Pointwise limits for sequences of orbital integrals

Abstract : In 1967, Ross and Strömberg published a theorem about pointwise limits of orbital integrals for the left action of a locally compact group $G$ onto $(G,\rho)$, where $\rho$ is the right Haar measure. In this paper, we study the same kind of problem, but more generally for left actions of $G$ onto any measured space $(X,\mu)$, which leaves the $\sigma$-finite measure $\mu$ relatively invariant, in the sense that $s\mu = \Delta(s)\mu$ for every $s\in G$, where $\Delta$ is the modular function of $G$. As a consequence, we also obtain a generalization of a theorem of Civin, relative to one-parameter groups of measure preserving transformations. The original motivation for the circle of questions treated here dates back to classical problems concerning pointwise convergence of Riemann sums relative to Lebesgue integrable functions.
Type de document :
Article dans une revue
Colloquium Mathematicum, 2010, 118, pp.401-418
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

Contributeur : Claire Anantharaman-Delaroche <>
Soumis le : mercredi 11 février 2009 - 10:07:36
Dernière modification le : jeudi 3 mai 2018 - 15:32:06
Document(s) archivé(s) le : mardi 8 juin 2010 - 18:32:43


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00360349, version 1
  • ARXIV : 0902.1870



Claire Anantharaman-Delaroche. Pointwise limits for sequences of orbital integrals. Colloquium Mathematicum, 2010, 118, pp.401-418. 〈hal-00360349〉



Consultations de la notice


Téléchargements de fichiers