Sparse Conformal Predictors

Abstract : Conformal predictors, introduced by Vovk et al. (2005), serve to build prediction intervals by exploiting a notion of conformity of the new data point with previously observed data. In the present paper, we propose a novel method for constructing prediction intervals for the response variable in multivariate linear models. The main emphasis is on sparse linear models, where only few of the covariates have significant influence on the response variable even if their number is very large. Our approach is based on combining the principle of conformal prediction with the $\ell_1$ penalized least squares estimator (LASSO). The resulting confidence set depends on a parameter $\epsilon>0$ and has a coverage probability larger than or equal to $1-\epsilon$. The numerical experiments reported in the paper show that the length of the confidence set is small. Furthermore, as a by-product of the proposed approach, we provide a data-driven procedure for choosing the LASSO penalty. The selection power of the method is illustrated on simulated data.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées
Contributeur : Mohamed Hebiri <>
Soumis le : mercredi 11 février 2009 - 20:25:54
Dernière modification le : mercredi 12 octobre 2016 - 01:03:22
Document(s) archivé(s) le : mardi 8 juin 2010 - 22:17:13


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00360771, version 1
  • ARXIV : 0902.1970



Mohamed Hebiri. Sparse Conformal Predictors. 2009. <hal-00360771>



Consultations de
la notice


Téléchargements du document