Model selection for weakly dependent time series forecasting

Abstract : Observing a stationary time series, we propose a two-step procedure for the prediction of the next value of the time series. The first step follows machine learning theory paradigm and consists in determining a set of possible predictors as randomized estimators in (possibly numerous) different predictive models. The second step follows the model selection paradigm and consists in choosing one predictor with good properties among all the predictors of the first steps. We study our procedure for two different types of bservations: causal Bernoulli shifts and bounded weakly dependent processes. In both cases, we give oracle inequalities: the risk of the chosen predictor is close to the best prediction risk in all predictive models that we consider. We apply our procedure for predictive models such as linear predictors, neural networks predictors and non-parametric autoregressive.
Type de document :
Article dans une revue
Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2012, 18 (3), pp 883-913. 〈10.3150/11-BEJ359〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00362151
Contributeur : Pierre Alquier <>
Soumis le : mardi 3 juillet 2012 - 10:03:50
Dernière modification le : lundi 29 mai 2017 - 14:22:46
Document(s) archivé(s) le : jeudi 4 octobre 2012 - 02:39:25

Fichiers

bej359.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Pierre Alquier, Olivier Wintenberger. Model selection for weakly dependent time series forecasting. Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2012, 18 (3), pp 883-913. 〈10.3150/11-BEJ359〉. 〈hal-00362151v4〉

Partager

Métriques

Consultations de la notice

256

Téléchargements de fichiers

120