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1 Introduction

Classification problem with time series input variables arise naturally in many applications. In this
paper, we propose a new approach for extending standard decision trees (Breiman et al. (1984)) to
handle time series input variables. Our proposition aims to leverage the interpretability of the temporal
decision tree as well as its accuracy and performance. Past contributions to this problem, can be
classified into two main approaches. The first one maps time series to another description space, then
perform conventional classifiers on the transformed time series (Geurts (2001)). The second approach
works directly on the time series, they generally propose to split a time series variable based on the
proximity measure between time series (Yamada et al. (2005)). Although, the direct approach offers
more comprehensive and interpretable output results than the former one, it suffers of two limitations.
On the one hand, the used proximity measures, the euclidean distance or the dynamic time warping,
are based on the closeness of the values regardless to the proximity with respect to the behavior of the
time series. On the other hand, proximity measure is only based on the whole time series, ignoring
the case of subsequences providing a more optimal split of internal nodes. In this paper we propose a
new temporal decision tree which handles directly time series. The main idea of our proposition can
be summarized in the following points: using a dissimilarity index including both proximity on values
and on behaviors; for the split of an internal node a time series is considered on its whole length or
on a subsequence; the research of the optimal split consists in learning the dissimilarity index which
minimizes the Gini index with a good separability between the two obtained daughter nodes. The
rest of the paper is organized as follows. In the next section, we present the main principals of the
dissimilarity index including both behavior and values proximity measures. The section 3 presents the
new decision tree method and gives the main algorithms. In section 4, we illustrate the high benefit
and performance of our new proposition through several public datasets; we perform its evaluation
and comparison to alternative approaches and discuss the main obtained results.

2 Adaptive dissimilarity index for time series classification

We distinguish two important characteristics of the temporal applications. On the one hand, there are
applications where both occurring events and their instants of time are determinant for the proximity
evaluation. For instance, ECG, delay response to a treatment, etc. We characterize such applications



as “Time dependent events”. On the other hand, there are the applications where only occurring events
and their order which are important. For instance, in voice processing domain only the occurring
syllables are used to identify words; the flow rate being specific to each person. We characterize such
applications as “Time independent events”. To include both proximity on values and on behavior for
time series proximity measure, it’s appropriate for the former type of applications to use the extended
euclidean distance proposed in (Douzal Chouakria et al. (2007)), where as for the latter type of
application, we propose a new extension of the dynamic time warping.

Time dependent events application Let S| = (u1,...,u,) and Sy = (v, ..., vp) be two time series
of p values observed at the time instants (¢, ...,t,) and assumed as issued from a “Time dependent
events” application. The adaptive dissimilarity index proposed in (Douzal Chouakria et al. (2007))
to extend the euclidean distance to include both proximity measures with respect to values and with
respect to (w.r.t.) behavior is defined as follows:
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(1) D% (S, S) = f(cort(S1,Ss)) - 65(S1, S2) with f(z)

SK(S1,82) = (30 (u; — 11,-)2)% is the conventional euclidean distance based on the closeness of the
values and cort(S,S2) = _Zfz_ll(u(iﬁ)_u”(v(i_H)_Ui)
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(cort € [—1,1]) and defines a similarity w.r.t. behavior. The parameter k¥ modulates the contributions
of the proximity w.r.t. values and w.r.t. behavior to the dissimilarity index D%. Note that if k varies
in [0, 6] f(x) decreases from 2 to 0.

is the temporal correlation coefficient

Time independent events application Let’s now assume that S; = (u1,...,up) and Ss = (v1, ..., vg)
are two time series issued from a “Time independent events” application. We define a mapping r € M
(M is the set of all possible mappings) between S; and Sy as the sequence of m pairs preserving
the observations order r = ((uq,, Vb )s (Uags Uby)s s (Uar,» Vb, ) With a; € {1,..,p}, b; € {1,..q} and
satisfying for i € {1,..,m — 1} the following constraints: a; = 1, a,, = p, a;+1 = (a; or a; + 1) and
b1 =1, by, = ¢ and bjy1 = (b; or b; + 1). Let’s note ST = (uq,, ..., Uq,,) and S5 = (vp,, ..., vp,, ) the two
time series induced by such a mapping r. We define the length |r| of such a mapping as:

(2) |7’| = f(cort( {755)) Z |uai_vb7l

i=1,..,m

According to the above definition, we propose a new adaptive dynamic time warping to cover both
proximity on values and on behavior :

(3) Dij(S1,82) = min [r| = min | f(cort(S7, 53)). Y lua s,

i=1,..,m

3 Temporal decision trees

To extend decision trees to time series input variables, we propose a new adaptive split procedure
to partition the set of time series into two clusters minimizing the Gini error. If we suppose given a
dissimilarity index, and two representative time series, we define a two clusters partition of the set of
time series by assigning each time series to the closest (in terms of the given dissimilarity) representative
time series. The novelty of our adaptive split procedure is summed up in two points. On the one hand,
instead assuming a given dissimilarity index (i.e. the euclidean or the dynamic time warping), we have
to learn the best dissimilarity index (i.e. the best contributions of the values and of the behavior) to
provide a two clusters partition minimizing the Gini error. On the other hand, we broaden the search
of the two representative time series to a dichotomic search of sub time series providing a more optimal
partition (in terms of Gini index). Let’s give more in detail the proposed algorithms. Let S = {1,..., N}



be the set of time series belonging to a current node. The split of a set of time series is characterized by
o(l,r,k,I) where [ and r identify the left and right representative time series, k the parameter defining
the contribution of the behavior and of the values in the dissimilarity index D¥ (with D* referring D},
or D’jtw), and [ is the observation period of the studied time series. For a given observation period I, we
define two consecutive overlapped sub-periods I, Ir subdividing I into a left and a right sub-periods;
with IyUIp = I and I;NIR # ¢. Finally let’s note GI(o(l,r, k,I)) the Gini error of the split o (I, r, k, I).

