Frequent closed itemsets based condensed representations for association rules

Abstract : After more than one decade of researches on association rule mining, efficient and scalable techniques for the discovery of relevant association rules from large high-dimensional datasets are now available. Most initial studies have focused on the development of theoretical frameworks and efficient algorithms and data structures for association rule mining. However, many applications of association rules to data from different domains have shown that techniques for filtering irrelevant and useless association rules are required to simplify their interpretation by the end-user. Solutions proposed to address this problem can be classified in four main trends: constraint-based mining, interestingness measures, association rule structure analysis, and condensed representations. This chapter focuses on condensed representa- tions that are characterized in the frequent closed itemset framework to expose their advantages and drawbacks.
Type de document :
Chapitre d'ouvrage
Post-Mining of Association Rules: Techniques for Effective Knowledge Extraction, Information Science Reference, Chapter XIII, p. 248-273, 2009
Liste complète des métadonnées

Littérature citée [72 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00361744
Contributeur : Nicolas Pasquier <>
Soumis le : dimanche 25 avril 2010 - 19:36:52
Dernière modification le : dimanche 25 avril 2010 - 20:22:53
Document(s) archivé(s) le : mardi 14 septembre 2010 - 16:59:44

Fichier

Pasquier_-_2009.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00361744, version 1

Collections

Citation

Nicolas Pasquier. Frequent closed itemsets based condensed representations for association rules. Post-Mining of Association Rules: Techniques for Effective Knowledge Extraction, Information Science Reference, Chapter XIII, p. 248-273, 2009. 〈hal-00361744〉

Partager

Métriques

Consultations de
la notice

150

Téléchargements du document

81