Risk Bounds for CART Classifiers under a Margin Condition

Abstract : Risk bounds for Classification and Regression Trees (CART, Breiman et. al. 1984) classifiers are obtained under a margin condition in the binary supervised classification framework. These risk bounds are obtained conditionally on the construction of the maximal deep binary tree and permit to prove that the linear penalty used in the CART pruning algorithm is valid under a margin condition. It is also shown that, conditionally on the construction of the maximal tree, the final selection by test sample does not alter dramatically the estimation accuracy of the Bayes classifier. In the two-class classification framework, the risk bounds that are proved, obtained by using penalized model selection, validate the CART algorithm which is used in many data mining applications such as Biology, Medicine or Image Coding.
Type de document :
Article dans une revue
Pattern Recognition, Elsevier, 2012, 45, pp.3523-3534. 〈10.1016/j.patcog.2012.02.021〉
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00362281
Contributeur : Servane Gey <>
Soumis le : jeudi 1 mars 2012 - 14:30:31
Dernière modification le : mardi 10 octobre 2017 - 11:22:04
Document(s) archivé(s) le : mercredi 14 décembre 2016 - 09:37:32

Fichiers

MarginCART_full.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Servane Gey. Risk Bounds for CART Classifiers under a Margin Condition. Pattern Recognition, Elsevier, 2012, 45, pp.3523-3534. 〈10.1016/j.patcog.2012.02.021〉. 〈hal-00362281v5〉

Partager

Métriques

Consultations de
la notice

138

Téléchargements du document

63