckis
a linear function tangent t6, we have

(@) > T(a),Ya € [aj,a") (22)
Givena, > a, (22) also reads:
9l,(a,al) > by(a), Va € [aj,a*) (23)

Therefore,cpiz(.,aj) majorizesb, over [aj;a™). Finally, ¢! (,al) = ¢!, (., al) +
@) ,(.,al) majorizesb for a > aj.
The same elements of proof apply to the case a. O

Therefore, using Properties 1 and 2, we obtain thigt,al) = gh(a,al) +
ue!(a,a’) is atangent majorant farat o’



4.2 Minimization of the tangent majorant

The MM recurrence (16) involves the computation of the mimamofhi (a,al) for
j €{0,...,J—1}. Lemma 2 leads to the strict convexity of the tangent majoran

Lemma 2 Under Assumption 5,/., a’) is C? and strictly convex.

Proof First, gj(.,al) is a quadratic function and th@? over (a_,a. ). Moreover,
hi(.,al)isC* over(a_;al) and(al;a,). Finally, expressions (19) and (20) lead to
the continuity ofhl and of its first and second derivativescdt Then,hi(.,al) is C?
over(a_;a, ). According to (19) and (20), the second derivativéatf, a’) is given
by

f . . . . _~iN2 .

(e M-+ pb(al) + b (a) &9 va € (a-,al]
3 = : . . . . _~iN2 .

M-+ by (al) + pby(a) &9 va € [al, a)

mé) is strictly positive according to Assumption 5, abgdandb;, are strictly convex
according to Lemma 1. Henck/!(., a!) is strictly convex. O

Because of strict convexity, the tangent major.iajr(t., al) has a unique minimizer,
which can be expressed as an explicit functiori @f!) as follows:

. 203 . .
al — if f(al)<O0
gt G2+ /03 —4ods (24)
- . 203 . .
al— if f(al)>0
G2 — /05 — 4003
with
=-m
G =y~ f(a)) +m(d@ - a)) (25)
g =(a'—a’)f(al)

4.3 Properties of the tangent majorant

Lemma 3 Let je {0,...,d—1}. If f(al) <0, thena*! fulfills:

7% g aj""lfaj g 7%
Q2 Q2
where g, g and g are given by(25).
Proof Straightforward given (24) withi (al) < 0. O

Lemma 4 Letje{0,...,J—1}. Foralla € [al,a, ), ¢! (a,al) majorizes the deriva-
tive b(a).
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Proof For allal, we have
¢l (a,al) =bi(al) > by(a),Va € [a),a4)

Thus, functiong! , (o, al) — by (a) is increasing oria’; . ). Moreover, it vanishes
ata!, so _
¢ly(a,al) > bi(a), Ya € [a’,ay)

This allows to conclude, given (23). O

Property 3 Let j € {0,...,J—1}. Under Assumptions 1 and 5, there existgn,
Vmax 0 < Vmin < Vmax Such that for alle € ¥ and for all descent directiod at «:

Viin||d||? < Bl (o), a7) < vmax| ][, V] >0

Proof According to Lemma 2,

W (al,al) =ml+ ub(al).
The second derivative dfata’ also reads
b(al) =d"0?B(xz+a'd)d

and Property 1 gives
m,=d"M(z + a’d)d.

Moreoverz+ald e 7. Thus, itis sufficient to show that the §e¥l (x) + u0%B(z) |z € ¥}
has a positive bounded spectrum.lwet 7.

0?B(x) = ATdiag(1,Gi(z) ") A (26)
with

(1,1) if @(u) =ulogu

(2,K) if @(u)=—«kjlogu
(Ti.t) =
{(—r2+r,2—r) if @=-u

andA =[ay, ..., am". ¢ € ¥ so (9) and (8) yield
d"T(M)d < d"0%B(z)d < d"T(&)d (27)

with T'(m) = ATdiag(tim™%) A. Matrix T'(m) is symmetric and has a nonnegative
bounded spectrum with bounfig.”. (m), v;Z.,(m)). Moreover, according to Assump-
tion 4, M(z) has a nonnegative bounded spectrum with boumg , viZ,). Finally,
according to Assumption 5, either? > 0 or Kef AT A) = {0}. Since the latter
condition impliesv;; (m) > 0, Property 3 holds WittVyin = Vi + pv,i,(M) > 0
andVmax = Vil + UVizax(€0)- O
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5 Properties of the stepsize series

This section presents essential properties of the stepsiizs (16) allowing to estab-
lish the convergence conditions of the descent algorithebLis considex € 7" and

a descent directiod, so thatf(0) = d"g < 0. The MM recurrence produces mono-
tonically decreasing valuesf (al)} and the serie¢a’l} converges to a stationnary
point of f ([18]). Moreover, it is readily seen from (24) that

sgn(a’™ —al) = —sgn(f(a’)),vj =0 (28)

Furthermore, according to [19, Th.6.4], the [€etr] with & = min{a > 0|f(a) = f(0)}
acts as a capture basin, that is

al €[0,d], Vj=0. (29)

