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F. Benmansour, G. Carlier, G. Peyré, F. Santambrogio *

January 8, 2009

Abstract

This paper describes the Subgradient Marching algorithm to compute the deriva-
tive of the geodesic distance with respect to the metric. The geodesic distance being a
concave function of the metric, this algorithm computes an element of the subgradient
in O(N?log(N)) operations on a discrete grid of N points. It performs a front propaga-
tion that computes the subgradient of a discrete geodesic distance. Equipped with this
Subgradient Marching, a Riemannian metric can be designed through an optimization
process. We show applications to landscape modeling and to traffic congestion. Both
applications require the maximization of geodesic distances under convex constraints,
and are solved by subgradient descent computed with our Subgradient Marching. We
also show application to the inversion of travel time tomography, where the recovered
metric is the local minimum of a non-convex variational problem involving geodesic
distances.

Keywords: Geodesics, Eikonal equation, subgradient descent, Fast Marching Method,
traffic congestion, travel time tomography.

1 Introduction

1.1 Riemannian Metric Design

The shortest path between a pair of points for a given Riemannian metric defines a curve
that tends to follow areas where the metric is low. It is an object of primary interest in both
pure mathematics and applied fields. For instance, as far as applications are concerned,
such minimal paths are used intensively in computer vision and medical image analysis
to perform segmentation of objects and extraction of tubular vessels [8]. The metric is
designed to be low around the boundary of organs and vessels so that shortest paths follow
these salient features.

In some applications, the Riemannian metric is the object of interest, and should be
computed from a set of constraints or criteria. Some of these constraints might involve the
length of geodesic curves between sets of key points, and these geodesic distances should
be maximized or minimized. As shown in this paper, the maximization of geodesic lengths
leads to convex problems, whereas the minimization of the distance leads to a non-convex
problem. A global (for maximization) or local (for minimization) solution to these metric
design problems can be found using a subgradient descent.
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This paper proposes the first algorithm to compute such a subgradient of the geodesic
distance with respect to the metric. It can thus be used as a building block for an opti-
mization procedure that computes an optimal metric according to criteria on the length
of the geodesic curves.

1.2 Geodesic Distances.

Riemannian metric. An isotropic Riemannian metric £ on a domain  C R? defines a
weight £(z) that penalizes a curve «(t) passing through a point x = y(t) € Q. The length
of the curve according to £ is

T
L¢w=A|¢@mwmﬁ. (1.1)

This metric £ defines a geodesic distance d¢(xo, x) that is the minimal length of rectifiable
curves joining two points zg, z € €2

de(xo, x) = min L . 1.2
o) = min | L(y) (12)

The distance map
U (x) = d¢(xo, x) (1.3)

to the starting point x( is a function of the metric £, where we have drop the dependence
with respect to zg for simplicity. The mapping & — US(x) is the one we wish to maximize
or minimize in this paper, where zg and x are fixed points.

The geodesic curve 7 joining x1 to xg is the solution of an ordinary differential equation
that corresponds to a gradient descent of U¢

dv(s)

T —grad, 4 U and ~(0) =z, (1.4)
where grad, U¢ € R? is the usual gradient of the function z ~— U¢(x). This should
not be confused with the subgradient with respect to the metric defined in the following
paragraph.

Geodesic subgradient. The design of a metric through the maximization or minimiza-
tion of d¢(zg, ) requires to compute the gradient g = VU () of the mapping & — US(x).
For any location y € Q, g(y) tells how much the geodesic distance between zy and z is
sensitive to variations on &(y).

In the continuous framework of (1.1) and (1.2), a small perturbation & = {+ch defines
a geodesic distance map Z/{ff(x) between x and z(, that can be differentiated with respect

tocate =0

iuée ()

e=0

1
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where the curve 7 is the geodesic from z to x according to the metric . If 7y is unique, this
shows that & +— U¢(x) is differentiable at &, and that the gradient g is a measure supported
along the curve ~. In the case where this geodesic is not unique, this quantity may fail
to be differentiable. Yet, the map ¢ — US(x) is anyway concave (as an infimum of linear
quantities in §) and for each geodesic we get an element of the super-differential through
Equation (1.5). In the sequel we will often refer to subgradients and subdifferentials for
the concave function € — U$(x) instead of superdifferentials and supergradients, this slight
abuse of terminology should not create confusion however.



The extraction of geodesics is quite unstable, especially for metrics such that x and x;
are connected by many curves of length close to the minimum distance d¢(xo, z). It is thus
unclear how to discretize in a robust way the gradient of the geodesic distance directly
from the continuous definition (1.5). This paper proposes an alternative method, where g
is defined unambiguously as a subgradient of a discretized geodesic distance. Furthermore,
this discrete subgradient is computed with a fast Subgradient Marching algorithm.

