Evaluation of Response Time in Ethernet-based Automation Systems

Gaëlle Marsal\(^{(1)}\), Bruno Denis\(^{(1)}\), Jean-Marc Faure\(^{(1)}\), Georg Frey\(^{(2)}\)

\(^{(1)}\) Ecole Normale Supérieure de Cachan, France
\(^{(2)}\) University of Kaiserslautern, Germany
Outlines

- Context and approach

- Model
 - Delays analysis
 - Structure of Generic Model

- Results
 - Simulation of a particular architecture
 - Influence of resources sharing
 - Result interpretation

- Conclusions
Context

- **Ethernet-based automation system**
 - Devices: controllers, RIOM
 - Protocols: Ethernet, TCP/IP
 - Cooperation: Client/Server

- **Response time**
 - Delay between the occurrence of an input event and the occurrence of the corresponding output event

- **Evaluation of response time distribution**
Our approach

- **Simulation of Petri Net models of the systems**
 - Main advantages
 - provides a response time distribution while analytic methods yield only boundaries
 - faster than exhaustive state space analysis
 - Limitations
 - non exhaustive analysis
 - possible long simulation time

- **Modeling formalism: Hierarchical Colored Timed PNs**
 - Colored PNs allow us to build a generic model
 - Hierarchical PNs ease the model design
Delays analysis

- Three delay causes
 - data processing
 - waiting for synchronization
 - waiting for resources
Structure of Generic Model

- **Petri net structure**
 - is derived from the physical architecture

- **Colored tokens**
 - represent resources or data
Simulation of a particular architecture

- **Feature of this architecture**
 - Only switches are shared

- **Simulation**
 - Software: CPNTools
 - Simulation time: 2 hour for computation of 10,000 delays

- **Results**
 - histogram
 - lower bound = 7.5 ms
 - upper bound = 22 ms
Influence of resources sharing

- Architecture Features

 - Only switches are shared
 - Switches and 4 DIODs are shared
 - Switches and all DIODs are shared
Result interpretation

- Small impact of resource sharing on the mean value and the distribution shape of delay

- Significant impact of resource sharing on the upper bound of delay

- With these results, engineer could decide if resource sharing Ethernet architecture is suitable
Conclusions

▪ This paper has presented
 • a Colored Petri Model of Ethernet-based automation system using client/server cooperation
 • simulations to evaluation response time distribution of particular architectures

▪ Main result
 • client/server cooperation could be used in Ethernet-based automation system in conjunction with a technique of analysis to guarantee the response times

▪ Current works
 • response time comparison between architectures using client/server cooperation and architectures using master/slave or producer/consumer cooperation
 • response time evaluation using exhaustive analysis based on model-checking approach