Sincef (0) < 0, it can easily been shown that is strictly positive sax! > 0 for all
j = 1 using the capture property (29). We have finally the foltaywesult:

Lemma5 Ifforall j € {0,...,J—1},
p(a) < gh(a,al),va > o (30)

then
f(al)<0,vje{0,...,0-1} (31)

and the serie§a!} is nondecreasing.
Proof According to Lemma 5, (30) implies that for gl {0,...,J—1},
f(a) <hi(a,al),va > al. (32)
Moreover, (31) holds fof = 0 sinced is a descent direction. Thus! > 0 according
to (28). Letj € {0,...,J—1} and assume thdt(a’) < 0. Thus, according to (28),
altl > al. Using (32) fora = al*1, we obtain:
f(al*) <hl(al ™t al)

Moreovera it is the minimizer ohi (., al) sohi (al*1, al) = 0, hence the result by
immediate recurrence on O

5.1 Lower and upper bounds for the stepsize

Property 4 Under Assumptions 1 and 5, there exist’ > 0 such that

—g'd _ . _ —g'd

—92 33
v|d||? 3
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Proof d is a descent direction, si{0) < 0 andh?(.,0) has a barrier air® =

If a, = 4o thenh(.,0) is a quadratic function with curvaturé®. This majorant

is minimized ata* = —f (0) /m® and according to Property 3, we have:

-g'd -g'd
- < a < -
Vmaxlld[[2 = Vimin||d]|?

If a; < +o0, according to Lemma 3:

_ 5T
97d<01<£
Logdigp "L _adipp

a4 a4
Using Property 3 and the positivity efg d, we obtain

Td
K_Lmo
a. ay

VmianH2 <
On the other hand, taking= argmax—a;' d, we deduce from (8) that

+s &
~ lald]’

Thus, using Cauchy-Schwartz inequality and (7),

—g'd _|g'd]

<TdaTd
9L <igTda]d]

2
< llgllla i€l =~
0

net
< THd”Z

(34)

(39)

with &/ = max||ai|| > 0. Moreover, Property 3 implies that there existsx such
|

that

m’ ‘*‘K < Vimaxld||?
Therefore (34), (35) and (36) allow to check that Propertyli for

V= Vmax+ N /&
V/ = Vm|n/2

(36)
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5.2 Sufficient decrease condition

The first Wolfe condition (12) measures whether the stepsihge induces a suffi-
cient decrease d¥. It also reads

f(a)— f(0) < ciaf(0). (37)

wherec; € (0,1) is a constant with respect to the iteration number.
In this section, we show that (37) holds with the stepsizee/g@iroduced by the
proposed MM strategy. First, we need the following lemmas.

Lemma6 Let je {0,...,J—1}.If f(al) <0, then:

f(aj)—f(aj+1)+%(aj+1—al)f(aj)>O (38)

Proof The property is trivial iff (al) = 0. Assume thatf (al) < 0 so thata, >
al*l > al. Let define the functiod : u — —log(1— u) — u. A straightforward anal-
ysis of ¢ shows that

fu) _1
WE(W) < > Vue (0,1) (39)
Takingu = % in (39) and denoting (a) = &(u):
¢(a) 1 i
ng,wxe(u',m). (40)

Moreover, let us defin@(a) = m! (a — al)? so that

Q@) = 5(a—a)d(a) (41)
Lett(a) = Q(a) + Vi (a; —al)¢(a) so the majorant function reads
hi(a,a’) = f(a))+(a—a))f(a))+1(a),Va ea’,ay)
and, using (40) and (41),
W_Té‘j’))imgé,we(ai;ag (42)
hi(.,al) is a tangent majorant fdr so
hi(a,al)—f(a)=f(a))—f(a)+(a—a))f(al)+1(a)>0 (43)

Takinga = al*™1 > al in (42) and (43), we obtain

flal)—f(al™) + (ol —al)f(al) + %(a”l— al)t(al*) >0
Hence the result using
t(al*t) =hi(al ™ al) — f(al)
= —f(a))
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Lemma 7 Under Assumptions 1 and 5, for alkj{1,...,J},

al <chaat, (44)
where -
- 2Vmal '~ vy Vv
=14 2 1+-)——>1 45
Cmax ( * VZin ) ( +L) L (45)

Proof It is easy to check (44) fof = 1, with ¢}, = 1. Let us prove that (44) holds
for j > 1. Assume thaf (a’) < 0. Thena! = a, and we can deduce from Lemma 3
that

altl—qgl — ._Zf(aj) . .
S (yi-f(al)/(as —al)+mi
—2f(al)
< — : :
S Vil —ah)+m “o
According to Property 3:
]2 > (Y°/as +mP) /Vmax (47)
and ' _ _
v /(ay —al)+ml > vyin||d|?
thus we have
Vj/(a+_aj)+mj = Vmin()p/a++m0)/vmax>o
Then, from (46):
, C 2v
altl<al+f(al max 48
@ o7 o (48)

