Isometric group actions on banach spaces and representations vanishing at infinity

Abstract : Our main result is that the simple Lie group G = Sp( n; 1) acts metrically properly isometrically on L-p( G) if p > 4 n + 2. To prove this, we introduce Property (BP0V), with V being a Banach space: a locally compact group G has Property (BP0V) if every affine isometric action of G on V, such that the linear part is a C-0- representation of G, either has a fixed point or is metrically proper. We prove that solvable groups, connected Lie groups, and linear algebraic groups over a local field of characteristic zero, have Property ( BP V 0). As a consequence, for unitary representations, we characterize those groups in the latter classes for which the first cohomology with respect to the left regular representation on L-2(G) is nonzero; and we characterize uniform lattices in those groups for which the first L-2- Betti number is nonzero.
Type de document :
Article dans une revue
Transformation Groups, Springer Verlag, 2008, 13 (1), pp.125-147. 〈10.1007/s00031-008-9006-0〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00361234
Contributeur : Marie-Annick Guillemer <>
Soumis le : vendredi 13 février 2009 - 14:41:42
Dernière modification le : mercredi 28 novembre 2018 - 14:48:22

Lien texte intégral

Identifiants

Citation

Yves De Cornulier, Romain Tessera, Alain Valette. Isometric group actions on banach spaces and representations vanishing at infinity. Transformation Groups, Springer Verlag, 2008, 13 (1), pp.125-147. 〈10.1007/s00031-008-9006-0〉. 〈hal-00361234〉

Partager

Métriques

Consultations de la notice

313