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Abstract

We consider a single server retrial queue with the server subject to

interruptions and classical retrial policy for the access from the orbit to

the server. We analyze the equilibrium distribution of the system and

obtain the generating functions of the limiting distribution.

1 Introduction

Queueing systems with retrials of the attempts are characterized by the fact that
an arrival customer who finds the server occupied is obliged to join a group of
blocked customers, called orbit, and reapply after random intervals of time to
obtain the service. These systems are useful in the stochastic modeling of much
of situations in practice. We can find them in aviation, where a plane which
finds the runway occupied remakes its attempt of landing later and we say in this
case that it is in orbit. In Telephone systems where a telephone subscriber who
obtains a busy signal repeats the call until the required connection is made. In
data processing, we find them in protocol of access CSMA/CD. They appear in
the modeling of the systems of maintenance and the problems of repair among
others. For details on these models, see the book of Falin and Templeton [4] or
the recent book by Artalejo and Gomez-Corral [2].

We study in this article single server retrial queues with various types of in-
terruptions of the server. From a practical point of view, it is more realistic to
consider queues with repetitions of calls and the server exposed to random in-
terruptions. Queueing models with interruptions of service proved to be a useful
abstraction in the situations where a server is shared by multiple queues, or when
the server is subject to breakdowns. Such systems were studied in the literature
by many authors. Fiems et al. [6] considered an M/G/1 queue with various
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types of interruptions of the server and our work is a generalization to the case
of retrial queues. White and Christie [17] were the first to study queues with
interruptions of service by considering a queueing system with exponentially dis-
tributed interruptions. Times of interruptions and services generally distributed
are considered by Avi-Itzhak and Naor [3] and Thiruvengadam [14]. Other gener-
alisations were considered in the literature ( phase-type [5], approximate analysis
[15], Markov-modulated environment [13] and [10], processor sharing [11]). Gaver
[8] considers the case where the service is repeated or repeated and begin again
after the interruption.

We consider in this paper a single server retrial queue with server interruptions
and the classical retrial policy where each customer in orbit conduct its own
attempts to get served independently of other customers present in the orbit. We
can then assume that the probability of a retrial during the time interval (t, t+dt),
given that j customers were in orbit at time t, is jθdt+◦ (dt). Kulkarni and Choi
[9] studied a single server linear retrial queue with server subject to breakdowns
and repairs and they obtained the generating functions of the limiting distribution
and performance characteristics. Artalejo [1] obtained sufficient conditions for
ergodicity of multiserver retrial queues with breakdowns and a recursive algorithm
to compute the steady-state probabilities for the M/G/1 linear retrial queue with
breakdowns. The detailed analysis for reliability of retrial queues with linear
retrial policy was given by Wang, Cao and Li [16].

The remainder of paper is organized as follows. In the following section, we
describe the model and give the necessary and sufficient conditions so that the
system is stable. In section 3, we analyze the equilibrium distribution of the
system in study.

2 Model Description

Consider a single server queueing system in which customers arrive in accordance
with a Poisson process with arrival rate λ. If at the instant of arrival the customer
finds the server free, it takes its service and leaves the system. Otherwise, if the
server is busy or in interruption, the arriving customer joins an unlimited queue
called orbit and makes retrials for getting served after random time intervals.
We consider the classical policy where each customer in orbit conducts his own
attempts to obtain service independently from the other customers present in
the orbit. We can then assume that the probability of a retrial during the time
interval (t, t + dt), given that j customers were in orbit at time t, is jθdt + ◦ (dt).
Service times constitute a series of independent and identically distributed (i.i.d.)
random variables with common distribution function B(t), density function b(t),
and corresponding Laplace–Stieltjes transform (LST) β(s) and finite first two
moments βk = (−1)k β(k)(0), k = 1, 2. Interruptions of the service may occur
according to a Poisson process with rate ν if the server is busy and this type
of interruption can be disruptive with probability pd (or rate νd = pdν) or non-
disruptive with probability pn = 1 − pd (or rate νn = pnν). In the case of a
disruptive interruption the customer being served repeats his service at the end of
the interruption, in the other type the customer continues his stopped service. If
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the server is idle, another type of interruptions may occur according to a Poisson
process with rate νi. We call this type idle interruption. The lengths of the
consecutive disruptive (non-disruptive, idle time) interruptions constitute a series
of i.i.d. positive random variables with distribution function Bd(t) (Bn(t), Bi(t)),
density function bd(t) (bn(t), bi(t)), corresponding Laplace–Stieltjes transform
(LST) βd(s) (βn(s), βi(s)) and finite first two moments βd