If f(al)>0,ai*tis lower thana! so (48) still holds. According to Assumption 1,
OF is Lipschitz, so that:

f(a’)—f(0)| < L|d|*a’
Using the fact thatf (al)| < |f(a’) — f(0)| +|f(0)|, andf (0) < 0, we get:
|f(al)| < Lal[|d||> - (0) (49)
Using Property 4 and (47):

Yw(mP+yo/a)/Vinin (50)
Given (47)- (50), we get:

- - 2v (M0 w/a v
altl<al + max {LaJ (*) +al—(m° +w/a
(mP+yo/ a4 ) Vimin Vmin Vmin ( Yo/ a)
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Hence

2 2

altl < gl (1+ 2V”‘axL> 4+ 2gtVma
min Vmin

This corresponds to a recursive definition of the se(n'cégx) with:

; ; Vmaxl vV,
chik = char 1+ 2% ) 4 27

min Vimin
Givencl ., = 1, (45) is the general term of the series. O

Property 5 (first Wolfe conditionnder Assumptions 1 and 5, the iterates of (16)
fulfill

f(al)— £(0) <clalf(0) (51)
forall j > 1, withc] = (2chax) 1 € (0,1).

Proof For j =1, (51) holds according to Lemma 6, since it identifies wit) @hen
j =0, givench.,= 1. For all j > 1, (51) holds by immediate recurrence, given
Lemma 7. a

Property 5 corresponds to a strong result related to theogezpMM line search
since it implies that the computed stepsize leads to a sifticecrease of the crite-
rion at each iteration, independently from the number &f Bearch iteratek

5.3 Stepsize minoration

Condition (12) alone is not sufficient to ensure that the idily;m makes reasonable
progress since it holds for arbitrary small valuesdaand thus can yield convergence
to a non-stationnary point ([31]). In order to avoid too stsbeps, a second condition
is required, for example the second Wolfe condition (13juthed out difficult or
even impossible to establish the curvature condition (d8rhy value ofl. Fortu-
nately, we can obtain a direct minoration of the stepsizaaesthat is sufficient to
yield convergence results.

Property 6 Under Assumptions 1 and 5, for gl 1,
al > cminat (52)
and

j —g'd

> .
a’ =z CmmideHZ (53)

for somecCnin > 0.
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Proof First, let us show that (52) holds for gli> 1 with
o \/ 1+2L/Vm|n - 1
Crnin = 2L/ Vo €(0,1/2) (54)
Let ¢ be the concave quadratic function:

2

<p(or)=f(0)+orf'(0)+m"’7

with m= —L(m°+y?/a, ) /Vimin- We havep(0) = f(0) and@(0) = f(0) < 0, so@
is decreasing oiR*. Let us considen € [0,a], so thatx + ad € ¥. According to
Assumption 1, we have _ _
[f(a) — f(0)] < [|d*L|al
and according to Property 3,
(@)~ £(0)] < La(m®+y°/at) /Vinin

Then we obtain: _ _
[f(a) < La(mP+y°/a,)/vimin— 1(0)

Hence: ) . _
o(a) < f(a), Vae[0,al] (55)
Integrating (55) between 0 ard yields
p(al) < f(al) (56)

On the other hand, the expressiongdt amin = Cmina'* can be written as follows:
¢(amin) = f(0) +Ca*f(0)
where 0y
m’+y-/ay
C = Cmin— CjpLat — 21—
min min 2f (0) me
According to (46): _
1. _—2f(0)
RS
so that L 1
C< Cmin+02min% =%
where the latter equality directly stems from the exprassibcy,in. Sinceg is de-
creasing oiR™, we get

@(amin) > F(0) + %alf(O) > f(al), (57)

where the last inequality is the first Wolfe condition (51) fo= 1. _
Finally, a) > 0 for all j > 1. Assume that there exisfssuch thata! < amin.
According to (56) and given thatis decreasing o™, we get:

f(al) > p(al) > @(amin) = f(al),

which contradicts the fact theﬁ(aj) is nonincreasing. Thus, (52) holds. So does (53),
according to Property 4. O
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6 Convergence results

This section discusses the convergence of the iterativeedealgorithm
Tyl =xk+0kdk, k=1,...,K

whendy satisfiesygdk < 0 and the line search is performed using the proposed MM
strategy.

6.1 Zoutendijk condition

The global convergence of a descent direction method ismgtemsured by a ‘good
choice’ of the step but also by well-chosen search direstifnConvergence proofs
often rely on the fulfillment of Zoutendijk condition

S llgkl*cos bk < (58)
k=0

where6 is the angle betweed and the steepest descent directiogy:

—gy di
llgkll lldi|
Inequality (58) implies thaltgy|| cosb vanishes for large values kf Moreover, pro-

vided thatdy is not orthogonal to-gi (i.e., cosh > 0), condition (58) implies the
convergence of the algorithm in the sense

cosf =

lim g =0 (59)

Zoutendijk condition holds when the line search procedsiased on the fulfillment
of the sufficient conditions (12),(13) ([31]). In the casetloé proposed line search,
the following result holds.