Figure 1 shows two examples of subgradient computations. Near a degenerate con-
figuration, we can see that the subgradient g might be located around several minimal
curves.
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Figure 1: On the left, V U(x1) and some of its iso-levels for £ = 1. In the middle, a non
constant metric {(x) = 1/(1.5 — exp(—||c — z||)), where ¢ is the center of the image. On
the right, an element of the superdifferential of the geodesic with respect to the metric
shown in the middle figure.

Anisotropic metrics. The geodesic distance and its subgradient can be defined for more
complicated Riemannian metric £ that depends both on the location (t) of the curve and
on its local direction ~v/(t)/|7'(t)|. The algorithm presented in this paper extends to this
more general setting, thus allowing to design arbitrary anisotropic Riemannian metric. We
decided however to restrict our attention to the isotropic case, that has many practical
applications.

1.3 Previous Works and Contributions

Geodesic distance computation. The estimation of distance maps U¢ has been in-
tensively studied in numerical analysis and can be approximated on discrete grid of N
with the Fast Marching Method of Sethian [13], and Tsitsiklis [14] in O(N log(N)) opera-
tions. This algorithm has opened the door to many application in computer vision where
the minimal geodesic curves extracts image features, see for instance [13, 8]. Section 2
recalls the basics of the discretization of geodesic distance and Section 2.3 details the front
propagation procedure underlying the Fast Marching method.

Geodesic distance optimization. The optimization of ¢¢ with respect to ¢ is much
less studied. It is however an important problem in some specific fields, such as for
landscape design, traffic congestion and seismic imaging. In these applications, the metric
¢ is optimized to meet certain criteria, or is recovered by optimization from a few geodesic
distance measures.

This paper tackles directly the problem of optimizing quantities involving the distance
function U¢ by computing a subgradient Vels(z) of the mapping & — US(z) for a given



point z. The Subgradient Marching algorithm is described in Section 3. It follows the
optimal ordering used by the Fast Marching, making the overall process only O(N? log(N))
to compute a subgradient of the maps & +— U¢(z) for all the grid points .

This Subgradient Marching computes an exact subgradient of the discrete geodesic
distance, so that it can be used to minimize variational problems involving geodesic dis-
tances. We believe it is important to first discretize the problem of interest and perform
an exact minimization of the discrete problem. As far as geodesic quantities are involved,
discretizing optimality condition of a continuous functional is indeed highly unstable.

Landscape design. Shape design requires the modification of the Riemannian metric
defined by the first fundamental form of the surface. Minimization of geodesic length
distortion is a well studied criterion to perform surface flattening and shape comparison,
see for instance [3].

This paper tackles directly the problem of optimizing a Riemannian metric £&. The
example of landscape design using a fixed amount of resources is studied in Section 4.1.
The length of geodesics is maximized under local and global constraint on the metric. This
problem has a unique solution that can be found using a subgradient computed with our
Subgradient Marching algorithm.

An application to travel time tomography is shown in Section 4.3. A subgradient
descent allows one to find a local minimum of a variational energy involving geodesic
distances.

Traffic congestion. A continuous generalization of the Wardrop equilibria [15], origi-
nally proposed in [5], involves the maximization of a concave functional depending on the
geodesic distances between landmarks. A subgradient descent approximates this continu-
ous solution and [1] describes an algorithm that makes use of our Subgradient Marching.
Section 4.2 recalls basic facts of this congestion approximation and shows some numerical
examples.

Seismic imaging. Seismic imaging computes an approximation of the underground from
few surfaces measurements [6, 11]. This corresponds to an ill posed inverse problem that
is regularized using smoothness prior information about the ground and simplifying as-
sumption about wave propagation. Discarding multiple reflexions, the first arrival time
of a pressure wave corresponds to the geodesic distance to the source, for a Riemannian
metric & that reflects the properties of the underground.

The recovery of { from a few measurements d¢(x;, ;) between sources x; and sensors
xj corresponds to travel time tomography. A least square recovery of £ involve the opti-
mization of the geodesic distance. It has been carried over using for instance adjoint state
methods [6, 11] that involve many computations of the geodesic map U¢ for a varying
metric £. Our Subgradient Marching algorithm allows to find a local minimum of the
regularized least square energy using a descent method.

2 Discrete Geodesic Distances

2.1 Discretization

Eikonal Equation Our approach to minimize geodesic distances first defines a discrete
geodesic distance U, solution of a discretized partial differential equation. A discrete
subgradient VeU¢(z) of the map & — US(z) is then defined to solve exactly discrete
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Figure 2: Example of the minimal path computation using the Fast Marching algorithm.
On the left: the metric £&. On the right: The minimal action map & and the minimal path
linking 21 to xp.

variational problems involving geodesic distances. This is a general framework that could
be extended to a larger class of non-linear partial differential equations.