k, (βn
k , βi

k) k = 1, 2.
Denote by N(t) the number of customers in orbit at time t. Let C(t) be

the state of the server at time t : C(t) = F if the server is free (and functions
normally), C(t) = S if the server is busy (and functions normally), C(t) = D
if the server is on a disruptive interruption, C(t) = N if the server is on a non-
disruptive interruption, C(t) = I if the server is taking an idle interruption. We
introduce the random variables ξ(t), ξD(t), ξN (t) and ξI(t) defined as follows. If
C(t) = S then ξ(t) represents the elapsed service time at time t; if C(t) = D,
then ξD(t) represents the elapsed disruptive interruption time at t; if C(t) = N,
then ξN (t) represents the elapsed non-disruptive interruption time at t; and if
C(t) = I then ξI(t) is the elapsed idle interruption time at t.

3 Stability Analysis

We first study the condition for the system to be stable. The following theorem
provides the necessary and sufficient stability condition.

Theorem 1 The system with classical retrial policy and interruptions is stable

if and only if the following condition is fulfilled

λ (1 − β(νd))

νdβ(νd)

(
1 + νdβ

d
1 + νnβn

1

)
< 1. (1)

Proof. Let {sn; n ∈ N} be the sequence of epochs of service completion time. We
consider the process Yn = (N(sn+), C(sn+)) embedded immediately after time
sn. It is readily to see that {Yn; n ∈ N} is an irreducible aperiodic Markov chain.
To determine the stability of the system it remains to prove that {Yn; n ∈ N} is
ergodic under the suitable stability condition. Let us first consider the generalized
service time S̃ of a customer which includes, in addition to the original service
time S of the customer, possible interruption times during the service period of
the customer. Fiems et al. [6] showed that the generalized service time has the
Laplace transform

β̃(s) =
[s + ν − νnβn(s)] β (s + ν − νnβn(s))

[s + ν − νnβn(s)] − νdβd(s) [1 − β (s + ν − νnβn(s))]
,

hence its expected value is given by

ES̃ = −β̃
′

(0) =
(1 − β(νd))

νdβ(νd)

(
1 + νdβ

d
1 + νnβ

n
1

)
.

For the sufficiency, we shall use Foster’s criterion, which states that a Markov
chain {Yn; n ∈ N} is ergodic if there exists a nonnegative function f(k), k ∈ N,
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and δ > 0 such that for all k 6= 0 the mean drift

χk = E [f(Yn+1) − f(Yn) | Yn = k] , (2)

satisfies χk ≤ −δ and E [f(Yn+1) | Yn = 0] < ∞. If we choose f(k) = k we obtain

E [f(Yn+1) | Yn = 0] = λES̃ =
λ (1 − β(νd))

νdβ(νd)

(
1 + νdβ

d
1 + νnβ

n
1

)
< ∞,

and we can easily check that

χk = λES̃ − 1 = [λ (1 − β(νd)) /νdβ(νd)]
(
1 + νdβ

d
1 + νnβ

n
1

)
− 1.

If we set

δ = 1 −
λ (1 − β(νd))

νdβ(νd)

(
1 + νdβ

d
1 + νnβ

n
1

)

then the condition (1) is sufficient for ergodicity.
To prove that the condition (1) is necessary, we use theorem 1 of Sennot et al. [12]
which states that if the Markov chain {Yn; n ∈ N} satisfies Kaplan’s condition,
namely χk < ∞ for all k ≥ 0 and there is an k0 such that χk ≥ 0 for k ≥ k0, then
{Yn; n ∈ N} is not ergodic. Indeed, if

λ (1 − β(νd))

νdβ(νd)

(
1 + νdβ

d
1 + νnβ

n
1

)
≥ 1

then for f(k) = k, there is a k0 such that pij = 0 for j < i − k0 and i > 0, where
P = (pij) is the one-step transition matrix associated to {Yn; n ∈ N}.
The stability of the system follows from Burke’s theorem (see Cooper [7] p187)
since the input flow is a Poisson process.