Property 7 Let ax be defined by (16). Under Assumptions 1 and 5, Zoutendijk con-
dition (58) holds.

Proof Let us first remark that for ak, dyx # 0, sinceg{dk < 0. According to Prop-
erty 5, the first Wolfe condition holds fay = c{:

F(zk) — F(zk1) > —Clakgy dk

According to Property 6:
-
—9k dy
a EC LYK ™
k m|nV||dk||2
Hence:

(gx d)?
||Iztk||2 < F(wk) - F(warl)

0<co
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with cg = (cminci)/v > 0. According to Assumption 1, the level s& is bounded,
so lim_. F (k) is finite. Therefore:
T 2
(gk dy) < 1

N limF B
kZo ”dkH2 Co kmo (k) (zo)| < (60)

O

6.2 Gradient related algorithms

A general convergence result can be established by usingatiheept ofgradient
relateddirection ([1]).

Definition 2 A direction sequencédy} is said gradient related they} if the fol-
lowing property holds: for any subsequer{es} ,- that converges to a nonstationary
point, the corresponding subsequetidg} ,- is bounded and satisfies

limsup g, di < 0.
k—oo ket

Theorem 1 ([35]) Let {xx} a sequence generated by a descent methpd =

xk + akdy. Assume that the sequen¢édy} is gradient related to{xy} and that
Zoutendijk conditior(58) holds. Then, the descent algorithm converges in the sense
liMicoo [l gx]| = O.

The gradient norm converging to zero does not imply that gteszation method
converges to a minimizer, but only that it is attracted byagighary point. However,
under certain sufficient conditions, this can guarantegergence to a local or global
minimum.

Corollary 1 Let{xy} a sequence generated by a descent methqd = xx + aydx.
Assume that the sequeniad, } is gradient related td = } and that Zoutendijk condi-
tion (58) holds. Iflimy_,. C?F (x) is positive definite thefixy} converges to a strict
local minimizer of F.

Proof Direct consequence of the sufficient condition for local imization ([31]).

Corollary 2 Let{xy} a sequence generated by a descent methqd = xx + aydx.
Assume that the sequengdy} is gradient related td zx} and that Zoutendijk con-
dition (58) holds. If Assumption 2 holds thdm:} converges to a global minimizer
of F.

Proof Direct consequence of the sufficient condition for globahimization ([31]).

In the sequel, we will show that Theorem 1 yields convergesfagassical de-
scent optimization schemes such as the truncated Newtdrochand the projected
gradient method for constrained optimization when suclesws are combined with
our line search strategy.
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6.2.1 Preconditioned gradient, Newton and inexact Newtgarghms

Let us consider the family of descent algorithms when theckedirection has the
form
dy = —Digk (61)

with Dy a symmetric and positive definite (SPD) matrix. In the steepkescent
method Dy is simply the identity matrixl, while in Newton’s methodDy is the
inverse of the Hessial?F (z). In quasi-Newton methods such as BFGS algorithm
([31]) and its limited memory version ([23]])k is an iterative approximation of the
inverse Hessian. SincBy is positive definitedy is a descent direction. Moreover,
we have the following property:

Property 8 ([2]) Let {«k} a sequence generated %y, 1 = xk + axdx wheredy is
given by (61). If the sef Dy, k=1,...,K} has a positive bounded spectrum, then the
direction sequencédy} is gradient related tdxy}.

Then, according to Theorem 1, the descent algorithm comgénghe sense lign,« ||gk|| =
0.

6.2.2 Truncated versions

Let Hy, a SPD approximation of the Hessian f Thus, a good choice would be
to take the preconditiondDy = lel in (61). However, the calculation of the exact
inverse ofHy may be prohibitive, especially when the dimensida large. One may
have to be satisfied with only an approximate solution olethioy using an iterative
method. This approach is used in the truncated Newton (Todrahm ([29]) where
the search direction is computed by applying the conjugetdignt (CG) method to
the Newton equations. Here, we consider the more genembdasndy results from
CG iterations solving approximately the linear systéfpd = —gg, which will be
refered as truncated pseudo-Newton (TPN) algorithms. ;Tlerhave the following

property:
Property 9 Let {xx} a sequence generated by, 1 = xy + axdx Wheredy results

from I CG iterations on the systelyd = —gy. If the set{H, k=1,...,K} has
a positive bounded spectrum, then the direction sequédliceis gradient related to

{zx}-

Proof According to [8, Th.A.1] and [8, Lem.A.2], there exist pogitconstants, .7
so that

gk di < —Tl|gi1® (62)

and
lldill < 7 |lgkll (63)
According to [2, Chap.1], (62) and (63) are sufficient coiodis to ensure thaftd}
is gradient related tdxy}. O

Property 9 is extended to the case when the linear systenvedsasing precon-
ditioned CG (PCQG) iterations:
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Corollary 3 Let {xx} a sequence generated by, 1 = x + oxdx where di re-
sults from k PCG iterations on the systeld = —gy preconditioned withMy. If
{H,k=1,...,K} and{M, k=1,...,K} have a positive bounded spectrum, then
the direction sequencily} is gradient related td xy}.