Algorithm 1 Dichotomic-Split(S,I) Algorithm 2 Adaptive-Split(S,I)
1: Iy, « Left sub period of I 1: best_error « oo
2: I < Right sub period of I 2: for k in [0; 6] do
3: (o(lL,rL kL, I),error;) « Adaptive-Split(S,I) 30 (lk,rk) — argming . (GI(o(l,7,k,I)))
4: (o(ll rlv kIr Ip) error;, < Adaptive-Split(S,Ir) 4. if GI(o(lg,re,k,I)) < besterror
5. (o(lir rir klr Ip) errorr,) <+ Adaptive-Split(S,Ig) then
6: if error;, = min(errory, ,errory,,errory) then 5: best_error «— GI(o(lg, i, k,I))
7 I* — IL 6: k?* — k?
8: else if errory, = min(errory, ,errory,,errory) then T: Lo — I
9: L. 1Ip 8: Tx < Tk
10: else 9: end if
11:  return < o(lL,rl kI 1) > 10: end for
12: end if 11: return < o(ly,r«, ks, I), best_error >
13: o(ll,rl kI I,) « Dichotomic-Split(S,Z)

14: return < o(ll ri ki< 1) >

*k 20k

Initially, the Dichotomic — Split procedure is called with the interval I corresponding to the total
observation period. The Adaptive — Split procedure is then called with I, I}, and Ir periods. Given
as input an observation period I, the Adaptive — Split procedure will look for the best dissimilarity
DF (i.e. the best k) and the best representative time series based on the observation within the
period I (i.e. dissimilarity index is evaluated on the sub-sequences defined by I). As output, the
Adaptive— Split returns the best parameter k. (the best contribution of the values and of the behavior
for the dissimilarity index D*) and the two representative time series I and r! providing an optimal
split in terms of Gini error. The dichotomic search continue as long as at least one of the left or
of the right sub-periods improve the Gini error. As output, the Dichotomic — Split returns the best
observation period I, (which can be the total initial observation period) and the optimal corresponding
split o (1L, rl kI« I,).

4 Application and comparison results

We illustrate the efficiency of the proposed algorithm through 4 simulated datasets described in (Geurts
(2005)): CBF, CBF-tr, CC and Two-Pat. As these datasets are of “independent time events” type,
DE, " is considered. Our proposition is compared to the Yamada’s algorithm [Yamada et al. (2005)]
and to “Segment and Combine (S&C)” procedure (Geurts (2005)). Data are noisy preprocessed.
Comparison results are presented in Table 1. For instance, the third row shows that a decision tree
built on the CC dataset, which are composed of 900 training cases and 300 test cases, gives a global
error rate of 0.003 for our proposition, 0.023 for the Yamada’s approach and 0.003 for S&C one. The
numbers of leaves are indicated between brackets. Note that through nearly all the datasets, the
proposed algorithm provides a better error rate than the two alternative approaches. Let’s explain the
main characteristics of the decision tree (figure 1) built on the CC data. Initially the root node (node
1) includes 900 times series equally distributed through the 6 CC classes named: Cyclic, Decreasing,
Downward, Increasing, Normal and Upward. The split of that node reveals 3 main elements: the
two time series (of downward and cyclic classes) selected as the most representative of the left and



Training set size | Test set size | New tree Yamada S&C

CBF 600 300 0.006 (3) 0.066 (3) 0.015
CBF-tr 600 300 0.013 (3) | 0.116 (15) | 0.027
CC 900 300 0.003 (6) 0.023 (7) 0.003
Two-pat 400 400 0.005 (4) | 0.000 (6) | 0.049

Table 1: Experiments results (error rate (Nb. leaves))

right daughter nodes, the optimal value kx = 0 meaning that, to discriminate well the daughter
nodes time series, the dissimilarity index should be based mainly on the values, and finally, the
retained discriminant interval I, (here the whole observation period) localizing the observation period
on which the dissimilarity index should be evaluated. Given a new time series case, we evaluate the
dissimilarity index Df};‘;n (limited to the observations belonging to I,) between the new case and each
of the representative time series; the new time series is then assigned to the daughter node of the most
similar representative time series. Finally, let’s note that the split of the node 4 reveals a value of
ky = 5, which means that the dissimilarity index to be used for assigning new cases should be based
essentially on the behavior.

node 1
n=900 (16 16 16 16 16 16)

k=0 :

node 2 node 3
n=450 (0 3333 0330) n=450 (33 0 0 33 0 33)

8 Sainanans e
node 4 Normal Cyclic
n=300 (0 50 50 00 0) n=150 (150) n=150 (150) n=300 (0 0 0 50 0 50)
Decreasing Downward Increasing Upward
n=149 (149) n=151 (150) n=149 (149) n=151 (150)

Figure 1: Temporal decision tree for CC datasets classification

5 Conclusion

We propose a new splitting approach to extend the decision trees to temporal data. The proposed
split aims to determine for each daughter node the representative time series, the observation period
best discriminating the output variable, and the optimal contribution of the values and of the behavior
for the proximity evaluation. A new extension of the Dynamic time warping is also proposed. The
high efficiency and interpretability of the proposition is illustrated through many public datasets and
compared to two important alternative algorithms. Future work will focus on the stability evaluation
through real datasets.
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