4 Steady-state analysis

We investigate in this section the steady-state distribution of the system. Define
the functions µ(x), µD(x), µN(y) and µI(x) as the conditional completion rates for
service, disruptive interruption, non-disruptive interruption and idle interruption,
respectively, i.e., µ(x) = b(x)/ (1 − B(x)) , µD(x) = bd(x)/ (1 − Bd(x)) , µN(x) =
bn(x)/ (1 − Bn(x)) and µI(x) = bi(x)/ (1 − Bi(x)) .

We now introduce the following set of probabilities for j ≥ 0:

pF,j(t) = P {N(t) = j, C(t) = F} ,

pB,j(t, x)dx = P {N(t) = j, C(t) = S, x ≤ ξ(t) < x + dx} ,

pD,j(t, x)dx = P {N(t) = j, C(t) = D, x ≤ ξD(t) < x + dx} ,

pN,j(t, x, y)dy = P {N(t) = j, C(t) = N, ξ(t) = x, y ≤ ξN (t) < y + dy} ,

pI,j(t, x)dx = P {N(t) = j, C(t) = I, x ≤ ξI(t) < x + dx} .

where t ≥ 0 and x, y ≥ 0.
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The usual arguments lead to the differential difference equations by letting
t → +∞

(λ + jθ + νi) pF,j =

+∞∫

0

µ(x)pB,j(x)dx +

+∞∫

0

µI(x)pI,j(x)dx, (3)

(
∂

∂x
+ λ + ν + µ(x)

)
pB,j(x) = (1 − δ0j) λpB,j−1(x) +

+∞∫

0

µN(y)pN,j(x, y)dy,(4)

(
∂

∂x
+ λ + µD(x)

)
pD,j(x) = (1 − δ0j) λpD,j−1(x), (5)

(
∂

∂y
+ λ + µN(y)

)
pN,j(x, y) = (1 − δ0j) λpN,j−1(x, y), (6)

(
∂

∂x
+ λ + µI(x)

)
pI,j(x) = (1 − δ0j) λpI,j−1(x). (7)

With boundary conditions

pB,j(0) = (j + 1) θpF,j+1 + λpF,j +

+∞∫

0

µD(x)pD,j(x)dx, (8)

pD,j(0) = νd

+∞∫

0

pB,j(x)dx, (9)

pN,j(x, 0) = νnpB,j(x), (10)

pI,j(0) = νipF,j. (11)

The normalising equation is

+∞∑

j=0

pF,j +

+∞∑

j=0

+∞∫

0

pB,j(x)dx +

+∞∑

j=0

+∞∫

0

pD,j(x)dx +

+∞∑

j=0

+∞∫

0

+∞∫

0

pN,j(x, y)dxdy

+

+∞∑

j=0

+∞∫

0

pI,j(x)dx = 1
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Define the generating functions

PF (z) =
∞∑

j=0

pF,j zj ,

PB(x, z) =

∞∑

j=0

pB,j(x) zj ,

PD(x, z) =
∞∑

j=0

pD,j(x) zj ,

PN(x, y, z) =

∞∑

j=0

pN,j(x, y) zj ,

PI(x, z) =
∞∑

j=0

pI,j(x) zj ,

for |z| ≤ 1.
We introduce h(z) = [ν − νnβn (λ − λz) + λ − λz] and
χ (z) = h(z) − νdβd (λ − λz) (1 − β (h(z))) to simplify notation.

We have the following theorem

Theorem 2 In steady state, the joint distribution of the server state and queue

length is given by

PF (z) = PF (1) exp





z∫

1

Ψ(u)du



 ,

PB(x, z) = PB(0, z) (1 − B(x)) exp {−h(z)x} ,

PD(x, z) = PB(0, z)
νd (1 − β(h(z)))

h(z)
(1 − Bd(x)) exp {− (λ − λz) x} ,

PN(x, y, z) = PB(0, z)νn (1 − Bn(y)) (1 − B(x)) exp {−h(z)x} exp [− (λ − λz) y] ,

PI(x, z) = νiPF (z) (1 − Bi(x)) exp [− (λ − λz) x] ,

where

PF (1) =
ν2

dβ (νd) (1 − ρ)(
1 + νiβ

i
1

) [
ν2

dβ (νd) + λνnβn
1 (1 − β(νd))

2 − λνnβn
1νd (1 − β(νd))

] ,

Ψ(z) =
λh(z)β (h(z)) − [λ + νi (1 − βi (λ − λz))] χ (z)

θ (zχ (z) − h(z)β (h(z)))
,

PB(0, z) =
h(z) (λ + θΨ(z))

χ (z)
PF (z).
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