Proof Let C\ such thatM = CJ Cy. Solving Hyd = —gy with PCG preconditioned
by M\ amounts to compute vectdrsuch that

CTHCxd = —C T gi (64)
d=Cid (65)

using CG iterations ([31]). According to [8, Th.A.1] and [Bem.A.2], there exist
positive constants’, 7’ so that

(C g Td < —T'(|C Tkl (66)
and .
ldkll < Z'|C T gill- (67)
Using (65), A
(Ci Tgw) " di = g{ dk. (68)
Moreover, according to the boundness assumption on th&apecf{ My, k=1,... K},
_ 1
NGl < =7 llawll®, (69)
2
T 1
1C gkl < —=lg«lI, (70)
\/vi?
vi||di| < || Ceid| = [l (71)

where(v;?,vs?) > 0 denote the spectral bounds{d¥Zy}. Thus, (62) and (63) hold

witht=1' V;, and.7 = ﬁ’v—l/,, hence the result using the gradient related sufficient

condition inl[2, Chap.1]. ’ O

As a conclusion, the convergence of both TPN-CG and TPN-P@@shwhen
the proposed line seach is used, according to Theorem 1.

6.2.3 Feasible directions methods for constrained opation

Consider the constrained problem:
minimize F(x) subjecttox €

where 2 is a nonempty, closed, and convex set. Let us examine thesgece
properties of algorithms belonging to the class of feadilidection methods.

Definition 3 ([2])
Given a feasible vectat, a feasible direction at is a vectord # 0 such thatc + ad
is feasible for all sufficiently smatr > 0.
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Starting withxzg € 2, the method generates a sequence of feasible vectors aagord
to

Tyl = Tk + Okdk
whereay € (0,1] anddy is a feasible direction that can be written in the form
dx = x) — x (72)
with
x €9, gp(xy—xK) <O,

Convergence analysis of feasible direction methods isslese to that of descent
direction methods in the unconstrained case. In particwarhave the following

property:
Property 10 ([2]) Let {dk} generated by (72) with, given either by:

— conditionnal gradient
)y = argmingy (z — ) (73)

reD
— gradient projection with constant parameser 0
Ty = P [xk—SgK| (74)

— scaled gradient projection with constant paramsterO and scaling matrices
{ Dy} with bounded spectrum

. 1

) =arg mm{g{ (@ — i) + o (@~ x)" Di(w — ivk)} (75)
IS S

In all these cases, the direction sequefdg} is gradient related tdxy}.

Thus, Theorem 1 implies the convergence of the constraipgchization algorithms
defined by (73), (74) and (75), respectively, in conjunctigth the proposed line
search.

6.3 Convergence of conjugate gradient methods

This section discusses the convergence of the nonlinegugate gradient algorithm
(NLCG) defined by the following recurrence

Tyi1 = Tk + Aidy
Cki1 = —Gk+1+ Brr1dk (76)

S
di1 = —C1SiIgN(Gy, 1Cit1)

for some conjugacy formulas.
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6.3.1 Methods witlyzyk_l in the numerator of3,

Let us consider the conjugacy formulas of the form ([7]):
Bo=0, Bc=p"*=giy1/Dx, Yk>0 (77)
with
Dy = (1— pic— @) [|gk-1/|” + Hdf 191 — k191
Yk—1= Gk — Gk-1
M€ [0,1], o€ (0,1~ pi]

Expression (77) covers the following conjugate gradienthoes:

B = gr vk 1/di_1uk 1 Hestenes-Stiefel (HS)
B = gf v 1/l gk_1I? Polak-Ribgre-Polyak (PRP)
Blg’l = —g; Yk_1 /d{_lgk_l Liu-Storey (LS)

The following convergence result holds:

Theorem 2 Let Assumption 1 and 5 hold. The NLCG algorithm is converigetite
sensdiminfy_.., gx = 0 whenay is defined by{16) and 3 is chosen according to the
PRP and LS methods, and more generally figr= 0 and wx € [0,1]. Moreover, if
Assumption 3 holds, then we hdirinfy_.., gx = 0in all cases.