The geodesic map U¢(x) defined in (1.3) is the unique viscosity solution of the Eikonal
non-linear PDE (see [10])

{I!Wf(w)\l = 1)

Ué(xg) =0.

The computation of U*(z) thus requires the discretization of (2.1) so that a numerical
scheme captures the viscosity solution of the equation.

Upwind Discretization In the following, we describe the computation in 2D and as-
sume that the domain is = [0,1]?, although the scheme carries over for an arbitrary
domain in any dimension.

We will also drop the dependence on ¢ and xq of the distance map U¢ = U to ease the
notations. The geodesic distance map U¢ is discretized on a grid of N = n x n points, so
that U; ; for 0 < i,j < n is an approximation of U¢(ih, jh) where the grid step is h = 1/n.
The metric £ is also discretized so that & ; = £(ih, jh).

Classical finite difference schemes do not capture the viscosity solution of (2.1). Upwind
derivative should be used instead

Dithy j = max{(Uij — Ui-1,3), Uij — Uit1,3), 0}/,
Doll; j := max{(Ui,; — Ui 1), Ui j — Uijt1),0}/h.

As proposed by Rouy and Tourin [12], the discrete geodesic distance map U = (U; ;)i ; is
found as the solution of the following discrete non-linear equation that discretizes (2.1)

DU =¢ where Dl =\/DiU?; + Dald?;. (2.2)

Rouy and Tourin [12] showed that this discrete geodesic distance U converges to U¢ when
h tends to 0.

Figure 2 shows an example of a discrete geodesic distance map /. The metric ¢ has a
low value along a black curve, so that the geodesic curves tends to follow this feature. An
example of geodesic curve is shown on the right, that is obtained by a numerical integration
of the ordinary differential equation (1.4).



2.2 Concavity of the Geodesic Distance

To solve variational problems involving the geodesic distance d¢(xo,x), for x = (ih, jh),
one would like to differentiate with respect to & the discrete distance map U i obtamed
by solving (2.2). Actually, this is not always possible, since the mapping £ — U . is not

necessary smooth. The following proposition proves that Z/lg- is a concave functlon of £
and this allows for superdifferentiation (the correspondent of subdifferential for concave
functions instead of convex).

Proposition 2.1. For a given point (i,7), the functional & — L[fj is concave.

Proof. In the following we drop the dependence on (i, ) and note U¢ = Uf ;- Thanks to
the homogeneity, it is sufficient to prove super-additivity. We want to prove the inequality

u§1+£2 > u& +u§2.

Thanks to the comparison principle of Lemma 2.2 below, it is sufficient to prove that & +
& > D(US +U2), where the operator D is defined in (2.2). This is easily done if we notice
that the operator D is convex (as it is a composition of the function (s,t) — V/s% + 2,
which is convex and increasing in both s and ¢, and the operator D; and Ds, which are
convex since they are produced as a maximum of linear operators) and 1—homogeneous,
and hence it is subadditive, i.e. it satisfies D(u + v) < Du + Dwv. O

Lemma 2.2. If & <1, then US < U".

Proof. Let us suppose at first a strict inequality ¢ < 7. Take a minimum point for " — ¢
and suppose it is not the fixed point xyg. Computing D and using sub-additivity we have

n=DU" < DU" —U®) + DU = DU" — US) + €,

which gives D(U" —US) > n—¢& > 0. Yet, at minimum points we should have D(U" —U¢) =
0 and this proves that the minimum is realized at x(, which implies U7 — U¢ > 0.

To handle the case { < n without a strict inequality, juste replace n by (1 + ¢)n and
notice that the application 1 — U" is continuous. O

2.3 Fast Marching Propagation

The Fast Marching algorithm, introduced by Sethian in [13] and Tsitsiklis in [14], allows
to solve (2.2) in O(N log(N)) operations using an optimal ordering of the grid points. This
greatly reduces the numerical complexity with respect to iterative methods, because grid
points are only visited once.

We recall the basic ideas underlying this algorithm, because our Subgradient Marching
computation of V§u£ (z) makes use of the same ordering process.

The values of U may be regarded as the arrival times of wavefronts propagating from
the source point z¢ with velocity 1/£. The central idea behind the Fast Marching method
is to visit grid points in an order consistent with the way wavefronts propagates.

In the course of the algorithm, the state of a grid point (i, j) passes successively from
Far (no estimate of U; j is available) to Trial (an estimate of If; ; is available, but it might
not be the solution of (2.1)) to Known (the value of U; ; is fixed and solves (2.1)). The
set of Trial points forms an interface between Known points (initially the point zo alone)
and the Far points. The Fast Marching algorithm progressively propagates this front of
Trial points so that all grid points are visited, see Fig. 3.