Proof We have previously established:

— the inequality (33) o}

— the stepsize minorization (44) < cJ®a}

— the stepsize majorization (52)<\0cminak1 < ag
— the fulfillment of Zoutendijk condition (58)

Thus, the proof of Theorem 2 is identical to that developpd@2, Part 4]. This result
can be viewed as an extension of [22, Th. 4.1] for a new fornalogént majorant.
O

6.3.2 Other conjugacy formulas
Let consider the following conjugacy formulas:

Bk = max(ng(ng —gx)/llgkll,0) modified Polak-Rik®#re-Polyak (PRP+)
Be = llgis1ll?/llgxll? Fletcher-Reeves (FR)
B = llgk1ll*/di (gks1— gx) Dai-Yuan (DY)

The convergence of the CG algorithm with these conjugacsnditeis is obtained
under an additional assumption on the tangent majorant.
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Theorem 3 Let ai be defined by the recurren¢@6). According to Assumptions 1
and 5, if for all je {0,...,J—1}, (30) holds, then we have convergence in the sense
liminfy_.. gk = O for the PRP+ and FR methods. Moreover, under Assumption 2, we
have convergence in the same sense for the DY method.

Proof We will prove by recurrence ok thatdy is a sufficient descent direction for
F,i.e., there existg > 0 such that

ar dx < —nllgkl?. (78)

Let z, € ¥ and letdy a sufficient descent direction. Let us prove tt? is a

sufficient descent direction. According to Lemma 5, (30)Iiafmthatf(aj) < 0 for
all j. Thusgy, ,dx < 0. From (76),

9E+1Ck+1 =- H9k+1||2 + Bk+1gg+1dk

Let us consider the case of FR and PRP+ methods:

2
BFR: ||9k+1! S (79)
Il gl
B = max(BR",0) > 0 (80)

Thus,gks1cks1 < —||gks1]|?, sod“tt = 1 is a sufficient descent direction. Now,
consider the case of DY conjugacy:

DY _ ||Qk+l||2
k = g7
dy (9k+1—9k)

The conjugacy parameter takes the sigrdb(gkﬂ —gk)- Under Assumption 2 and
given (76), the convexity df leads to

|grs 10k < |gg d (81)

Sincedy is a descent directiofg®Y > 0, sod**! = 1 is a sufficient descent direc-
tion. Then, (78) holds for ak for FR, DY and PRP+ methods. Finally, according to
[16, Th. 4.2, Th.5.1], Property 7 and (78) yield the convergeof the PRP+, FR and
DY methods. O

7 Experimental results

This section presents three application examples illtisgahe practical efficiency
of the proposed line search procedure. The examples arerctiasn the field of
image and signal processing.
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7.1 Image reconstruction under Poisson noise

We consider a simulated positron emission tomography (REBE]) reconstruction
problem. The measurements in PET are modeled as Poissammasadiables:

y ~ PoissofiHx + )

where theath entry ofx represents the radioisotope amount in pixeind H is the
projection matrix whose elemerith,, model the contribution of thath pixel to the

mth datapoint. The components gfare the counts measured by the detector pairs
andr models the background events (scattered events and atadideimcidences).
The aim is to reconstruct the image> 0 from the noisy measuremenjs

7.1.1 Objective function

According to the noise statistics, the neg-log-likelihaddhe emission data is

M
I(z) = z ([H]m~+rm—Ymlog([HZ]m+rm)).
m=1
The penalization term resulting from modelling the pixeaeimsity distribution using
a gamma-mixture density is ([17]):

N

an
R(x)=— —Dlogx, — — .
(2) nzl<(an Jlogxa — ¢ )
Here, the parameter, > 1 andb, > 0 of the gamma priors are assumed to take
known value$. The estimated image is the minimizer of the following olijexfunc-
tion

F(x) =J(x)+R(x). (82)
The first part of the criterion implies the presence of a lagaric barrier inJ. The
second part corresponds to a gamma-mixture prior that eeggpositivity into ac-
count and favors the clustering of pixel intensities. Itinds a second type of log bar-
rier, at the boundary of the positive orthant. A classicg@rapch for solving the opti-
mization problem is to use the NLCG algorithm ([17]) with tieré and Thuente’s
(MT) line search procedure ([26]). We propose to compareptréormance of the
algorithm when our MM line search procedure is used.

7.1.2 Optimization strategy

The NLCG algorithm is employed with PRP+ conjugacy. The engence of the al-
gorithm with the proposed line search is established in Tégra@ under Assumptions
1, 5 and condition (30). Let = P+ B with

M N

B(z) = Zl—ymlog([Hw}m+ Fm) + Zl(an —1)logxn,

1 Hyperparameters estimation is discussed in ([17]). Howether resulting algorithm does not fall
within the application of our convergence theory and thepgaton would require a specific analysis.
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and
M N an
nZl nzl bn

It is straightforward that Assumption 1 holds for @4 > 0. Moreover, Assumption 5
holds forM(z) =0, A = [Id H]" andp = [0+]". Finally, sinceP is linear, condition
(30) reads: _ _ .

o<mi(a—a!), Vaza!

and holds fom}, = M(z + a’d) = 0. Theorem 3 does not cover the preconditioned
case. However, we have noticed that, in practice, the uséiaigmnal preconditioner
substantially speeds up the algorithm convergence.

The algorithm is initialized with a uniform positive objesmd the convergence is
checked using the following stopping rule ([31])

gkl < €(1+ [F(zx)]), (83)
wheree is set to 107.

7.1.3 Results and discussion

We present a simulated example using data generated witl-dsiler’s code avail-
able athttp://wuw.eecs.umich.edu/~fessler. For this simulation, we consider
an imagez® of sizeN = 128x 128 pixels andVl = 24924 pairs of detectors. Table 1
summarizes the performance results in terms of iterationb@rK and computation
time T on an Intel Pentium 4, 3.2 GHz, 3 GB RAM. The design parameteyshe
Wolfe condition constant&, ¢;) for the MT method and the number of subiterations
J for the MM procedure.

c1 C K T(s)

|_
= | 10° 05 97 | 361
3 103 09 | 107 | 337
2 103 099 | 102 | 317
103 0999 | 102 | 313
J K | T(s)
2 1 96 | 266
) 2 111 | 464
9 5 138 | 1526
Z 10 138 | 3232

Table 1 Comparison between MM and MT line search strategies for a BEdnstruction problem solved
with NLCG algorithm, in terms of iteration numbé&r and timeT before convergence. Convergence is
considered in the sense of (83).

It can be noted that the NLCG algorithm with MM line search Q&-MM)
requires less iterations than the MT method (NLCG-MT), ewben the parameters
(c1,c2) are optimally chosen. Moreover, NLCG-MM s faster becaufsa smaller
computational cost per iteration. Furthermore, the predddM procedure admits a
unique tuning parameter, namely the subiteration nurdpeand the simplest choice
J =1 appears the best one.
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7.2 Nuclear magnetic resonance reconstruction

We consider a mono-dimensional nuclear magnetic resor(didR) reconstruction
problem. The NMR decas(t) associated with a continuous distribution of relaxation
constantx(T) is described in terms of a Fredholm integral of the first kind:

Tmax
s(t) = / X(T)k(t, T)dT. (84)
Trin
with k(t,T) = e /T. In practice, the measured sigmab a set of discrete experimen-

tal noisy data pointsy, = s(tm) modeled as
s=Kxz+¢ (85)

whereK andx are discretized versions &ft, T) andx(T) with dimensiongV x N
andN x 1, ande is an additive noise assumed centered white Gaussian. Gjtha
aim is to determine: > 0. This problem is equivalent to a numerical inversion of the
Fredholm integral (84) and is known as very ill-conditior{gd]).

7.2.1 Objective function
In order to get a stabilized solution, an often used methadmizes the expression
F(z)=J(x)+AR(x) (86)

under positivity constraints, whedeis a fidelity to data term:

andRis an entropic regularization term, e.g., the Shannon pytneeasure ([24]):
R(x)=$ xnlnxn
; n

Moreover, the positivity constraint is implicitely handlbecause of the barrier prop-
erty of the entropy function.

7.2.2 Optimization strategy

The TN algorithm is employed for solving (86). The directidpis computed by
approximately solving the Newton systeéfitF (zyx)d = —gx using PCG iterations.
We propose a preconditioning matrddy built as an approximation of the inverse
Hessian of atxy:

My = [VDVT + Adiagm) ],

whereUT XV is a truncated singular value decompositionfsfand D = 375,
The convergence of the TN algorithm with the proposed liredeis established
in Theorem 1 using Corollary 3 under Assumptions 1 and 5. Ehr#ication of the
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latter is straightforward foM(z) = KT K, A = Id andp = 0. The fulfillment of
Assumption 1 is more difficult to check since the level 8gtmay contain an element
x with zero components, contradicting the gradient Lipsaggumption. In practice,
we initialized the algorithm witheg > 0 and we never noticed convergence issues
in our practical tests. The extension of the convergencalteeander a weakened
version of Assumption 1 remains an open issue in our conaesganalysis.

The algorithm is initialized with a uniform positive objeahd the convergence
is checked using (83) with = 10~°. Following [29], the PCG iterations are stopped
when:

IOF (k) + O?F (i) dil| < 10°°F ().

We propose to compare the performances of the MM line seatbfahe interpolation-
based MT method [26].

7.2.3 Results and discussion

Let (T) a distribution to estimate. We consider the resolution &) @hen data
s are simulated frome(T) via the NMR model (85) over sampled timgg m =
1,...,10000, with a SNR of 25 dB (Figure 1). The regularization paterA is set to
A =7,2-10* to get the best result in terms of similarity between the $ated and
the estimated spectra (in the sense of quadratic error).

15 2

“““ Simulated x(7T")
— Estimated z(T)
1 15
=05 1
w
0 0.5
0 2 4 t6 8 10 12 0 1 T 2 3

(a) Simulated NMR measurement with SNRb) NMR reconstruction with similarity error
=25dB 8.5%.

Fig. 1 Simulated NMR reconstruction with maximum entropy method

According to Table 2, the TN algorithm with the MM line seaprforms better
than with TN with the best settings fof andc,. Concerning the choice of the sub-
iteration number, it appears that= 1 leads again to the best results in terms of
computation time.
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c1 C K T(s)
10% 05 | 34| 12
108 09 | 42| 13
099 | 71| 20
102 099 | 71| 19
102 05 | 34| 13
101 099 | 71| 19
101 05 | 34| 14

TN-MT
=
Q
w

J KT
- 1 36| 8
= 2 40| 9
z 5 40 | 10

10 40 | 14

Table 2 Comparison between MM and MT line search strategies for a marimntropy NMR recon-
struction problem solved with TN algorithm, in terms of itéoatnumberK and timeT before conver-
gence. Convergence is considered in the sense of (83).

7.3 Constrained quadratic programming

Let consider the following quadratically constrained qaid optimization problem

rlen{Fo(a:)z ;xTAo:B—&-agm—i—po} (87)

. 1 .
subject to:Cj(z) = —EwTAia:+a1-Tw+pi >0,i=1,...,m

whereA;,i =0, ..., mare SPD matrices @&"". We propose to solve (87) with the
primal interior point algorithm of [3]: for a decreasing seqce of barrier parameters
U, the augmented criterion

Fu() = Fo(a) - uilogcmw).

is minimized using Newton iterations
Tyr1 = T+ oxdy, with dy= fDZFy_l(:Bk)DFu (zx)

that are stopped whefil]l gi)2 < 2¢.

The stepsize must belong to an intervgbr_, o) that corresponds to the defi-
nition domain ofF, (xx + ady). Since the constraints are quadratiecirthey are also
guadratic ina:

Ci(ax+ady) = Qla’ +Qfa +Qf
with Qt = —1d] Aidy, Q? = —zf Aidx+a] di andQ? = — 3z} Ajzi +af z + pi.
As a consequence— and o, can be computed exactly for any dx). For ex-
ample,a. is the smallest positive root of the concave polyno@gsy + ady). In
[3], the stepsize strategy is based on backtracking. Stawtith the feasible step
a =0.99a., the stepsize is reduced until it fulfills the first Wolfe caiwh (12). As
an alternative in the context of interior point methodsiaanped Newtomapproach
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is developped in [30] to minimize the augmented critefign The Newton direction
dy is damped by a factamy € (0,1] ensuring thatek + aydy is feasible and that the
criterion decreases by a minimal fixed amount. The dampicipifés given by

1

L[l

where|| - || is the Hessian norm defined fw ||, = /u"0?Fy(x)u.
The convergence properties of this interior point algonitire based on the self

concordancy of, ([30]). Our aim here is only to evaluate the practical refeme
of the MM line search when it is used instead of the backtragkind the damping
procedures.

ayx

7.4 Results and discussion

In order to analyse the performance of the interior poinbatgm, we apply it onto 50
problems withA;, p; anda generated randomly taking= 400,m = 200 as in [20].
x is initialized in the constrained doma#i. The barrier parameter is initially set
to 1 and decreases following a geometric series of rafloThe algorithm is stopped
whenu < Umin. Table 3 reports the performances of the interior point rtigam for
the different line search procedures usimg= 0.01 andJ = 1.

Backtracking | Damping MM
K 273+27 135+4 64+3
T(s) | 5637+1421 | 465+26 | 225+8

Table 3 Comparison between different line search strategies fointieeior point algorithm over 50 ran-
dom quadratic programming problenk denotes the sum of inner iterations ahdhe time before con-
vergence, with tolerance parametgrg, = 108 ande = 10-°. The results are given in terms of mean
and standard deviation.

It can be noted that the interior point algorithm with MM lisearch requires less
iterations than the backtracking and damped Newton aphesadloreover, even if
the MM procedure requires the exact computatioriaf, a_ ), it is faster than the
two other approaches. It can also be remarked that the dgrepattegy is dedicated
to the particular case whehis the Newton direction. Therefore, it must be modified
when the minimization oF, is obtained by means of other algorithms (see [20] for
the conjugate gradient case). On the contrary, the progmeesearch can be applied
independently of the descent algorithm used. To conclidelViM procedure seems
an efficient alternative to line search strategies widelyduis primal interior point
algorithms.

8 Conclusion

This paper extends the line search strategy of [22] to the ofsriteria containing
barrier functions, by proposing a non-quadratic majorapreximation of the func-
tion in the line search direction. This majorant has the sfme as the one proposed
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in [27], whereas the latter follows an interpolation-baapgroach. However, in the
majorization-based approach, the construction of theaqpiation is easier and its
minimization leads to an analytical stepsize formula, gntgeing the convergence
of several descent algorithms. Moreover, numerical erpents indicate that this ap-
proach outperforms standard line search methods basedkindizking, damping or
cubic interpolation.

Two extensions of this work are envisaged. On the one haaaabe of nonlinear

constraints can be handled by using the procedure desdnb@d]. On the other
hand, the analysis can be performed for additionnal forntsaofier functions such
as cross-entropy ([33]) or inverse function ([9]).
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